Articles | Volume 10, issue 6
https://doi.org/10.5194/os-10-1013-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/os-10-1013-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Forecasting the mixed-layer depth in the Northeast Atlantic: an ensemble approach, with uncertainties based on data from operational ocean forecasting systems
Y. Drillet
CORRESPONDING AUTHOR
Mercator Ocean, Toulouse, France
J. M. Lellouche
Mercator Ocean, Toulouse, France
B. Levier
Mercator Ocean, Toulouse, France
M. Drévillon
Mercator Ocean, Toulouse, France
O. Le Galloudec
Mercator Ocean, Toulouse, France
G. Reffray
Mercator Ocean, Toulouse, France
C. Regnier
Mercator Ocean, Toulouse, France
E. Greiner
CLS, Toulouse, France
M. Clavier
Mercator Ocean, Toulouse, France
Related authors
Jenny Pistoia, Nadia Pinardi, Paolo Oddo, Matthew Collins, Gerasimos Korres, and Yann Drillet
Nat. Hazards Earth Syst. Sci., 16, 1807–1819, https://doi.org/10.5194/nhess-16-1807-2016, https://doi.org/10.5194/nhess-16-1807-2016, 2016
Short summary
Short summary
In this work we developed a new multi-model super-ensemble method to estimate sea surface temperature, an important product of ocean analysis systems. We find that ensemble size, quality, type of members and the training period length are all important elements of the MMSE methodology and require careful calibration. We show that with a rather limited but overconfident data set (with a low bias of the starting ensemble members) the RMSE analysis can be improved.
Mathieu Hamon, Jonathan Beuvier, Samuel Somot, Jean-Michel Lellouche, Eric Greiner, Gabriel Jordà, Marie-Noëlle Bouin, Thomas Arsouze, Karine Béranger, Florence Sevault, Clotilde Dubois, Marie Drevillon, and Yann Drillet
Ocean Sci., 12, 577–599, https://doi.org/10.5194/os-12-577-2016, https://doi.org/10.5194/os-12-577-2016, 2016
Short summary
Short summary
The paper describes MEDRYS, a MEDiterranean sea ReanalYsiS at high resolution for the period 1992–2013. The NEMOMED12 ocean model is forced at the surface by a new high resolution atmospheric forcing dataset (ALDERA). Altimeter data, satellite SST and temperature and salinity vertical profiles are jointly assimilated. The ability of the reanalysis to represent the sea surface high-frequency variability, water mass characteristics and transports through the Strait of Gibraltar is shown.
Alisée A. Chaigneau, Angélique Melet, Aurore Voldoire, Guillaume Reffray, Stéphane Law-Chune, and Lotfi Aouf
EGUsphere, https://doi.org/10.5194/egusphere-2024-1061, https://doi.org/10.5194/egusphere-2024-1061, 2024
Short summary
Short summary
Climate change induced sea level rise increases the frequency of extreme sea levels. This paper presents regional projections of extreme sea levels for western Europe produced with high-resolution models (~6 km). Unlike commonly used coarse-scale global climate models, this approach allows to simulate key processes driving coastal sea level variations such as long-term sea level rise, tides, storm surges induced by low atmospheric surface pressure and winds, waves, and their interactions.
Sylvain Cailleau, Laurent Bessières, Léonel Chiendje, Flavie Dubost, Guillaume Reffray, Jean-Michel Lellouche, Simon van Gennip, Charly Régnier, Marie Drevillon, Marc Tressol, Matthieu Clavier, Julien Temple-Boyer, and Léo Berline
Geosci. Model Dev., 17, 3157–3173, https://doi.org/10.5194/gmd-17-3157-2024, https://doi.org/10.5194/gmd-17-3157-2024, 2024
Short summary
Short summary
In order to improve Sargassum drift forecasting in the Caribbean area, drift models can be forced by higher-resolution ocean currents. To this goal a 3 km resolution regional ocean model has been developed. Its assessment is presented with a particular focus on the reproduction of fine structures representing key features of the Caribbean region dynamics and Sargassum transport. The simulated propagation of a North Brazil Current eddy and its dissipation was found to be quite realistic.
Alisée A. Chaigneau, Stéphane Law-Chune, Angélique Melet, Aurore Voldoire, Guillaume Reffray, and Lotfi Aouf
Ocean Sci., 19, 1123–1143, https://doi.org/10.5194/os-19-1123-2023, https://doi.org/10.5194/os-19-1123-2023, 2023
Short summary
Short summary
Wind waves and swells are major drivers of coastal environment changes and can drive coastal marine hazards such as coastal flooding. In this paper, by using numerical modeling along the European Atlantic coastline, we assess how present and future wave characteristics are impacted by sea level changes. For example, at the end of the century under the SSP5-8.5 climate change scenario, extreme significant wave heights are higher by up to +40 % due to the effect of tides and mean sea level rise.
