Articles | Volume 9, issue 6
https://doi.org/10.5194/os-9-987-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/os-9-987-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
An optical model for deriving the spectral particulate backscattering coefficients in oceanic waters
S. P. Tiwari
Department of Ocean Engineering, Indian Institute of Technology Madras, Chennai-600036, India
P. Shanmugam
Department of Ocean Engineering, Indian Institute of Technology Madras, Chennai-600036, India
Related authors
No articles found.
Vijay Prakash Kondeti and Shanmugam Palanisamy
Earth Syst. Dynam., 16, 91–114, https://doi.org/10.5194/esd-16-91-2025, https://doi.org/10.5194/esd-16-91-2025, 2025
Short summary
Short summary
Ocean heat content (OHC) is an essential climate variable and is highly correlated with thermosteric sea level rise (TSL). In this study, ocean-thermal-expansion-based artificial neural network models were developed and validated to estimate TSL and, subsequently, OHC at 17 depths from the surface to 700 m. These models can accurately predict TSL and OHC for the given input data on sea surface temperature and sea surface salinity from any source.
J. D. Pravin, P. Shanmugam, and Y.-H. Ahn
Ocean Sci. Discuss., https://doi.org/10.5194/osd-12-1893-2015, https://doi.org/10.5194/osd-12-1893-2015, 2015
Revised manuscript not accepted
B. Sundarabalan and P. Shanmugam
Ocean Sci., 11, 33–52, https://doi.org/10.5194/os-11-33-2015, https://doi.org/10.5194/os-11-33-2015, 2015
Short summary
R. K. Singh and P. Shanmugam
Ocean Sci. Discuss., https://doi.org/10.5194/osd-11-2791-2014, https://doi.org/10.5194/osd-11-2791-2014, 2014
Revised manuscript not accepted
Short summary
Short summary
A novel glint correction algorithm is developed in this study which is capable of achieving meaningful retrievals of ocean radiances from the glint-contaminated pixels unless saturated by strong glint in any of the wavebands. When compared to the results of an existing model in the SeaDAS processing system, the new algorithm has the best performance in terms of yielding physically realistic water-leaving radiance spectra and improving the accuracy of the ocean colour products.
Cited articles
Antoine, D., Siegal, D. A., Kostadinov, T., Maritorena, S., Nelson, N. B., Gentilli, B., Vellucci, V., and Guillocheau, N.:Variability in optical particle backscattering in contrasting bio-optical oceanic regimes, Limnol. Oceanogr., 56, 955–973, 2011.
Babin, M., Morel, A., Fournier-Sicre, V., Fell, F., and Stramski, D.: Light scattering properties of marine particles in coastal and oceanic waters as related to the particle mass concentration, Limnol. Oceanogr., 48, 843–859, 2003b.
Baker, K. S. and Smith, R. C.: Quasi-inherent characteristics of the diffuse attenuation coefficient for irradiance, in Ocean Optics VI, edited by: Duntley, S. Q., Proc. SPIE 208, 60–63, 1979.
Bohren, C. F. and Singham, S. B.: Backscattering by Nonspherical Particles: A Review of Methods and Suggested New Approaches, J. Geophys. Res., 96, 5269–5277, 1991.
Boss, E. and Roesler, C.: Over constrained linear matrix inversion with statistical selection, Z. Lee Ed., Remote Sensing of Inherent Optical Properties: Fundamentals, Tests of Algorithms, and Applications, IOCCG, Dartmouth, NS, Canada, IOCCG Rep. 5, 2006.
Boss, E., Taylor, L., Gilbert, S., Gundersen, K., Hawley, N., Janzen, C., Johengen,T., Purcell, H., Robertson, C., Schar, D. W. H., Smith, G. J., and Tamburri, M. N.: Comparison of inherent optical properties as a surrogate for particulate matter concentration in coastal waters, Limnol. Oceanogr., 7, 803–810, 2009.
Brewin, R. J. W., Devred, E., Sathyendranath, S., Lavender, S. J., and Hardman-Mountford, N. J.: Model of phytoplankton absorption based on three size classes, Appl. Opt., 50, 4535–4549, 2011.
Bricaud, A. and Morel, A.: Light attenuation and scattering by a phytoplanktonic cells: A theoretical modeling, Appl. Opt., 25, 571–580, 1986.
Carder, K. L., Chen, F. R., Lee, Z. P., Hawes, S. K., and Kamykowski, D.: Semianalytic Moderate-Resolution Imaging Spectrometer algorithms for chlorophyll-a and absorption with bio-optical domains based on nitrate depletion temperatures, J. Geophys. Res., 104, 5403–5421, 1999.
