Articles | Volume 10, issue 1
https://doi.org/10.5194/os-10-49-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/os-10-49-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Tidal variability of the motion in the Strait of Otranto
L. Ursella
Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS), B.go Grotta Gigante 42/c, 34010 Sgonico (TS), Italy
V. Kovačević
Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS), B.go Grotta Gigante 42/c, 34010 Sgonico (TS), Italy
M. Gačić
Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS), B.go Grotta Gigante 42/c, 34010 Sgonico (TS), Italy
Related authors
Sofia Flora, Laura Ursella, and Achim Wirth
Nonlin. Processes Geophys., 30, 515–525, https://doi.org/10.5194/npg-30-515-2023, https://doi.org/10.5194/npg-30-515-2023, 2023
Short summary
Short summary
An increasing amount of data allows us to move from low-order moments of fluctuating observations to their PDFs. We found the analytical fat-tailed PDF form (a combination of Gaussian and two-exponential convolutions) for 2 years of sea surface current increments in the Gulf of Trieste, using superstatistics and the maximum-entropy principle twice: on short and longer timescales. The data from different wind regimes follow the same analytical PDF, pointing towards a universal behaviour.
Nydia Catalina Reyes Suárez, Valentina Tirelli, Laura Ursella, Matjaž Ličer, Massimo Celio, and Vanessa Cardin
Ocean Sci., 18, 1321–1337, https://doi.org/10.5194/os-18-1321-2022, https://doi.org/10.5194/os-18-1321-2022, 2022
Short summary
Short summary
Explaining the dynamics of jellyfish blooms is a challenge for scientists. Biological and meteo-oceanographic data were combined on different timescales to explain the exceptional bloom of the jellyfish Rhizostoma pulmo in the Gulf of Trieste (Adriatic Sea) in April 2021. The bloom was associated with anomalously warm seasonal sea conditions. Then, a strong bora wind event enhanced upwelling and mixing of the water column, causing jellyfish to rise to the surface and accumulate along the coast.
Pablo Lorente, Eva Aguiar, Michele Bendoni, Maristella Berta, Carlo Brandini, Alejandro Cáceres-Euse, Fulvio Capodici, Daniela Cianelli, Giuseppe Ciraolo, Lorenzo Corgnati, Vlado Dadić, Bartolomeo Doronzo, Aldo Drago, Dylan Dumas, Pierpaolo Falco, Maria Fattorini, Adam Gauci, Roberto Gómez, Annalisa Griffa, Charles-Antoine Guérin, Ismael Hernández-Carrasco, Jaime Hernández-Lasheras, Matjaž Ličer, Marcello G. Magaldi, Carlo Mantovani, Hrvoje Mihanović, Anne Molcard, Baptiste Mourre, Alejandro Orfila, Adèle Révelard, Emma Reyes, Jorge Sánchez, Simona Saviano, Roberta Sciascia, Stefano Taddei, Joaquín Tintoré, Yaron Toledo, Laura Ursella, Marco Uttieri, Ivica Vilibić, Enrico Zambianchi, and Vanessa Cardin
Ocean Sci., 18, 761–795, https://doi.org/10.5194/os-18-761-2022, https://doi.org/10.5194/os-18-761-2022, 2022
Short summary
Short summary
High-frequency radar (HFR) is a land-based remote sensing technology that can provide maps of the surface circulation over broad coastal areas, along with wave and wind information. The main goal of this work is to showcase the current status of the Mediterranean HFR network as well as present and future applications of this sensor for societal benefit such as search and rescue operations, safe vessel navigation, tracking of marine pollutants, and the monitoring of extreme events.
Miroslav Gačić, Laura Ursella, Vedrana Kovačević, Milena Menna, Vlado Malačič, Manuel Bensi, Maria-Eletta Negretti, Vanessa Cardin, Mirko Orlić, Joël Sommeria, Ricardo Viana Barreto, Samuel Viboud, Thomas Valran, Boris Petelin, Giuseppe Siena, and Angelo Rubino
Ocean Sci., 17, 975–996, https://doi.org/10.5194/os-17-975-2021, https://doi.org/10.5194/os-17-975-2021, 2021
Short summary
Short summary
Experiments in rotating tanks can simulate the Earth system and help to represent the real ocean, where rotation plays an important role. We wanted to show the minor importance of the wind in driving the flow in the Ionian Sea. We did this by observing changes in the water current in a rotating tank affected only by the pumping of dense water into the system. The flow variations were similar to those in the real sea, confirming the scarce importance of the wind for the flow in the Ionian Sea.
