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Abstract. Continuous monitoring of oceanic bottom water

temperatures is a complicated task, even in relatively easy-to-

access basins like the North or Baltic seas. Here, a method to

determine annual bottom water temperature variations from

inverse modeling of instantaneous measurements of tempera-

tures and sediment thermal properties is presented. This con-

cept is similar to climate reconstructions over several thou-

sand years from deep borehole data. However, in contrast,

the presented method aims at reconstructing the recent tem-

perature history of the last year from sediment thermal prop-

erties and temperatures from only a few meters depth. For

solving the heat equation, a commonly used forward model

is introduced and analyzed: knowing the bottom water tem-

perature variations for the preceding years and the thermal

properties of the sediments, the forward model determines

the sediment temperature field. The bottom water tempera-

ture variation is modeled as an annual cosine defined by the

mean temperature, the amplitude and a phase shift. As the

forward model operator is non-linear but low-dimensional,

common inversion schemes such as the Newton algorithm

can be utilized. The algorithms are tested for artificial data

with different noise levels and for two measured data sets:

from the North Sea and from the Davis Strait. Both algo-

rithms used show stable and satisfying results with recon-

struction errors in the same magnitude as the initial data er-

ror. In particular, the artificial data sets are reproduced with

accuracy within the bounds of the artificial noise level. Fur-

thermore, the results for the measured North Sea data show

small variances and resemble the bottom water temperature

variations recorded from a nearby monitoring site with rela-

tive errors smaller than 1 % in all parameters.

1 Introduction

The depth-dependent temperature in marine sediments is

controlled by the amount of heat exchange with the water

above and the deeper regions of Earth’s mantle, as well as

on the thermal properties of the sediment. When the water

temperature is time-independent and there are no heat sinks

and sources, a steady state is achieved where the vertical heat

flow is constant – at least in timescales of decades.

Periodically changing water temperatures are measurable

to different depths, depending on the amplitude, period and

the sediment thermal properties. A reliable forward model to

describe the sediment temperature in the steady state or with

(periodically) changing water temperatures exists (see e.g.,

Lowrie, 2007) and will be introduced in Sect. 2.

Measured and modeled subsurface temperatures are ana-

lyzed for different purposes (Chouinard et al., 2007). In cli-

mate research borehole temperature data are inverted for the

ground surface history (Shen and Beck, 1991). Here, the sur-

face temperature is modeled as a Fourier series and often

more than one temperature–depth profile is used. The aim

is to obtain mean temperatures over time intervals of several

years (Chouinard et al., 2007) and hence the mathematical

models are linear but high-dimensional. The involved inver-

sion schemes are adapted to these models. A more simple

model is introduced later, where these inversion schemes are

not strictly necessary.

Other studies focus on the background heat flow (e.g.,

Wang and Beck, 1987; Hamamoto et al., 2005). Under the

circumstances where the surface temperature can be regarded

as constant and no heat sinks or sources are present, the mea-

sured subsurface temperatures show a nearly linear increase
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with depth. Taking changing thermal properties of the sed-

iment into account, the geothermal gradient can be deter-

mined directly from temperature measurements (Beardsmore

and Cull, 2001). To decide from these data if the steady state

geothermal gradient is prevailing, the Bullard method is ap-

plied (Bullard, 1939). If the geothermal gradient is the pur-

pose of the investigation, a steady state is strictly required

and any disturbance originating from surface temperature

variations is regarded as noise. In the deep sea this is usually

not an issue, as the water column already filters the surface

temperature variations and the bottom water temperature is

(almost) constant (Davis et al., 2003). In regions with shal-

lower water or onshore this is a rather big problem and is of-

ten only solvable by using temperature measurements from

deep boreholes.

In this work the bottom water temperature history is of in-

terest, but on smaller timescales. The aim is to estimate the

bottom water temperature variations over the last year based

only on one single measured profile of depth-dependent tem-

perature and thermal diffusivity. A parameterized function

for the bottom water temperature is introduced, which results

in a non-linear but low-dimensional operator. As only one

measured profile is required, this could help to understand

the (temperature) dynamics of water basins where continu-

ous temperature monitoring is difficult to realize (e.g., in the

Arctic Ocean).

Besides artificial data sets, results for two measured data

sets from the German North Sea and the Davis Strait are

presented. The regions where these measurements were per-

formed are quite different and thus show the broad field of

usability of the presented method.

2 Forward model setup

For the theoretical framework, the sediment is considered

as a horizontally layered half space, where no temperature

change happens in each of the horizontal directions and thus

the one-dimensional heat equation can be applied:

ρCv∂tT (x, t)= ∂x(λ∂xT (x, t))+ ∂x(vT (x, t))+H(x, t),

where x ∈�⊂ R≥0 corresponds to the depth below the sea

floor at x = 0, t > 0 is the time, v is the vertical movement

of material and H an inner source. The sediment density ρ,

specific heat capacity Cv and thermal conductivity λ are typ-

ically depth-dependent. In the example areas, the volumet-

ric heat capacity ρCv shows only very small changes with

depth and will therefore be considered as constant (see also

Clauser, 2006). With the relation κ = λ
ρCv

for the thermal dif-

fusivity the parameters can be reduced to only one per layer.

The equation above states that the deviation of the tem-

perature T (x, t) with respect to time equals the amount of

diffusion (first term on the right hand side of the equation)

plus the heat transported with the material by v (second term)

and the generated heat H(x, t). In the presented settings, the

advection term ∂x(vT (x, t)) is neglected. In regions affected

by hydrothermal convection this term can make a big differ-

ence, so data sets where the fluid flow is rather low and thus

advection has no influence have been picked.