Chami, M., Shybanov, E. B., Khomenko, G. A., Lee, M. E. G., Martynov, O. V., and Korotaev, G. K.: Spectral variation of the volume scattering function measured over the full range of scattering angles in a coastal environment, Appl. Opt., 45, 3605–3619, 2006.
Clavano, W. R., Boss, E., and Karp-Boss, L.: Inherent Optical Properties of Non-Spherical Marine-Like Particles - From Theory to Observations, Oceanogr. Mar. Biol., 45, 1–38, 2007.
Coleman, T. F. and Li, Y.: An Interior, Trust Region Approach for Nonlinear Minimization Subject to Bounds, SIAM J. Optimization, 6, 418–445, 1996.
Dall'Olmo, G., Westberry, T. K., Behrenfeld, M. J., Boss, E., and Slade, W. H.: Significant contribution of large particles to optical backscattering in the open ocean, Biogeosciences, 6, 947–967, https://doi.org/10.5194/bg-6-947-2009, 2009.
Garver, S. A. and Siegel, D.: Inherent optical property inversion of ocean colour spectra and its biogeochemical interpretation 1. Time series from the Sargasso Sea, J. Geophys. Res., 102, 18607–18625, 1997.
Gordon, H. R.: Spectral variations in the volume scattering function at large angles in natural waters, J. Opt. Soc. America, 64, 773–775, 1974.
Gordon, H. R.: A semi-analytic radiance model of ocean colour, J. Geophys. Res., 93, 10909–10924, 1988.
Gordon, H. R., Brown, O. B., and Jacobs, M. M.: Computed relationships between the inherent and apparent optical properties of a flat homogeneous ocean, Appl. Opt., 14, 2417–2427, 1975.
Gordon, H. R., Lewis, M. R., McLean, S. D., Twardowski, M. S., Freeman, S. A., Voss, K. J., and Boynton, G. C.: Spectra of particulate backscattering in natural waters, Optics Expr., 17, 16 192–16 208, 2009.
Green, R. E., Sosik, H. M., Olson, R. J., and DuRand, M. D.: Flow cytometric determination of size and complex refractive index for marine particles: Comparison with independent and bulk estimates, Appl. Opt., 42, 526–541, 2003.
Hoge, F. E. and Lyon, P. E.: Satellite retrieval of inherent optical properties by linear matrix inversion of oceanic radiance models: An analysis of model and radiance measurement errors, J. Geophys. Res.-Oc., 101, 16631–16648, 1996.
Hojerslev, N. K.: Daylight measurements for photosynthetic studies in the Western Mediterranean, University of Copenhagen Institute of Physical Oceanography Report, 26, 1974.
Jerlov, N. G.: Marine Optics, Elsevier, Amsterdam, 1976.
Kirk, J. T. O.: A Monte Carlo study of the nature of the underwater light field in, and the relationships between optical properties of, turbid yellow waters, Austr. J. Mar. Freshwater Res., 32, 517–532, 1981.
Kirk, J. T. O.: Dependence of relationship between inherent and apparent optical properties of water on solar altitude, Limnol. Oceanogr., 29, 350–356, 1984.
Kirk, J. T. O.: Volume scattering function, average cosines, and the underwater light field, Limnol. Oceanogr., 36, 455–467. 1991.
Kitchen, J. C. and Zaneveld, J. R. V.: A three-layered sphere model of the optical properties of phytoplankton, Limnol. Oceanogr., 37, 1680–1690, 1992.
Kostadinov, T. S., Siegel, D. A., and Maritorena, S.: Retrieval of the particle size distribution from satellite ocean color observations, J. Geophys. Res., 114, C09015, https://doi.org/10.1029/2009JC005303, 2009.
Lee, Z. P.: Remote Sensing of Inherent Optical Properties: Fundamentals, Tests of Algorithms, and Applications, IOCCG, Dartmouth, NS, Canada, IOCCG Report 5, 2006.
Lee, Z. P., Carder, K. L., and Arnone, R. A.: Deriving inherent optical properties from water colour: a multiband quasi-analytical algorithm for optically deep waters, Appl. Opt., 41, 5755–5772, 2002.
Lee, Z. P., Du, K. P., and Arnone, R.: A model for the diffuse attenuation coefficient of downwelling irradiance, J. Geophys. Res., 110, C02016, https://doi.org/10.1029/2004JC002275, 2005a.
Lee, Z. P., Darecki, M., Carder, K. L., Devis, C. O., Stramski, D., and Rhea, W. J.: Diffuse attenuation coefficient of downwelling irradiance: An evaluation of remote sensing methods, J. Geophys. Res., 110, C02017, https://doi.org/10.1029/2004JC002573, 2005b.
Lewis, M. R., Carr, M., Feldman, G., Esaias, W., and McMclain, C.: Influence of penetrating solar radiation on the heat budget of the equatorial pacific ocean, Nature, 347, 543–545, 1990.