Alisée A. Chaigneau, Guillaume Reffray, Aurore Voldoire, and Angélique Melet
Geosci. Model Dev., 15, 2035–2062, https://doi.org/10.5194/gmd-15-2035-2022, https://doi.org/10.5194/gmd-15-2035-2022, 2022
Short summary
Short summary
Climate-change-induced sea level rise is a major threat for coastal and low-lying regions. Projections of coastal sea level changes are thus of great interest for coastal risk assessment and have significantly developed in recent years. In this paper, the objective is to provide high-resolution (6 km) projections of sea level changes in the northeastern Atlantic region bordering western Europe. For that purpose, a regional model is used to refine existing coarse global projections.
Jean-Michel Lellouche, Eric Greiner, Olivier Le Galloudec, Gilles Garric, Charly Regnier, Marie Drevillon, Mounir Benkiran, Charles-Emmanuel Testut, Romain Bourdalle-Badie, Florent Gasparin, Olga Hernandez, Bruno Levier, Yann Drillet, Elisabeth Remy, and Pierre-Yves Le Traon
Ocean Sci., 14, 1093–1126, https://doi.org/10.5194/os-14-1093-2018, https://doi.org/10.5194/os-14-1093-2018, 2018
Short summary
Short summary
In the coming decades, a strong growth of the ocean economy is expected. Scientific advances in operational oceanography will play a crucial role in addressing many environmental challenges and in the development of ocean-related economic activities. In this context, remarkable improvements have been achieved with the current Mercator Ocean system. 3-D water masses, sea level, sea ice and currents have been improved, and thus major oceanic variables are hard to distinguish from the data.
Jenny Pistoia, Nadia Pinardi, Paolo Oddo, Matthew Collins, Gerasimos Korres, and Yann Drillet
Nat. Hazards Earth Syst. Sci., 16, 1807–1819, https://doi.org/10.5194/nhess-16-1807-2016, https://doi.org/10.5194/nhess-16-1807-2016, 2016
Short summary
Short summary
In this work we developed a new multi-model super-ensemble method to estimate sea surface temperature, an important product of ocean analysis systems. We find that ensemble size, quality, type of members and the training period length are all important elements of the MMSE methodology and require careful calibration. We show that with a rather limited but overconfident data set (with a low bias of the starting ensemble members) the RMSE analysis can be improved.
Mathieu Hamon, Jonathan Beuvier, Samuel Somot, Jean-Michel Lellouche, Eric Greiner, Gabriel Jordà, Marie-Noëlle Bouin, Thomas Arsouze, Karine Béranger, Florence Sevault, Clotilde Dubois, Marie Drevillon, and Yann Drillet
Ocean Sci., 12, 577–599, https://doi.org/10.5194/os-12-577-2016, https://doi.org/10.5194/os-12-577-2016, 2016
Short summary
Short summary
The paper describes MEDRYS, a MEDiterranean sea ReanalYsiS at high resolution for the period 1992–2013. The NEMOMED12 ocean model is forced at the surface by a new high resolution atmospheric forcing dataset (ALDERA). Altimeter data, satellite SST and temperature and salinity vertical profiles are jointly assimilated. The ability of the reanalysis to represent the sea surface high-frequency variability, water mass characteristics and transports through the Strait of Gibraltar is shown.
G. Reffray, R. Bourdalle-Badie, and C. Calone
Geosci. Model Dev., 8, 69–86, https://doi.org/10.5194/gmd-8-69-2015, https://doi.org/10.5194/gmd-8-69-2015, 2015
Cited articles
Balmaseda, M. and Anderson, D.: Impact of initialization strategies and observations on seasonal forecast skill, Geophys. Res. Lett., 36, L01701, https://doi.org/10.1029/2008GL035561, 2009.
Béranger, K., Drillet, Y., Houssais, M. N., Testor, P., Bourdalle-Badie, R., Alhammoud, B., Bozec, A., Mortier, L., Bouruet-Aubertot, P., and Crepon, M.: Impact of the spatial distribution of the atmospheric forcing on water mass formation in the Mediterranean Sea, J. Geophys. Res., 115, C12041, https://doi.org/10.1029/2009JC005648, 2010.
Buongiorno Nardelli, B., Guinehut, S., Pascual, A., Drillet, Y., Ruiz, S., and Mulet, S.: Towards high resolution mapping of 3-D mesoscale dynamics from observations, Ocean Sci., 8, 885–901, https://doi.org/10.5194/os-8-885-2012, 2012.
Cailleau, S., Chanut, J., Lellouche, J.-M., Levier, B., Maraldi, C., Reffray, G., and Sotillo, M. G.: Towards a regional ocean forecasting system for the IBI (Iberia-Biscay-Ireland area): developments and improvements within the ECOOP project framework, Ocean Sci., 8, 143–159, https://doi.org/10.5194/os-8-143-2012, 2012.