Earth’s heat source is modeled as a steady state heat flow

that contributes to the model via the lower boundary and thus

there is no source term. With these reductions the heat equa-

tion can be simplified to the model equation:

∂tT (x, t)− ∂x(κ(x)∂xT (x, t))= 0 ∀x > 0, t > 0. (1)

2.1 Thermal properties and boundary conditions

The geothermal gradient is the first derivative of the steady

state solution of the model equation with a constant ho-

mogeneous boundary value at x = 0. The steady state heat

flow will be denoted with q and thus ∂xTsteady(x, t)=
q
λ
= cg

holds for all x > 0, t > 0.

While the bottom water temperature is constant in the

steady state, in general it is time-dependent. This devia-

tion of the bottom water temperature will be denoted by

T
f

water : R≥0→ R, where f is a vector of parameters. The

parameters in f are to be reconstructed.

With initial and boundary conditions, the model Eq. (1)

becomes a solvable initial-boundary-value problem. In geo-

physical models aiming for temperature fields in the earth, it

is quite common to model the region � with infinite depth

(Jaupart and Mareschal, 2011).This approach is also used

here, but in the numerical implementation the region will al-

ways have a finite depth xE which is sufficiently large.

The boundary conditions need to be set up to satisfy the

physical conditions, which are the stimulation from a 1-

year periodic function of the bottom water temperature and

a zero-flow condition at the lower boundary. The geother-

mal gradient as the solution to the static heat equation will

be added after the modeling process. Thus, a homogeneous

Neumann condition can be set at the lower boundary in the

time-dependent part and the Robin boundary condition at

the sediment–water interface. The latter describes the fact

that the heat flows out of the sediment when the sediment

is warmer than the water above and into the sediment when

it is cooler.
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Knowing the thermal diffusivity κ(x) of the sediment and

the parameters f ∈DT of a continuous function T
f

water(t) for

the bottom water temperature, this yields a full set of equa-

tions to determine the temperature in marine sediment at ev-

ery place and time: when u(x, t) solves Eqs. (2)–(5), the sed-

iment’s temperature is given by Ttotal(x, t)= u(x, t)+ cgx,

∂tu(x, t)− ∂x(κ(x)∂xu(x, t))= 0 ∀x ∈�,t > 0, (2)

κ(x)∂xu(0, t)=
h

ρcv
·

(
u(0, t)− T

f
water(t)

)
∀t > 0, (3)

∂xu(xE, t)= 0 ∀t > 0 if xE <∞,

lim
x→∞

∂xu(x, t)= 0 ∀t > 0 if xE =∞, (4)

u(x,0)= u0(x) ∀x ∈�. (5)

Here, h(t) is the heat transfer coefficient and a measure

on how well the heat energy passes the sediment–water in-

terface. Brakelmann and Stammen (2006) discuss the value

of this coefficient and propose to use an average value of

h= 150Wm−2K for the German North and Baltic seas.

They also showed that the influence of deviations of this pa-

rameter is negligible and therefore this constant value will be

used throughout the paper. The volumetric heat capacity ρcv
is also assumed to be known from measurements.

2.2 Bottom water temperature functions

The temperature at Earth’s surface is an overlay of many si-

nusoidal functions with different periods in terms of Fourier

series. As the deviation of the bottom water temperature for

1 year is the aim of the reconstruction, the following simple

model with only a 1-year period ω = 2π
365

is used:

T
f

water(t)= A+B cos(ωt +ϕ(d)), f = (A,B,d)T , (6)

where A and B (in ◦C) denote the average temperature and

amplitude, respectively. The annual minimum takes place on

a day d > 0, which leads to a phase delay ϕ(d)= ω( 365
2
−

d) of the cosine function, where the definition space of f is

restricted to DT = R≥0×R≥0×[0,365].

The example data set from the German North Sea shows

influences of smaller periods besides the annual deviation, as

the average depth is only 100m (Rhode et al., 2004). Tem-

perature and salinity of the North Sea are mainly governed by

a general cyclonic circulation, which renews the water in the

timescale of 1 year (Rhode et al., 2004). The freshwater input

from rivers is comparably small. The central part of the North

Sea becomes stratified due to heating in the summer but gets

vertically mixed during winter. At the western and southern

coasts, the vertical stratification is prevented by strong tidal

currents (for detail on the oceanography of the German North

Sea see Rhode et al., 2004). Thus, in the North Sea the sim-

ple model for the bottom water temperature is a sufficient

approximation. However, the temperature deviation will be

slightly noisy due to the shallow depths. Also, the parame-

ters will change slightly in different regions, relating to the

tidal currents.

Baffin Bay and Davis Strait are characterized by the north-

wards flowing West Greenland Current moving temperate

saline Irminger Water from the Atlantic Ocean in the top lay-

ers and cold low-salinity Polar Water in the bottom layers

(Ribergaard, 2008). The data set from the Davis Strait is ob-

tained from 1300m depth, where the seasonal influence is

mostly damped by the water column and the cold Polar Wa-

ter is dominant. Thus, the parameters A and specifically B

are expected to be near 0 ◦C (Ribergaard, 2008).

2.3 General behavior

The general behavior of the forward model is depicted in

Fig. 1. A parameter set typical for the German North Sea

of f = (10.5,7,45)T is used for the bottom water devia-

tion. For the geothermal gradient a literature value of cg =

0.03Km−1 (Global HF DB, 2014) is used. The image shows

that the sediment experiences a large temperature range over

1 year in the upper meters. As the depth increases, the cov-

ered temperature range gets smaller.