Loisel, H. and Stramski, D.: Estimation of the inherent optical properties of natural waters from the irradiance attenuation coefficient and reflectance in the presence of Raman scattering, Appl. Opt., 39, 3001–3011, 2000.
Loisel, H., Nicolas, J. M., Sciandra, A., Stramski, D., and Poteau, A.: Spectral dependency of optical backscattering by marine particles from satellite remote sensing of the global ocean, J. Geophys. Res. (1978–2012), 111, C09015, https://doi.org/10.1029/2005JC003367, 2006.
Loisel, H., Vantrepotte, V. Norkvist, K., Mériaux, X., Kheireddine, M., Ras, J., Pujo-Pay, M., Combet, Y.,Leblanc, K., Dall'Olmo, G. Mauriac, R. Dessailly, D., and Moutin, T.: Characterization of the bio-optical anomaly and diurnal variability of articulate matter, as seen from scattering and backscattering coefficients, in ultra-oligotrophic eddies of the Mediterranean Sea, Biogeosciences, 8, 3295–3317, https://doi.org/10.5194/bg-8-3295-2011, 2011.
Maritorena, S., Siegel, D. A., and Peterson, A. R.: Optimization of a semianalytical ocean colour model for global-scale applications, Appl. Opt., 41, 2705–714, 2002.
Mobely, C. D.: Light and water, Radiative transfer in natural waters, San Diego, Academic Press, 1994.
Mobely, C. D.: The Optical Properties of Water, in: Handbook of Optics, Fundamental, Techniques, and Design, edietd by: Bass, M., Van Stryland, E. W., Williams, D. R., and Wolf, W. L., New York, McgGraw-Hill, vol. I, pp. 43.3–43.56, 1995.
Morel, A.: Diffusion de la lumie`re par les eaux de mer: Re\textasciiacute sultats experimentaux et approach the\textasciiacute oretique, in AGARD Lecture Series, 3.1.1–3.1.76, 1973.
Morel, A. and Ahn, Y. H.: Optics of heterotrophic nanoflagellates and ciliates. A tentative assessment of their scattering role in oceanic waters compared to those of bacterial and algal cells, J. Mar. Res., 49, 177–202, 1991.
Morel, A. and Antoine, D.: Heating rate within the upper ocean in relation to its bio-optical state, J. Phys. Oceanogr., 24, 1652–1665, 1994.
Morel, A. and Loisel H.: Apparent optical properties of oceanic water: Dependence on the molecular scattering contribution, Appl. Opt., 37, 4765–4776, 1998.
Mueller, J. L.: SeaWiFS algorithm for the diffuse attenuation coefficient, K (490), using water-leaving radiances at 490 and 555 nm, in: SeaWiFS Postlaunch Calibration and Validation Analyses, part 3, edited by: Hooker, S. B., NASA Goddard Space Flight Cent., Greenbelt, Md., 24–27, 2000.
NASA, 2009. Diffuse attenuation coefficient ($K_d)$ for downwelling irradiance at 490 nm. NASA Ocean Biology Processing Group, available at: http://oceancolour.gsfc.nasa.gov/REPROCESSING/R2009/kdv4/ (last access: 2 July 2009), 2009.
Nielsen, J. H. and Aas, E.: Relation between solar elevation and the vertical attenuation coefficient of irradiance in Oslofjorden, University of Oslo Report, 31 pp., 1977.
Neukermans, G., Loisel, H., Mériaux, X., Astoreca, R. and McKee, D.: In situ variability of mass-specific beam attenuation and backscattering of marine particles with respect to particle size, density, and composition, Limnol. Oceanogr., 57, 24–144, 2012.
Pinkerton, M. H., Moore, G. F., Lavender, S. J., Gall, M. P., Oubelkheir, K., Richardson, K. M., Boyd, P. W., and Aiken, J.: A method for estimating inherent optical properties of New Zealand continental shelf waters from satellite ocean colour measurements, New Zealand J. Mar. Freshwater Res., 40, 227–247, 2006.
Platt, T.: Primary production of ocean water column as a function of surface light intensity: Algorithms for remote sensing, Deep-Sea Res., 33, 149–163, 1986.
Preinsendorper, R. W.: Application of radiative transfer theory to light measurements in the sea, Monogr. Int. Union Geod. Geophys, Paris, 10, 11–30, 1961.
Preisendorfer, R. W.: Hydrologic Optics, vol. 1, Introduction, Natl. Tech. Inf. Serv., Springfield, Va, 1976.
Risovic, D.: Effect of suspended particulate-size distribution on the backscattering ratio in the remote sensing of seawater, Appl. Opt., 41, 7092–7101, 2002.