Sofia Flora, Laura Ursella, and Achim Wirth
Nonlin. Processes Geophys., 30, 515–525, https://doi.org/10.5194/npg-30-515-2023, https://doi.org/10.5194/npg-30-515-2023, 2023
Short summary
Short summary
An increasing amount of data allows us to move from low-order moments of fluctuating observations to their PDFs. We found the analytical fat-tailed PDF form (a combination of Gaussian and two-exponential convolutions) for 2 years of sea surface current increments in the Gulf of Trieste, using superstatistics and the maximum-entropy principle twice: on short and longer timescales. The data from different wind regimes follow the same analytical PDF, pointing towards a universal behaviour.
Nydia Catalina Reyes Suárez, Valentina Tirelli, Laura Ursella, Matjaž Ličer, Massimo Celio, and Vanessa Cardin
Ocean Sci., 18, 1321–1337, https://doi.org/10.5194/os-18-1321-2022, https://doi.org/10.5194/os-18-1321-2022, 2022
Short summary
Short summary
Explaining the dynamics of jellyfish blooms is a challenge for scientists. Biological and meteo-oceanographic data were combined on different timescales to explain the exceptional bloom of the jellyfish Rhizostoma pulmo in the Gulf of Trieste (Adriatic Sea) in April 2021. The bloom was associated with anomalously warm seasonal sea conditions. Then, a strong bora wind event enhanced upwelling and mixing of the water column, causing jellyfish to rise to the surface and accumulate along the coast.
Pablo Lorente, Eva Aguiar, Michele Bendoni, Maristella Berta, Carlo Brandini, Alejandro Cáceres-Euse, Fulvio Capodici, Daniela Cianelli, Giuseppe Ciraolo, Lorenzo Corgnati, Vlado Dadić, Bartolomeo Doronzo, Aldo Drago, Dylan Dumas, Pierpaolo Falco, Maria Fattorini, Adam Gauci, Roberto Gómez, Annalisa Griffa, Charles-Antoine Guérin, Ismael Hernández-Carrasco, Jaime Hernández-Lasheras, Matjaž Ličer, Marcello G. Magaldi, Carlo Mantovani, Hrvoje Mihanović, Anne Molcard, Baptiste Mourre, Alejandro Orfila, Adèle Révelard, Emma Reyes, Jorge Sánchez, Simona Saviano, Roberta Sciascia, Stefano Taddei, Joaquín Tintoré, Yaron Toledo, Laura Ursella, Marco Uttieri, Ivica Vilibić, Enrico Zambianchi, and Vanessa Cardin
Ocean Sci., 18, 761–795, https://doi.org/10.5194/os-18-761-2022, https://doi.org/10.5194/os-18-761-2022, 2022
Short summary
Short summary
High-frequency radar (HFR) is a land-based remote sensing technology that can provide maps of the surface circulation over broad coastal areas, along with wave and wind information. The main goal of this work is to showcase the current status of the Mediterranean HFR network as well as present and future applications of this sensor for societal benefit such as search and rescue operations, safe vessel navigation, tracking of marine pollutants, and the monitoring of extreme events.
Miroslav Gačić, Laura Ursella, Vedrana Kovačević, Milena Menna, Vlado Malačič, Manuel Bensi, Maria-Eletta Negretti, Vanessa Cardin, Mirko Orlić, Joël Sommeria, Ricardo Viana Barreto, Samuel Viboud, Thomas Valran, Boris Petelin, Giuseppe Siena, and Angelo Rubino
Ocean Sci., 17, 975–996, https://doi.org/10.5194/os-17-975-2021, https://doi.org/10.5194/os-17-975-2021, 2021
Short summary
Short summary
Experiments in rotating tanks can simulate the Earth system and help to represent the real ocean, where rotation plays an important role. We wanted to show the minor importance of the wind in driving the flow in the Ionian Sea. We did this by observing changes in the water current in a rotating tank affected only by the pumping of dense water into the system. The flow variations were similar to those in the real sea, confirming the scarce importance of the wind for the flow in the Ionian Sea.