The attenuation of the amplitude with depth is clearly vis-

ible and so is the delay of the temperature. It can be observed

that the current temperature–depth profile contains the bot-

tom water temperatures from the last 3–4 months. Following

the orange line indicating the day of the highest bottom wa-

ter temperature, the sediment temperature shows a decrease

with depth. At a depth of 4m the lowest temperature, as evi-

dence of the last winter, is reached and with further increas-

ing depth the temperatures also increase again. The blue line

indicating the day of the coldest bottom water temperature

shows a mirror-inverted curve.

3 Data

The temperature reconstructing method (to be described in

Sect. 4) was tested for artificial and measured data sets con-

taining about 20 data points in a depth of up to 4 m. The ar-

tificial data sets were generated using the forward model and

adding some white noise, while the example data sets from

the German North Sea and the Davis Strait were measured

using the FIELAX VibroHeat and HeatFlow measuring de-

vices, respectively. The locations of the example data sets are

shown in Fig. 2.

The principle for the measurements of depth-dependent

thermal parameters originates from the classical method of

determining steady state heat flow values for the oceanic

crust from deep sea sediments. Heat flow values are deter-

mined based on Fourier’s law of thermal conduction from

the steady state (undisturbed) temperature gradient and ther-

mal conductivities. The design of deep sea Lister-type heat

flow probes follows the concept by Hyndman et al. (1979)

where a thermistor string parallel to a massive strength mem-
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Figure 1. Bottom water temperature (top panel) as input to the forward model operator and the solution (bottom panel) at different days of

the year. A constant thermal diffusivity of κ = 8× 10−7 m2s−1 was used and the geothermal gradient (black in the lower panel) was set to

cg = 0.03Km−1. The bottom water temperature function is a cosine with a mean value of 8.2◦C, an amplitude of ±5.9K and the minimum

on the 62 day of the year. The colors indicate the bottom water temperature and thus the day of the year when the temperature–depth profile

is plotted. The bright orange temperature–depth profile is the solution on the 220th day of the year, when the bottom water temperature is

near the annual maximum of 14.1◦C.

ber penetrates into the sediment by its own weight. A total of

22 thermistors record the sediment temperature during the

whole process. The in situ temperature is determined from

the decay of the frictional heat accompanying the penetra-

tion, while the thermal conductivity and diffusivity values are

calculated from the temperature decay of an artificial, exactly

defined, calibrated heat pulse which heats up the sediment

(Hartman and Villinger, 2002).

This method is normally used in deep sea soft sediments,

where the heat flow probe penetrates due to its own weight.

Shallow water sediments in the North and Baltic seas are

characterized by more shear resistant sediments such as

sands, tills, and clays, where this classical method of penetra-

tion by gravity alone is not applicable. For this reason, a ther-

mistor string has been combined with a standard VKG vibro-

corer (Dillon et al., 2012). The measuring procedure follows

the classical way: the system is lowered towards the sedi-

ment, penetrates the sediment by vibrocoring and rests in the

sediment for in situ temperature measurement and heat pulse

decay recording. With this system, a penetration depth of up

to 6m is possible. The accuracy of the thermistor strings is

2mK and the resolution is 1mK for both systems.

The processing of the raw data from both measuring de-

vices is handled with the same software tool. This processing

algorithm allows determining in situ temperatures and ther-

mal material properties with an inversion algorithm follow-

ing Hartman and Villinger (2002). Based on an assumption

of thermal decay around a cylindrical symmetric infinite line

source, steady state in situ temperatures, thermal conductiv-

ity and thermal diffusivity are determined in an iterative in-

version procedure. From thermal conductivity and diffusivity

also the volumetric thermal capacity can be determined by

ρcv = λ/κ . All thermal properties can be obtained with less

than 0.5% error.

The in situ geothermal gradient can also be determined di-

rectly from these measurements (for details see Beardsmore

and Cull, 2001). When the measurements are not deep

enough, the determination of the in situ geothermal gradient

is not possible. The global heat flow database collects data

sets and can thus be used to find an appropriate regional ap-

proximation (Global HF DB, 2014). The proposed inversion

method is based on routine thermal measurements aiming for

the geothermal heat flow. In the processing of these mea-

surements with the algorithm from Hartman and Villinger

Ocean Sci., 11, 559–571, 2015 www.ocean-sci.net/11/559/2015/
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Figure 2. Locations of the two example data sets (red). In the upper

panel, the data’s location near the island of Borkum in the German

North Sea is depicted. Additionally the observation station FINO1

is marked (green). In the lower panel, the data’s location west of the

coast of Greenland, near Nuuk, is shown.

(2002), the in situ thermal properties and the geothermal heat

flow are determined. Any sedimentation effects are dealt with

in this algorithm and can thus be omitted in the inversion

schemes. Therefore, the geothermal heat flow is a known in-

put to the model, and approximated values are used where

the in situ determination was not possible. A simultaneous

inversion of the bottom water function parameters together

with the heat flow could decrease the influence of measure-

ment errors; however, this will not be handled in this paper.

Figure 3 shows depth-dependent properties from a ther-

mal measurement in the North Sea offshore from Borkum in

June 2011. Contrary to the general positive temperature gra-

dient in Earth’s crust, a temperature decrease with increas-

ing depth is observed, i.e., a negative temperature gradient.