Cummings, J. A.: Operational multivariate ocean data assimilation, Q. J. Roy. Meteorol. Soc., 131, 3583–3604, 2005.
De Boyer Montégut, C., Madec, G., Fischer, A. S., Lazar, A., and Iudicone, D.: Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology, J. Geophys. Res., 109, C12003, https://doi.org/10.1029/2004JC002378, 2004.
Drillet, Y., Garric, G., Le Vaillant, X., and Benkiran, M.: The dependence of medium range northern Atlantic Ocean predictability on atmospheric forecasts, Journal of Operational Oceanography, 2, 43–55, 2009.
Giordani, H.: Dynamique des couches limites oceanique et atmospherique marine, Habilitation à diriger des recherches, Université Toulouse III-Paul Sabatier, 2011.
Giordani, H., Caniaux, G., Prieur, L., Paci, A., and Giraud, S.: A 1 year mesoscale simulation of the northeast Atlantic: Mixed layer heat and mass budgets during the POMME experiment, J. Geophys. Res., 110, C07S08, https://doi.org/10.1029/2004JC002765, 2005.
Goni, G. J. and Trinanes, J. A.: Ocean thermal structure monitoring could aid in the intensity forecast of tropical cyclones, Eos, T. Am. Geophys. Un., 84, 573–578, https://doi.org/10.1029/2003EO510001, 2003.
Keerthi, M. G., Lengaigne, M., Vialard, J., de Boyer Montégut, C., and Muraleedharan, P. M.: Interannual variability of the Tropical Indian Ocean mixed layer depth, Clim. Dynam., 40, 743–759, 2013.
Lavigne, H., D'Ortenzio, F., Migon, C., Claustre, H., Testor, P., Ribera d'Alcalà, M., Lavezza, R., Houpert, L., and Prieur, L.: Enhancing the comprehension of mixed layer depth control on the Mediterranean phytoplankton phenology, J. Geophys. Res., 118, 3416–3430, https://doi.org/10.1002/jgrc.20251, 2013.
Lellouche, J.-M., Le Galloudec, O., Drévillon, M., Régnier, C., Greiner, E., Garric, G., Ferry, N., Desportes, C., Testut, C.-E., Bricaud, C., Bourdallé-Badie, R., Tranchant, B., Benkiran, M., Drillet, Y., Daudin, A., and De Nicola, C.: Evaluation of global monitoring and forecasting systems at Mercator Océan, Ocean Sci., 9, 57–81, https://doi.org/10.5194/os-9-57-2013, 2013.
Lengaigne, M., Menkes, C., Aumont, O., Gorgues, T., Bopp, L., and Madec, J.-M. A. G.: Bio-physical feedbacks on the tropical pacific climate in a coupled general circulation model, Clim. Dynam., 28, 503–516, 2007.
Lermusiaux, P. F. J., Chiu, C.-S., Gawarkiewicz, G. G., Abbot, P., Robinson, A. R., Miller, R. N., Haley, P. J., Leslie, W. G., Majumdar, S. J., Pang, A., and Lekien, F.: Quantifying Uncertainties in Ocean Predictions, Oceanography, 19, 90–103, https://doi.org/10.5670/oceanog.2006.93, 2006.
Lenartz, F., Mourre, B., Barth, A., Beckers, J. M., Vandenbulcke, L., and Rixen, M.: Enhanced ocean temperature forecast skills through 3-d super-ensemble multimodel fusion, Geophys. Res. Lett., 37, L19606, https://doi.org/10.1029/2010GL044591, 2010.
Madec, G. and the NEMO team: NEMO ocean engine, Note du Pôle de modélisation, Institut Pierre-Simon Laplace (IPSL), France, No. 27 ISSN, 1288–1619, 2008.
Mahadevan, A., D'Asaro, E., Lee, C., and Perry, M. J.: Eddy-driven stratification initiates North Atlantic spring phytoplankton blooms, Science, 337, 54–58, 2012.
Maraldi, C., Chanut, J., Levier, B., Ayoub, N., De Mey, P., Reffray, G., Lyard, F., Cailleau, S., Drévillon, M., Fanjul, E. A., Sotillo, M. G., Marsaleix, P., and the Mercator Research and Development Team: NEMO on the shelf: assessment of the Iberia-Biscay-Ireland configuration, Ocean Sci., 9, 745–771, https://doi.org/10.5194/os-9-745-2013, 2013.