K. Muni Krishna, V. Kovačević, and M. Gačić
Ocean Sci. Discuss., https://doi.org/10.5194/osd-5-123-2008, https://doi.org/10.5194/osd-5-123-2008, 2008
Preprint retracted
Related subject area
Approach: In situ Observations | Depth range: All Depths | Geographical range: Mediterranean Sea | Phenomena: Current Field
Extreme winter 2012 in the Adriatic: an example of climatic effect on the BiOS rhythm
Physical forcing and physical/biochemical variability of the Mediterranean Sea: a review of unresolved issues and directions for future research
M. Gačić, G. Civitarese, V. Kovačević, L. Ursella, M. Bensi, M. Menna, V. Cardin, P.-M. Poulain, S. Cosoli, G. Notarstefano, and C. Pizzi
Ocean Sci., 10, 513–522, https://doi.org/10.5194/os-10-513-2014, https://doi.org/10.5194/os-10-513-2014, 2014
P. Malanotte-Rizzoli, V. Artale, G. L. Borzelli-Eusebi, S. Brenner, A. Crise, M. Gacic, N. Kress, S. Marullo, M. Ribera d'Alcalà, S. Sofianos, T. Tanhua, A. Theocharis, M. Alvarez, Y. Ashkenazy, A. Bergamasco, V. Cardin, S. Carniel, G. Civitarese, F. D'Ortenzio, J. Font, E. Garcia-Ladona, J. M. Garcia-Lafuente, A. Gogou, M. Gregoire, D. Hainbucher, H. Kontoyannis, V. Kovacevic, E. Kraskapoulou, G. Kroskos, A. Incarbona, M. G. Mazzocchi, M. Orlic, E. Ozsoy, A. Pascual, P.-M. Poulain, W. Roether, A. Rubino, K. Schroeder, J. Siokou-Frangou, E. Souvermezoglou, M. Sprovieri, J. Tintoré, and G. Triantafyllou
Ocean Sci., 10, 281–322, https://doi.org/10.5194/os-10-281-2014, https://doi.org/10.5194/os-10-281-2014, 2014
Cited articles
Baines, P. G.: Internal tides, internal waves and near-inertial motions, in: Baroclinic Processes on Continental Shelves, edited by: Mooers, C. N. K., AGU, Washington, D.C., 19–31, 1986.
Beckenbach, E. and Terrill, E.: Internal tides over abrupt topography in the Southern California Bight: observations of diurnal waves poleward of the critical latitude, J. Geophys. Res., 113, C02001, https://doi.org/10.1029/2006JC003905, 2008.
Book, J. W., Martin, P. J., Janeković, I., Kuzmić, M., and Wimbush, M.: Vertical structure of bottom Ekman tidal flows: Observations, theory, and modeling from the northern Adriatic, J. Geophys. Res., 114, C01S06, https://doi.org/10.1029/2008JC004736, 2009a.
Book, J. W., Perkins, H., and Wimbush, M.: North Adriatic tides: observations, variational data assimilation modeling, and linear tide dynamics, Geofizika, 26, 115–143, 2009b.
Budillon, G., Grilli, F., Ortona, A., Russo, A., and Tramontin, M.: An assessment of surface dynamics observed offshore Ancona with HF radar, Marine Ecology PSZNI, 23, Supplement I, 21–37, 2002.
Buljan, M. and Zore-Armanda, M.: Oceanographical properties of the Adriatic Sea, Oceanogr. Mar. Biol., 14, 11–98, 1976.
Cerovečki, I., Orlić, M., and Hendershott, M. C.: Adriatic seiche decay and energy loss to the Mediterranean, Deep Sea Res.-Pt. I, 44, 2007–2029, 1997.
Chavanne, C., Janeković, I., Flament, P., Poulain, P.-M., Kuzmić, M., and Gurgel, K.-W.: Tidal currents in the northwestern Adriatic: High Frequency radio observations and numerical model predictions, J. Geophys. Res., 112, C03S21, https://doi.org/10.1029/2006JC003523, 2007.
Comune di Venezia: Previsioni delle altezze di marea per il bacino San Marco e delle velocità di corrente per il Canal Porto di Lido – Laguna di Venezia, Valori astronomici 2013, available at: http://93.62.201.235/maree/DOCUMENTI/Previsioni_delle_altezze_di_marea_astronomica_2013.pdf, p. 12, 2013.
Cushman-Roisin, B. and Naimie, C. E.: A 3D finite-element model of the Adriatic tides, J. Mar. Syst., 37, 279–297, 2002.
Cushman-Roisin, B., Malačič, V., and Gačić, M.: Tide, Seiches and Low-frequency oscillations, in: Physical Oceanography of the Adriatic Sea: Past, Present and Future, edited by: Cushman-Roisin, B., Gačić, M., Poulain, P.-M., and Artegiani, A., Kluwer Academic Publishers, Dordrecht/Boston/London, 217–240, 2001.