This is due to the seasonal variation of bottom water temper-

ature in the North Sea. As the measurement was performed

in June, the influence of the warm summer temperatures is

seen in the upper thermistors, while the decrease towards the

lower thermistors is a relict of low winter temperatures.

The inversion scheme was performed for various data sets

from the German North and Baltic seas being measured with

the VibroHeat device and data sets from the Davis Strait

and the Baffin Bay, which were measured using the classic

HeatFlow probe. Excluding some measurements from areas

within the Baltic Sea where the bottom water temperature

deviation differs too much from the simple model Eq. (6),

the obtained results were all within the same range of quality

and accuracy. The two data sets presented here are chosen for

demonstration of the method.

4 Inverse problem setup

4.1 Discretization of the forward model operator

The inverse problem is to determine the bottom water param-

eters f from (a priori known) values for given geothermal

gradient cg, heat transfer coefficient h for the Robin bound-

ary condition, and measurements of the thermal diffusivity

κ(̃x) and the temperature in the sediment gε (̃x, t∗). Here,

x̃ ∈ Rk is the depth vector according to the k sensors of the

measuring device and t∗ > 0 a fixed time.

Before introducing the solution method to solve this in-

verse problem, the forward model needs to be briefly for-

malized. It can be shown that the initial-boundary problem,

Eqs. (2)–(5), has a unique solution in the weak sense (see

e.g., Evans, 2010). Thus, the forward operator F : f 7−→

T (x, t) mapping the parameters of the bottom water tem-

perature to the solution of the initial-boundary problem is

well-defined. For this operator, differentiability with respect

to f can be shown if the function for the bottom water tem-

perature deviation T
f
water is continuously differentiable with

respect to the parameters f . The continuous differentiabil-

ity of the cosine function in Eq. (6) with respect to the three

parameters A, B and d is obvious.

When interested in greater timescales it is common to

model Earth’s crust as a homogeneous half space, i.e., � has

infinite depth and the thermal diffusivity κ is constant over

the region. In this case, the solution to the initial-boundary

problem is analytical. Thus, in the numerical calculation of

the temperature in the sediment the only occurring errors are

rounding errors on the scale of the machine accuracy and no

discretization errors. However, as the sediment is modeled as

a layered region with finite depth there are two more sources

of error: the discretization error and an error resulting from

the finite depth.

The discretization is realized using the method of lines.

This method and its convergence properties are broadly an-

alyzed by Hanke-Bourgeois (2009). The mesh size and time

steps of the discretization as well as the depth of the lower

boundary need to be determined such that the numerical so-

lution is not too far away from the true solution. In other

words, the scheme determines a parameter setting such that

the relative error between the abovementioned analytical so-
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Figure 3. Results of a VibroHeat survey in the North Sea north of Borkum in 2011 showing in situ temperature, thermal conductivities,

thermal diffusivity, and volumetric heat capacity as a function of depth.

lution and the numerical solution does not exceed the limit of

10−3 K. This limit was chosen in reference to the accuracy

of the data obtained with the FIELAX VibroHeat device.

Having access to a numerical and nonlinear forward model

F : R3
→ Rk mapping the three model parameters A, B and

d to the numerically approximated temperature for time t∗ >

0 at points of the depth vector x̃ ∈ Rk , the inverse method

can be discussed based on the observation that F possesses

a gradient ∇F ∈ Rk×3. This matrix had maximal rank (3) in

all performed numerical examples.

Since the measured sediment temperature (and also the

measured thermal diffusivity) may suffer from measurement

errors, the temperature data are assumed to be a vector gε

such that ‖g−gε‖ ≤ ε, where g is the undisturbed data. Fur-

thermore, an exact parameter vector f+ is assumed to exist

such that F(f+)= g (i.e., the model is valid and represents

reality). The aim of the inversion scheme is to reconstruct

f+.

The study started with a non-linear iterative Newton al-

gorithm as a first simple approach, which already provided

good results. Therefore, this approach is discussed first. For

comparison the iterative REGINN (REGularization by INex-

act Newton methods; Rieder, 2003) method has been adapted

to the model.

4.2 The Newton algorithm

Sticking to the notation of Rieder (2003), the ongoing iter-

ation for the solution of the non-linear equation F(f )= gε

with disturbed data gε is considered:

f εn+1 = f
ε
n + s

ε
n, n ∈ N. (7)

The iteration step sεn is to be determined, so that the exact

solution f εn+1 = f
+ is obtained. Obviously, s+n = f

+
− f εn

solves this equation. The approach of the Newton algorithm

is to determine a good approximation to s+n .

As F is differentiable with derivative ∇F , the following

equation holds:

∇F(f εn )s
+
n = g−F

(
f εn
)
−E

(
f+,f εn

)
= bn.

Here, E(v,w) denotes the linearization error. This lin-

earization error and therefore the right side bn is not known

but only a disturbed version bδn is. So s+n is approximated by

solving

∇F
(
f εn
)
s = bδn. (8)

Ocean Sci., 11, 559–571, 2015 www.ocean-sci.net/11/559/2015/



F. Miesner et al.: Water temperatures from marine sediment temperatures 565

For ill-posed problems, solving this linear equation can be

quite problematic; however, as the derivative has full rank,

Gaussian elimination can be used to determine sεn.

Applied to the simple model, the iteration converges to

a solution of F(f )= gε. However, as the method is not min-

imizing for the exact right side bn = g−F(f
+) but for a dis-

turbed version, the best result may not be the minimal re-

sult. Therefore, the iteration is stopped whenever the recon-

structed data are about as near to the noisy data gε as the

noisy data are away from the exact data. Details on this dis-

crepancy principle can be found, e.g., in Rieder (2003). As

the value of ε is not known for real data sets, an approxima-

tion of ε = 0.005 is used.

