Articles | Volume 11, issue 4
Ocean Sci., 11, 519–541, 2015
https://doi.org/10.5194/os-11-519-2015

Special issue: Air-sea flux climatology; progress and future prospects (BG/ACP/OS...

Ocean Sci., 11, 519–541, 2015
https://doi.org/10.5194/os-11-519-2015

Research article 08 Jul 2015

Research article | 08 Jul 2015

The OceanFlux Greenhouse Gases methodology for deriving a sea surface climatology of CO2 fugacity in support of air–sea gas flux studies

L. M. Goddijn-Murphy et al.

Related authors

The FluxEngine air–sea gas flux toolbox: simplified interface and extensions for in situ analyses and multiple sparingly soluble gases
Thomas Holding, Ian G. Ashton, Jamie D. Shutler, Peter E. Land, Philip D. Nightingale, Andrew P. Rees, Ian Brown, Jean-Francois Piolle, Annette Kock, Hermann W. Bange, David K. Woolf, Lonneke Goddijn-Murphy, Ryan Pereira, Frederic Paul, Fanny Girard-Ardhuin, Bertrand Chapron, Gregor Rehder, Fabrice Ardhuin, and Craig J. Donlon
Ocean Sci., 15, 1707–1728, https://doi.org/10.5194/os-15-1707-2019,https://doi.org/10.5194/os-15-1707-2019, 2019
Short summary

Related subject area

Depth range: Surface | Approach: Data Assimilation | Geographical range: All Geographic Regions | Phenomena: Air-Sea Fluxes
Technical note: Evaluation of three machine learning models for surface ocean CO2 mapping
Jiye Zeng, Tsuneo Matsunaga, Nobuko Saigusa, Tomoko Shirai, Shin-ichiro Nakaoka, and Zheng-Hong Tan
Ocean Sci., 13, 303–313, https://doi.org/10.5194/os-13-303-2017,https://doi.org/10.5194/os-13-303-2017, 2017
Short summary
Optimal adjustment of the atmospheric forcing parameters of ocean models using sea surface temperature data assimilation
M. Meinvielle, J.-M. Brankart, P. Brasseur, B. Barnier, R. Dussin, and J. Verron
Ocean Sci., 9, 867–883, https://doi.org/10.5194/os-9-867-2013,https://doi.org/10.5194/os-9-867-2013, 2013
Global surface-ocean pCO2 and sea–air CO2 flux variability from an observation-driven ocean mixed-layer scheme
C. Rödenbeck, R. F. Keeling, D. C. E. Bakker, N. Metzl, A. Olsen, C. Sabine, and M. Heimann
Ocean Sci., 9, 193–216, https://doi.org/10.5194/os-9-193-2013,https://doi.org/10.5194/os-9-193-2013, 2013

Cited articles

Dlugokencky, E. J., Masarie, K. A., Lang, P. M., and Tans, P. P.: NOAA Greenhouse Gas Reference from Atmospheric Carbon Dioxide Dry Air Mole Fractions from the NOAA ESRL Carbon Cycle Cooperative Global Air Sampling Network, available at: ftp://aftp.cmdl.noaa.gov/data/trace_gases/co2/flask/surface/ (last access: 27 July 2014), 2014.
Dickson, A. G., Sabine, C. L., and Christian, J. R. (Eds.): Guide to best practices for ocean CO2 measurements, PICES Special Publication 3, IOCCP Report, 8, 191 pp., 2007.
Donlon, C. J., Nightingale, P. D., Sheasby, T., Turner, J., Robinson, I. S., and Emery, J.: Implications of the oceanic thermal skin temperature deviation at high wind speeds, Geophys. Res. Lett., 26, 2505–2508, 1999.
Donlon, C. J., Minnett, P., Gentemann, C., Nightingale, T. J., Barton, I. J., Ward, B., and Murray, J.: Towards improved validation of satellite sea surface skin temperature measurements for climate research, J. Climate, 15, 353–369, 2002.
Download
Short summary
We describe the OceanFlux Greenhouse Gases methodology for creating an ocean surface CO2 climatology. In situ measurements valid for instantaneous sea surface temperature (SST) were recomputed using a more consistent and averaged SST. The results were normalised to year 2010, averaged by month, and interpolated onto a global 1°×1° grid. The 12 monthly distributions of ocean surface CO2 (see supplement) can be used in air-sea gas flux calculations together with climatologies of other variables.