Ferentinos, G. and Kastanos, N.: Water circulation patterns in the Otranto Strait, eastern Mediterranean, Cont. Shelf Res., 8, 1025–1041, 1988.
Foreman, M. G. G.: Manual for Tidal Currents Analysis and Prediction, Pacific Marine Science Report 78-6, Institute of Ocean Sciences, Patricia Bay, Sidney, B.C., 57 pp. (2004 revision), 1978.
Gačić, M., Kovačević, V., Manca, B., Papageorgiou, E., Poulain, P.-M., Scarazzato, P., and Vetrano, A.: Thermohaline properties and circulation in the Strait of Otranto, in: Dynamics of Mediterranean Straits and Channels, Bull. Inst. Oceanogr., no. spécial 17, CIESM Science Series no. 2, edited by: Briand, F., Monaco, 117–145, 1996.
Guarnieri, A., Pinardi, N., Oddo, P., Bortoluzzi, G., and Ravaioli, M.: Impact of tides in a baroclinic circulation model of the Adriatic Sea, J. Geophys. Res. Oceans, 118, 166–183, https://doi.org/10.1029/2012JC007921, 2013.
Hendershott, M. C. and Speranza, A.: Co-oscillating tides in long, narrow bays; the Taylor problem revisited, Deep-Sea Res., 18, 959–980, 1971.
Huthance, J. M.: On coastal trapped waves: analysis and numerical calculation by inverse iteration, J. Phys. Ocean., 8, 74–92, 1978.
Janeković, I. and Kuzmić, M.: Numerical simulation of the Adriatic Sea principal tidal constituents, Ann. Geophys., 23, 3207–3218, https://doi.org/10.5194/angeo-23-3207-2005, 2005.
Janeković, I., Bobanović, J., and Kuzmić, M.: The Adriatic Sea M2 and K1 tides by 3D model and data assimilation, Estuar. Coast. Shelf S., 57, 873–885, 2003.
Klaić, Z. B., Pasarić, Z., and Tudor, M.: On the interplay between sea-land breezes and Etesian winds over the Adriatic, J. Mar. Sys., 78, S101–S118, 2009.
Kovačević, V., Gačić, M., and Poulain, P.-M.: Eulerian current measurements in the Strait of Otranto and in the Southern Adriatic, J. Mar. Sys., 20, 255–278, 1999.
Kovačević, V., Gačić, M., Mancero Mosquera, I., Mazzoldi, A., and Marinetti, S.: HF Radar Observations in the Northern Adriatic: Surface Current Field in Front of the Venetian Lagoon, J. Mar. Sys., 51, 95–122, 2004.
Kunze, E.: Near-inertial wave propagation in geostrophic shear, J. Phys. Oceanogr., 15, 544–565, 1985.
Leder, N. and Orlić, M.: Fundamental Adriatic seiche recorded by current meters, Ann. Geophys., 22, 1449–1464, https://doi.org/10.5194/angeo-22-1449-2004, 2004.
Leder, N., Smirčić, A., Ferenčak, M., and Vučak, Z.: Some results of current measurements in the area of the Otranto Strait, Acta Adriatica, 33, 3–16, 1992.
Lozano, C. and Candela, J.: The M2 tide in the Mediterranean Sea: dynamic analysis and data assimilation, Oceanol. Acta, 18, 419–441, 1995.
Malačič, V., Viezzoli, D., and Cushman-Roisin, B.: Tidal dynamics in the northern Adriatic Sea, J. Geophys. Res., 105, 26265–26280, https://doi.org/10.1029/2000JC900123, 2000.
Manca, B. B., Kovačević, V., Gačić, M., and Viezzoli, D.: Dense water formation in the Southern Adriatic Sea and spreading into the Ionian Sea in the period 1997–1999, J. Mar. Sys., 33–34, 133–154, 2002.
Martin, P. J., Book, J. W., Burrage, D. M., Rowley, C. D., and Tudor, M.: Comparison of model-simulated and observed currents in the Central Adriatic during DART, J. Geophys. Res., 114, C01S05, https://doi.org/10.1029/2008JC004842, 2009.
Michelato, A. and Kovačević, V.: Some dynamic features of the flow through the Otranto Strait, Boll. Oceanol. Teor. Appl., IX, 39–51, 1991.