4.3 A regularized inexact Gauss–Newton inverse

method

For the inversion of the simple model, Eq. (6), for the bottom

water temperature deviation, the Newton algorithm yielded

stable results (as will be shown in Sect. 5), such that stabiliz-

ing the inversion by using a so-called regularization scheme

was not necessary. Such schemes can balance stability and

accuracy of a solution to an inverse problem (see Rieder,

2003) and could be of importance if a more complex input

model for the bottom water temperature is used. This will

not be covered in this work, but will be discussed as a sug-

gestion for further research in the last section. One advantage

of regularization schemes in general and of the REGINN al-

gorithm published by Rieder (2003) is their proven conver-

gence properties for noisy data or ill-conditioned non-linear

equations.

The REGINN algorithm is introduced and analyzed by

Rieder (1999a) and Rieder (1999b). The algorithm is an inex-

act Newton method, i.e., it consists of an outer Newton iter-

ation and an inner regularization iteration which determines

the Newton iteration step. Thus, the outer iteration follows

the same idea as the abovementioned simple Newton method,

Eq. (7), where the iteration step sεn solves Eq. (8), and which

is stopped with the discrepancy principle. The determination

of the iteration steps can be implemented with any regular-

ization scheme and the analysis is done for a general formu-

lation.

For this work, the algorithm published by Rieder (2003),

where the inner iteration is a conjugate gradient (CG)

method, was adapted. As the algorithm has two nested it-

erations, the outer (Newton) iteration will be referred to with

superscript n and the inner (CG) iteration with superscriptm.

The idea of the algorithm starts again with Eq. (8),

∇F
(
f εn
)
s = bδn,

for the Newton iteration step sεn and tackles this linear system

using the CG method.

The CG method is designed to minimize the residuum

‖bδn−∇F(f
ε
n )sm‖ in every iteration step m= 1,2,3, . . . in

enlarging subspaces. As the residuum at the end of every iter-

ation step is the minimum in the corresponding subspace, the

method is the most efficient method possible. For more infor-

mation on the CG method see e.g., Rieder (2003) and Hanke-

Bourgeois (2009). The inner iteration is stopped when the

linearized residuum fulfills a certain accuracy estimation (for

details on the choice of this estimation see Rieder, 2003). The

outer iteration is again stopped with the discrepancy princi-

ple. Thus, the reconstructions from the two algorithms can

be directly compared.

5 Results

5.1 Artificial data for measured thermal diffusivity

In this section, the sensitivity of the algorithms in a layered

half-space setting is analyzed. Therefore, the measured ther-

mal diffusivity and the depth-vector of the sensors are used

together with a random day of the year t∗ and a random

vector of the seasonal forcing parameters to produce artifi-

cial data. With added zero-mean Gaussian noise, disturbed

data sets gε were obtained. For comparability of the results,

the same water parameters fExact = (8.2,5.9,62)T and lit-

erature values for cg and h are used for all the experiments

presented here.

As the derivative is not a square matrix, any theoreti-

cal analysis of the convergence behavior of the Newton or

REGINN algorithm does not apply. To cope with this lack

of theoretical information on the general behavior of the in-

troduced inverse problem, the algorithms were executed re-

peatedly for randomly disturbed artificial data sets, produced

from the same parameters, and the variances were calculated.

Thus, a bound for the emerging reconstruction error depend-

ing on the noise level in the data can be given. The results are

shown in Table 1.

For data with a noise level of 0.1 % (see Table 1) the recon-

struction error has the same magnitude for both algorithms.

As the initial guess is chosen randomly from the definition

space and the variances are very small, it can be stated that

both algorithms work stably and that the initial guess has no

influence.

For a noise level of 1.0 % in the data, a maximum recon-

struction error of about 8 % is obtained, while the mean value

of all reconstructions is still close to the exact parameter val-

ues with a mean error of only 3 % (see Table 1) with both al-

gorithms. This suggests that the overall result of the inversion

can be improved by executing the algorithm several times for

different (randomly chosen) intial guess every time and using

the resulting mean value.

The overall mean parameter values foverall =

(8.29,6.11,62.6)T yield a relative reconstruction error

of ≈ 1.1 %.
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Table 1. Statistics for the inversion of artificial data. The uppermost part contains the inversion results for artificial data with 0.1% white

noise added, the middle part artificial data with 1.0% noise. The lowermost part shows inversion results to artificial data with 0.1% white

noise added after the seasonal forcing already contained noise of about 8%.

Data Artificial with 0.1% noise

exact parameters A B d

8.2 5.9 62

Newton results A B d mean error max error

mean 8.20 5.89 61.97 0.31 % 0.65 %

variances 0.00 0.00 0.05

REGINN result A B d mean error max error

mean 8.20 5.90 61.96 0.21 % 0.59 %

variances 0.00 0.00 0.03

Data Artificial with 1.0% noise

exact parameters A B d

8.2 5.9 62

Newton results A B d mean error max error

mean 8.22 5.96 61.84 2.88 % 7.29 %

variances 0.05 0.25 2.90

REGINN result A B d mean error max error

mean 8.36 6.26 63.45 2.63 % 5.68 %

variances 0.02 0.13 1.64

Data Artificial with 1.0% noise and 8.0% water noise

exact parameters A B d

8.2 5.9 62

Newton results A B d mean error max error

mean 8.25 5.90 62.88 6.86 % 17.54 %

variances 0.29 2.22 22.72

REGINN result A B d mean error max error

mean 8.29 5.89 62.27 8.69 % 14.92 %

variances 0.99 10.07 29.51

As the penetration depth of the first sensor is not ex-

actly known, the algorithm was also tested for vertically

shifted data. Here, the distance between two thermistors, e.g.,

13.5cm for the Borkum data, was added to the depth values.