Meehl, G. A., Goddard, L., Boer, G., Burgman, R., Branstator, G., Cassou, C., Corti, S., Danabasoglu, G., Doblas-Reyes, F., Hawkins, E., Karspeck, A., Kimoto, M., Kumar, A., Matei, D., Mignot, J., Msadek, R., Navarra, A., Pohlmann, H., Rienecker, M., Rosati, T., Schneider, E., Smith, D., Sutton, R., Teng, H., van Oldenborgh, G. J., Vecchi, G., and Yeager, S.: Decadal Climate Prediction: An Update from the Trenches, B. Am. Meteorol. Soc., 95, 243–267, https://doi.org/10.1175/BAMS-D-12-00241.1, 2014.
Morel, A., Huot, Y., Gentili, B., Werdell, P. J., Hooker, S. B., and Franz, B. A.: Examining the consistency of products derived from various ocean color sensors in open ocean (Case 1) waters in the perspective of a multi-sensor approach, Remote Sens. Environ., 111, 69–88, 2007.
Murphy, A. H.: Skill scores based on the mean square error and their relationships to the correlation coefficient, Mon. Weather Rev., 116, 2417–2424, 1988.
O'Dea, E. J., Arnold, A. K., Edwards, K. P., Furner, R., Hyder, P., Martin, M. J., Siddorn, J. R., Storkey, D., While, J., Holt, J. T., and Liu, H.: An operational ocean forecast system incorporating NEMO and SST data assimilation for the tidally driven European Northwest shelf, Journal of Operational Oceanography, 5, 3–17, 2012.
Pham, D. T., Verron, J., and Roubaud, M. C.: A singular evolutive extended Kalman filter for data assimilation in oceanography, J. Mar. Syst., 16, 323–340, 1998.
Pistoia J.: Development of SuperEnsemble Techniques for the Mediterranean ocean Forecasting System, ALMA MATER STUDIORUM Università di Bologna, Dottorato di Ricerca in: GEOFISICA Ciclo XXIII Settore Scientifico-Disciplinare di afferenza: GEO/10, 2012.
Reffray, G., Bourdalle-Badie, R., and Calone, C.: Modelling turbulent vertical mixing sensitivity using a 1-D version of NEMO, Geosci. Model Dev. Discuss., 7, 5249–5293, https://doi.org/10.5194/gmdd-7-5249-2014, 2014.
Ryan, A. G., Régnier, C., Divakaran, P., Spindler, T., Mehra, A., Hernandez, F., Smith, G. C., Liu, Y., and Davidson, F.: GODAE Oceanview Class 4 forecast verification framework: Global ocean inter-comparison, Journal of Operational Oceanography, accepted, 2014.
Scott, R., Ferry, N., Drevillon, M., Barron, C. N., Jourdain, N. C., Lellouche, J.-M., Metzger, E. J., Rio, M.-H., and Smedstad, O. M.: Estimates of surface drifter trajectories in the Equatorial Atlantic: a multi-model ensemble approach, Ocean Dynam., 62, 1091–1109, https://doi.org/10.1007/s10236-012-0548-2, 2012.
Shapiro, G., Chen, F., and Thain, R.: The effect of ocean fronts on acoustic wave propagation in the Celtic Sea, J. Marine Syst., 139, 217–226, https://doi.org/10.1016/j.jmarsys.2014.06.007, 2014.
Tozuka, T. and Cronin, M. F.: Role of mixed layer depth in surface frontogenesis: The Agulhas Return Current front, Geophys. Res. Lett., 41, 2447–2453, 2014.
Tranchant, B., Testut, C. E., Renault, L., Ferry, N., Birol, F., and Brasseur, P.: Expected impact of the future SMOS and Aquarius Ocean surface salinity missions in the Mercator Ocean operational systems: New perspectives to monitor ocean circulation, Remote Sens. Environ., 112, 1476–1487, 2008.
Umlauf, L. and Burchard, H.: A generic length-scale equation for geophysical turbulence models, J. Mar. Res., 61, 235–265, 2003.
Vandenbulcke, L., Beckers, J. M., Lenartz, F., Barth, A., Poulain, P. M., Aidonidis, M., Meyrat J., Ardhuin, F., Tonani, M., Fratianni, C., Torrisi, L., Pallela, D., Chiggiato, J., Tudor, M., Book, J., Martin, P., Peggion, G., and Rixen, M.: Super ensemble techniques: Application to surface drift prediction, Prog. Oceanogr., 82, 149–167, https://doi.org/10.1016/j.pocean.2009.06.002, 2009.
Xue, Y., Balmaseda, M. A., Boyer, T., Ferry, N., Good, S., Ishikawa, I., Kumar, A., Rienecker, M., Rosati, A., and Yin, Y.: A Comparative Analysis of Upper-Ocean Heat Content Variability from an Ensemble of Operational Ocean Re-analyses, J. Climate, 25, 6905–6929, 2012.
Zhu, J., Huang, B., and Balmaseda, M. A.: An ensemble estimation of the variability of upper-ocean heat content over the tropical Atlantic Ocean with multi-ocean reanalysis products, Clim. Dynam., 39, p. 1001, 2012.