Mihanović, H., Orlić, M., and Pasarić, Z.: Diurnal internal tides detected in the Adriatic, Ann. Geophys., 24, 2773–2780, https://doi.org/10.5194/angeo-24-2773-2006, 2006.
Mihanović, H., Orlić, M., and Pasarić, Z.: Diurnal thermocline oscillations driven by tidal flow around an island in the Middle Adriatic, J. Mar. Sys., 78, S157–S168, https://doi.org/10.1016/j.jmarsys.2009.01.021, 2009.
Mosetti, F. and Manca, B.: Le maree dell'Adriatico: Calcoli di nuove costanti armoniche per alcuni porti, Studi in onore di Giuseppina Aliverti, Istituto Universitario Navale di Napoli, Ist. di Meteorologia e Oceanografia, 163–177, 1972.
Orlić, M.: Anatomy of sea level variability – an example from the Adriatic, in: The Ocean Engineering Handbook, edited by: El-Hawary, F., CRC Press, Boca Raton (USA), 2001.
Orlić, M., Beg Paklar, G., Dadić, V., Leder, N., Mihanović, H., Pasarić, M., and Pasarić, Z.: Diurnal upwelling resonantly driven by sea breezes around an Adriatic island, J. Geophys. Res., 116, C09025, https://doi.org/10.1029/2011JC006955, 2011.
Pawlowicz, R., Beardsley, B., and Lentz, S.: Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE, Comput. Geosci., 28, 929–937, 2002.
Pereira, A. F., Beckmann, A., and Hellmer, H. H.: Tidal Mixing in the Southern Weddell Sea: Results from a Three-Dimensional Model, J. Phys. Oceanogr., 32, 2151–2170, 2002.
Polli, S.: La propagazione delle maree nell'Adriatico, Istituto Talassografico Sperimentale, Pubblicazione no. 370, Trieste, 11 pp., 1961.
Poulain, P.-M.: Tidal currents in the Adriatic as measured by surface drifters, J. Geophys. Res.-Oceans, 118, 1434–1444, https://doi.org/10.1002/jgrc.20147, 2013.
Taylor, L.: Tidal oscillations in gulfs and rectangular basins, Proc. London Math. Soc., 20, 93–204, 1921.
Thompson, R. E. and Crawford, W. R.: The generation of diurnal period shelf waves by tidal currents, J. Phys. Ocean., 12, 635–643, 1982.
Torrence, C. and Compo, G. P.: A practical Guide to Wavelet analysis, B. Am. Meteorol. Soc., 79, 61–78, 1998.
Torrence, C. and Webster, P. J.: Interdecadal changes in the ENSO-monsoon System, J. Climate, 12, 2679–2690, 1999.
Ursella, L. and Gačić, M.: Use of the Acoustic Doppler Current Profiler (ADCP) in the study of the circulation of the Adriatic Sea, Ann. Geophys., 19, 1183–1193, https://doi.org/10.5194/angeo-19-1183-2001, 2001.
Ursella, L., Kovačević, V., and Gačić, M.: Footprints of mesoscale eddy passages in the Strait of Otranto (Adriatic Sea), J. Geophys. Res., 116, C04005, https://doi.org/10.1029/2010JC006633, 2011.
Ursella, L., Gačić, M., Kovačević, V., and Deponte, D.: Low-frequency flow in the bottom layer of the Strait of Otranto, Cont. Shelf Res., 44, 5–19, https://doi.org/10.1016/j.csr.2011.04.014, 2012.
Vetrano, A., Gačić, M., and Kovačević, V.: Water fluxes through the Strait of Otranto, in: EC Ecosystems research report No. 32, The Adriatic Sea, Proceedings of the workshop "Physical and biogeochemical processes in the Adriatic Sea", Portonovo (Ancona), Italy, 23 to 27 April 1996, edited by: Hopkins, T. S., Artegiani, A., Cauwet, G., Degobbis, D., and Malej, A., 127–137, 1999.
Vilibić, I., Šepić, J., Dadić, V., and Mihanović, H.: Fortnightly oscillations observed in the Adriatic Sea, Ocean Dynam., 60, 57–63, https://doi.org/10.1007/s10236-009-0241-2, 2010.
Wunsch, C.: Internal tides in the ocaen, Rev. Geophys. Space Phys., 13, 167–182, 1975.
Yari, S., Kovačević, V., Cardin, V., Gačić, M., and Bryden, H. L.: Direct estimate of water, heat, and salt transport through the Strait of Otranto, J. Geophys. Res., 117, C09009, https://doi.org/10.1029/2012JC007936, 2012.