With, again, 20 repetitions of each algorithm, the mean val-

ues and the variances only differed from the non-shifted data

in the third decimal place.

5.2 Artificial data with noisy bottom water

temperature

In Sect. 5.1, artificial data for an undisturbed bottom water

temperature function was produced. However, from the wa-

ter data available via MARNET (2014) for the German North

Sea it is known that this undisturbed function is very unlikely

to be accurate. In this section, the influence of noise in the

bottom water temperature on the accuracy of the reconstruc-

tion shall be investigated.

Different from the white noise added to the data itself, here

shorter periods of the cosine series are used to approximate

the occurring errors as accurately as possible. Thus, this sec-

tion will give an insight into the sensitivity of the model with

respect to the three main parameters, even if the original forc-

ing was more complicated and the measured data contains

errors.

For generating artificial data in this section, the seasonal

forcing was expanded to the first 52 summands of the Fourier

series for 1-year periodic functions:

T
f

water(t) := A+

52∑
i=1

Bi cos(iωt +ϕ(di)),

f = (A,B1, . . .,B52,d1, . . .,d52)
T .

This cutoff Fourier series approximates periods from 1

year to 1 week.
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The results of this experiment are presented in the last sec-

tion of Table 1. A distinct increase in the reconstruction error

can be observed for a noise level in the data of 1 % from

a mean error of 3 % for an undisturbed bottom water temper-

ature function to a mean error of 7 % here. Although the vari-

ances increase, the mean reconstruction result is still a very

good approximation to the exact water parameters. The re-

construction error of a single reconstruction may be greater

than 15 %, while already 20 repeated executions can decrease

the reconstruction error notably. For both algorithms, the dif-

ferences between the average results and the exact parameter

values are smaller than 0.1K in the average temperature and

the amplitude and smaller than 1 day in the day of the annual

minimum. The main uncertainty occurs from the determina-

tion of the day of the annual minimum.

From the inversions done here, it can be concluded that the

three main parameters get reconstructed quite well even if the

real bottom water temperature function is more complicated

than the simple model in Eq. (6).

5.3 Example: Borkum

Data sets from three different locations in the German North

and Baltic seas were studied, but only one example will be

presented in detail. The location of the thermal measurement

and the nearest MARNET station (see MARNET, 2014) are

depicted in Fig. 2. Along with two other examples, this data

set is broadly discussed by Müller et al. (2013). The qual-

ity of the reconstruction results in terms of variances was the

same in all studied examples. The data set north of the is-

land of Borkum was chosen for the following reasons: the

distance between the data set location and the nearest MAR-

NET station FINO1 is smaller than with the other examples

and the recorded water temperatures showed the smallest dif-

ferences from the chosen bottom water temperature function

Eq. (6). Additionally, the time series of the water temper-

atures was available and allowed analyzing the applicability

of this model equation. As the measurement is only 3m deep,

the in situ geothermal gradient could not be obtained from the

measurements. Thus, a typical value of cg = 0.03Km−1 for

this area (Global HF DB, 2014) was used.

The results of the inversion are listed in Table 2. In com-

parison to the parameter vector used in Müller et al. (2013),

f̃Borkum = (10.4,6.9,41)T , the overall mean parameters fit

quite well. The Newton algorithm provides smaller values

than the REGINN algorithm but also with smaller variances

in the average temperature and amplitude. The day of the an-

nual minimum resulting from the Newton algorithm seems

very unlikely and also has a larger variance.

Averaging all reconstructions with both algorithms, the

values fit to the educated guess. The variance on the day of

the annual minimum is here quite large, because it was re-

constructed differently by the two algorithms. The value cor-

responds to a SD (standard deviation) of ≈ 15 days.

Table 2. Results of the inversion of the data set from Borkum. The

Newton algorithm gives an unlikely estimate for the day of the an-

nual minimum but the overall mean parameters fit the guess from

Müller et al. (2013) within the desired bounds.

Data Borkum

Newton results A B d

mean 9.79 5.66 26.62

variances 0.00 0.02 2.63

REGINN result A B d

mean 11.95 9.15 55.53

variances 0.03 0.09 1.71

overall results A B d

mean 10.87 7.40 41.07

variances 1.20 3.14 213.78

Bottom water temperature data in this area were avail-

able from the FINO1 station. Inverting the water data

with the same algorithm, the parameter vectors f2010 =

(10.0,7.9,56)T for the data from 2010 and f2011 =

(10.4,7.1,55)T for 2011, respectively, were obtained. In this

particular case, the average temperature and the amplitude

differ less than 1K between 2 years and also the day of the

annual minimum remains nearly the same. This leads to the

assumption that the simple model for the bottom water tem-

perature fits the natural conditions in this area quite well.

Comparing these parameter vectors to the ones obtained

from the inversion (Table 2), it is obvious that the Newton

algorithm provided too small values, while the REGINN al-

gorithm yielded too large values. The overall mean fits best,

but the day of the annual minimum was reconstructed better

with the REGINN algorithm alone.