Roesler, C. S. and Boss, E.: Spectral beam attenuation coefficient retrieved from ocean colour inversion, Geophys. Res. Lett., 30, 1468, https://doi.org/10.1029/2002GL016185, 2003.
Sathyendranath, S. and Platt, T.: The spectral irradiance field at the surface and in the interior of the ocean: A model for applications in oceanography and remote sensing, J. Geophys. Res., 93, 9270–9280, 1988.
Sathyendranath, S., Prieur, L., and Morel, A.: A three-component model of ocean colour and its application to remote sensing of phytoplankton pigments in coastal waters, Internat. J. Remote Sens., 10, 1373l–1394, 1989.
Shanmugam, P., Sundarbalan, B., Ahn, Y. H., and Ryu, J. H.: A new inversion model to retrieve the particulate backscattering in coastal oceans, IEEE Trans. Geosci. Rem. Sens., 49, 2463–2475, 2011.
Smith, R. C. and Baker, K. S.: Optical properties of the clearest natural waters, Appl. Opt., 20, 177–184, 1981.
Smyth, T. J., Moore, G. F., Hirata, T., and Aiken, J.: Semianalytical model for the derivation of ocean colour inherent optical properties: description, implementation, and performance assessment, Appl. Opt., 46, 429–430, 2006.
Stramski, D. and Kiefer, K. A.: Light scattering by microorganisms in the open sea, Prog. Oceanogr., 28, 4 343–4383, 1991.
Stramska, M. and Frye, D.: Dependence of apparent optical properties on solar altitude: experimental results based on mooring data collected in the Sargasso Sea, J. Geophys. Res., 102, 15679–15691, 1997.
Stramski, D., Bricaud, A., and Morel, A.: Modeling the inherent optical properties of the ocean based on the detailed composition of planktonic community, Appl. Opt., 40, 2929–2945, 2001.
Stramski, D., Boss, E., Bogucki, D., and Voss, K. J.: The role of seawater constituents in light backscattering in the ocean, Prog. Oceanogr., 61, 27–56, 2004.
Sun, D., Li, Y., Wang, Q., Gao, J., Lv, H., Le, C., and Huang, C.: Light scattering properties and their relation to biogeochemical composition in a turbid productive lake: Lake Taihu case study, Appl. Opt., 48, 1979–1989, 2009.
Twardowski, M., Boss, E., Macdonald, J. B., Pegau, W. S., Barnard, A. H., and Zaneveld, V. J. R.: A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters, J. Geophys. Res., 106, 14129–14142, 2001.
Twardowski, M. S., Lewis, M., Barnard, A., and Zaneveld, J. R. V.: In-water instrumentation and platforms for ocean color remote sensing applications, in: Remote Sensing of Coastal Aquatic Waters, edited by: Miller, R., Del Castillo, C., and McKee, B., Springer Publishing, Dordrecht, Netherlands, 69–100, 2005.
Twardowski, M. S., Claustre, H., Freeman, S. A., Stramski, D., and Huot, Y.: Optical backscattering properties of the "clearest" natural waters, Biogeosciences, 4, 1041–1058, https://doi.org/10.5194/bg-4-1041-2007, 2007.
Van de Hulst, H. C.: Light Scattering by Small Particles, John Wiley, New York, 1957.
Van de Hulst H. C.: Light scattering by small particles, Dover Publications, 1981.
Victor, M. V., Land, P. E., Tilstone, G. H., Widdicombe, C., and Fishwick, J. R.: Particulate scattering and backscattering related to water constituents and seasonal changes in the Western English Channel, J. Plankt. Res., 32, 603–629, 2010.
Wang, P., Boss, E. S., and Roesler, C. S.: Uncertainties of inherent optical properties obtained from semianalytical inversions of ocean colour, Appl. Opt., 44, 4074–4085, 2005.
Werdell, P. J. and Bailey, S. W.: An improved in situ bio-optical data set for ocean colour algorithm development and satellite data product validation, Remote Sens. Environ., 98, 122–140, 2005.
Werdell, P. J., Bailey, S. W., Franz, B. A., Harding Jr., L. W., Feldman, G. C., and McClain, C. R.: Regional and seasonal variability of chlorophyll-a in Chesapeake Bay as observed by SeaWiFS and MODIS-Aqua, Remote Sens. Environ., 113, 1319–1330, 2009.
Zaneveld, J. R. V. and Kitchen, J. C.: The variation in the inherent optical properties of phytoplankton near an absorption peak as determined by various models of cell structure, J. Geophys. Res., 100, 13309–13320, 1995.
Zheng, X., Dickey, T., and Chang, G.: Variability of the downwelling diffuse attenuation coefficient with consideration of inelastic scattering, Appl. Opt., 41, 6477–6488, 2002.