In the upper panel of Fig. 4, the FINO1 data from 2010 and

2011 and, additionally, the cosine functions of the mean in-

version results are shown. In the lower panel the measured

thermal diffusivity (right) and the measured and modeled

temperature–depth profiles are depicted. The temperature in-

terval resulting from the Newton results is too small, while

the REGINN result has too high temperatures in the second

half of the year. From the three cosine functions, the one re-

sulting from the overall mean fits the recorded temperatures

best.

For the temperature–depth profile on the day of the mea-

surement this does not hold. The model with the overall mean

result has too high temperatures. The REGINN result fits

the measured temperatures better but only to a depth of 2 m,

while the Newton results fit better below 2 m depth. The not-

so-optimal fit of the overall mean results can be due to the un-

certainty of the reconstruction of the day of the annual mini-

mum. By shifting the cosine of the overall mean results about

1 week (such that d ≈ 48), the cosine fits the recorded tem-

peratures at FINO1 better and the temperature–depth profile

fits the measurements better as well.
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Figure 4. Inversion of the data set near Borkum. In the upper panel, the recorded bottom water temperatures at the BSH station FINO1 are

depicted for the years 2010 (green) and 2011 (blue). Additionally, the cosine functions as results of the inversion schemes are plotted: the

mean result of the Newton algorithm, the REGINN result, and the overall mean. In the lower panels, the measured temperature (left) and

thermal diffusivity (right) are depicted. The resulting temperature–depth profiles from the modeling with the inversion results are plotted

together with the measured temperatures in the left panel.

Table 3. Results of the inversion of the data set west of Greenland.

Both algorithms give similar reconstruction values with small vari-

ances.

Data Greenland

Newton results A B d

mean 3.18 0.16 71.51

variances 0.00 0.00 2.15

REGINN result A B d

mean 3.18 0.16 74.25

variances 0.00 0.00 0.93

overall results A B d

mean 3.18 0.16 72.88

variances 0.00 0.00 3.43

5.4 Example: Greenland

The second example data set was measured on a cruise in

2006 in the waters of the Davis Strait and Baffin Bay, west of

Greenland, the location is shown in the lower panel of Fig. 2.

The in situ geothermal heat flow of cg = 0.0303Km−1 was

determined from these measurements.

The measurement is located at the southern ridge of the

Davis Strait, at the passage to the Labrador Sea. The water

depth is about 1300m and thus the bottom water temperature

deviation is expected to be rather small.

The reconstruction results are shown in Table 3. Both al-

gorithms reconstructed similar values. As continuous mea-

surements of the bottom water temperature deviation are not

easy in these parts of the Arctic Ocean, there are no mea-

surements to compare these values to. However, the obtained

temperature interval seems plausible.

In Fig. 5, the cosine functions with the reconstructed bot-

tom water function parameters are depicted (upper panel). In

the lower panels the measured thermal diffusivity (right) and

sediment temperature (left) as well as the modeled tempera-

ture are shown. The sediment shows a wide range of thermal

diffusivity values. The reconstructed bottom water tempera-

ture deviations do not differ much, nor do the modeled sed-

iment temperatures. They all fit the measured temperatures

quite well. Looking at the low variances (Table 3), this indi-

cates a stable method and high applicability.

6 Discussion

The aim of this work was to provide a method that obtains

the parameters of a function modeling the annual bottom wa-

ter temperature variation from one instantaneous measured

profile of depth-dependent sediment temperature and thermal
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Figure 5. Inversion of the data set west of Nuuk. In the upper panel, the cosine functions as results of the inversion schemes are plotted: the

mean result of the Newton algorithm in dashed line, the REGINN result in dashed line with dots and the overall mean in a straight line. In the

lower panels the measured temperature (left) and thermal diffusivity (right) are depicted. The resulting temperature–depth profiles from the

modeling with the inversion results (the line styles are the same as above) are plotted together with the measured temperatures in the bottom

left panel.

diffusivity. Before the obtained reconstruction results are dis-

cussed, the desired accuracy in geophysical usage needs to be

determined.

6.1 Desired accuracy of the reconstructed parameters

In comparison to the measured water temperatures (see

MARNET, 2014) it is obvious that the mathematical model,

Eq. (6), neglects all periods smaller than 1 year.

The average temperatureA varied about 0.5K between the

years 2010 and 2011 and the amplitude about 0.8K at the sta-

tion FINO1 in the German North Sea. Similar results can be

obtained for other stations in this region. Thus, an accuracy

better than 1K for the parameters A and B in the reconstruc-

tion is sufficient for the German North Sea.

However, for the usage of the presented method in other

areas (like the Arctic Ocean) the accuracy level needs to be

based on the relative error – at least for the two temperature-

related parameters: reconstruction of a parameter of the or-

der of 0.1K with an accuracy of ±1K is not useful. In the

experiments with artificial data sets, a relative error of mag-

nitude around or slightly less than the relative data error was

achieved. The above stated differences in the recorded bot-

tom water temperature at the station FINO1 yield a relative

change of about 5% in the average temperature and 10% in

the amplitude.

The day of the annual minimum only changed about 1 day

at FINO1, but was most difficult to reconstruct in all the ex-

periments seen in Sect. 5. This is clearly due to the fact that

the cosine function has a small first derivative around the ex-

trema. Thus, the function Eq. (6) does not change a lot in the

weeks around the annual minimum, e.g., it remains over 3

weeks in the lowest 1 % of the covered temperature interval.

Considering all this, the reconstruction of the parameters

should be better than A± 5%, B ± 10% and d ± 10 days.

6.2 Achieved accuracy of the reconstructed parameters

For the real data sets, a noise level of 1 % was assumed.

While different noise levels were considered in the experi-

ments with artificial data, only the obtained information on

data with 1 % noise is relevant for the applicability on real

data. As seen in Table 1, SDs of A± 0.2K, B ± 0.5K and

d ± 2.5 were obtained for both algorithms. In relative errors

this equals A± 2 and B ± 8%. Thus, the desired accuracy

was achieved with only 20 repeated inversions. By taking

the overall mean of all reconstructions from both algorithms,

the reconstruction error could be further decreased. Here, the

variances and SDs increased, but the obtained results were

closer to the exact parameter values.

As the function of the bottom water temperature was ex-

panded to a cutoff Fourier series, the variances increased to

A± 0.5K, B ± 1.5K and d ± 4.8 days (see Table 1) or, in
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relative errors, A±6 and B±24%. Here, the amplitude was

less accurate than desired. Still, the mean of the reconstructed

values was accurate within the desired interval.

As the variances were smaller for less noisy data in both

experiments, it can be concluded that both algorithms yield

stable results for data with a noise level of ≤ 1 % and

for a bottom water temperature function which varies from

a plain cosine by up to 8 % (see Table 1). For higher noise

levels in the data or the forcing function, the methods still

converged but were not accurate enough.

6.3 Applicability to real data

The experiments with artificial data suggested a stable

method whose accuracy could be increased by executing the

algorithms repeatedly and using a mean value of results from

both algorithms. The reconstruction error did not increase too

much, when the function for the bottom water temperature

was changed to a cutoff Fourier series; the main parameters

were still reconstructed sufficiently accurately, i.e., the rela-

tive errors were smaller than 5 % for the mean temperature

and 10 % for the amplitude and the day of the annual mini-

mum was reconstructed within 10 days.

Using real data sets, the general form of the bottom water

temperature deviation in the area of interest needs to be stud-

ied carefully. As mentioned above some areas in the Baltic

Sea cannot be modeled with our simple model. The data sets

from the North Sea, as the one introduced in Sect. 5.3 yielded

stable results, but with rather large variances. However, the

results match with the recorded water temperatures. The dif-

ferences of the results from the two inversion algorithms to

the graphically obtained parameter values (used from Müller

et al., 2013) are within the desired error bounds. Here, the

greatest differences occurred in the day of the annual mini-

mum but, as already discussed in Sect. 6.1, it is not possible

to determine it more precisely while A and B are only accu-

rate to 1K.

Lastly, the results from the inversion of the data set west

of Greenland have the smallest variances, proposing reliable

values. Other surveys on the temperature (and salinity) of

Baffin Bay and Davis Strait gave similar temperature val-

ues (see e.g., Ribergaard, 2008). As there are currently no

long-term measurements, the results of this method are of

scientific value, if one trusts them. It is important to note that

matching the recorded temperatures is not the same as be-

ing exact: the recorded temperatures are also measurements

with errors and they were not recorded at exactly the same

locations as where the data sets were taken.

Before reconstructing the bottom water temperatures from

real data sets, one should carefully consider if the simple

model, Eq. (6), is applicable for said area. If it is already

known that the sea is layered and not well mixed or if there

are strong currents along the sea floor, this method will not

give reasonable results. If one finds unreasonable results, this

should be interpreted as a strong hint that the simple model

and hence the method are not applicable. The algorithms dif-

fer in their approach to solve the linearized system and there-

fore obtain different results if the data are not exact or the

function for the bottom water temperature is not of the sim-

ple form as Eq. (6). These differences in the results of the al-

gorithms are useful to gain an insight into the uncertainty of

the results that is linked to measurement noise and modeling

errors. Thus, the method uses the overall mean values from

both algorithms and the variances can be used as an indicator

for the applicability of the simple model for the bottom water

temperature function.

6.4 Future work

A major point with the reconstruction of real data sets was

that the simple model for the bottom water temperature does

not fit to all areas. Hence, a main topic in further research will

be the generalization of the bottom water temperature model.

The implementation of the inversion algorithms can be easily

adapted to reconstruct the parameter vector of other periodic

functions. The Fourier series, introduced in Sect. 5.2, was

a reasonable start. The more coefficients of the Fourier se-

ries to be reconstructed, the more sensors are needed to get

a full-rank derivative. For regions with more noise in the bot-

tom water temperature deviation, such as the Baltic Sea, the

smaller periods could possibly generate more realistic data

and thus improve the reconstruction results for such data sets.

A piece-wise constant function as in the large-scale cli-

mate history reconstruction may also be used. Such a model

is then possibly capable of reconstructing aperiodic events

in the most recent water temperature changes. This will be

of great interest for the Baltic Sea (e.g., to identify inflows

from the North Sea over the Danish Straits) or the Arctic Sea

(e.g., to indicate cold water discharge due to iceberg calving

events). Simultaneous inversion of the background heat flow

and the bottom water temperature should also be considered.

The iterative Newton algorithm is possibly not suitable for

these higher dimensional problems, but other algorithms and

approaches from climate history reconstruction can be built

upon (Shen and Beck, 1991; Chouinard et al., 2007).

7 Conclusions

The presented method yields stable results for artificial data

with an accuracy within the bounds of the artificial noise

level. The experiments with real data sets are very promising.

The SDs are small for all data sets and the results matched

the measured bottom water temperature variations from the

monitoring stations (where available).

These results may be of major interest for oceanographers

because they can provide oceanographic information for re-

gions where long-term monitoring is not possible or too ex-

pensive. However, before applying the method to other re-
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gions, the validity of the simple model for the bottom water

temperature needs to be carefully discussed.
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