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Abstract. An optical model is developed based on the diffuse
attenuation coefficient (Kd) to estimate particulate backscat-
tering coefficientsbbp(λ) in oceanic waters. A large in situ
data set is used to establish robust relationships between
bbp(530) andbbp(555) andKd(490) using an efficient nonlin-
ear least-square method which uses the trust region algorithm
with Bisquare weights scheme to adjust the coefficients.
These relationships are obtained with good correlation co-
efficients (R2

= 0.786 and 0.790), low root mean square er-
ror (RMSE= 0.00076 and 0.00072) and 95 % confidence
bounds. The new model is tested with three independent data
sets: the NOMAD SeaWiFS Match ups, OOXIX IOP algo-
rithm workshop evaluation data set (Version 2.0w APLHA),
and IOCCG simulated data set. Results show that the new
model makes good retrievals ofbbp at all key wavelengths
(from 412–683 nm), with statistically significant improve-
ments over other inversion models. Thus, the new model has
the potential to improve our present knowledge of particulate
matter and their optical variability in oceanic waters.

1 Introduction

Knowledge of light scattering and absorption properties of
the seawater constituents is very important in understanding
spectral reflectance and its variability (Gordon et al., 1975).
Among these properties, spectral particulate backscattering
bbp(λ) has scientific implications and practical applications
in optical remote sensing, as the light backscattered from var-
ious seawater constituents provides the possibility to derive
information on the particulate populations under investiga-
tion (Shanmugam et al., 2011). The particulate backscatter-
ing depends at first order on the particulate concentration,

and at second order on the chemical composition (index of
refraction), particle size distribution (PSD), and structure of
the bulk particulate matter (Stramski et al., 2004). The re-
cent field measurements showed that particles smaller than
three microns contribute to about 50 % ofbbp, in contrast to
the results based on the Mie scattering theory (Antoine et
el., 2011; Dall’Olmo et al., 2009; Loisel et al., 2011; Morel
and Ahn, 1991; Stramski and Kiefer, 1991). The fraction of
bbp affects the ocean colour, determined by the relative con-
tribution of living and nonliving particles (such as inorganic
minerals, phytoplankton, and organic detritus) (Gordon et al.,
1975). In open ocean waters, most of the scattering covaries
with the phytoplankton concentration. However, in coastal
waters the scattering property is determined by particles de-
rived from the river advection, waves and currents, local bio-
genic production, and atmospheric deposition. These sources
display significant spatial and temporal variations in the par-
ticulate populations, and therefore the corresponding varia-
tions in ocean colour. However, our present knowledge of
these variations in scattering properties of the particulate load
(e.g. suspended sediments, phytoplankton blooms, detritus,
composition and size) (van de Hulst, 1981) in coastal waters
under investigation remains poorly understood (Shanmugam
et al., 2011).

Many empirical and semi-analytical algorithms have been
developed in the recent decades (Gordon et al., 1988; Garver
and Siegel, 1997; Carder et al., 1999; IOCCG, 2006) to es-
timate particulate backscattering coefficients from remote-
sensing data. The empirical algorithms are generally derived
from the relationship of irradiance reflectance or remote-
sensing reflectance and backscattering coefficients, and are
often used for estimatingbbp(λ) in clear ocean waters. How-
ever, these algorithms produce large errors in coastal waters
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(with high mineral particle concentrations). The Mie theory
implementation is also limited by the lack of knowledge on
the imaginary part of refractive index and assumption of the
same particle size distribution for organic and inorganic frac-
tions of seawater (Stramski et al., 2001; Twardowski et al.,
2001; Risovic, 2002; Babin et al., 2003; Green et al., 2003).
Semi-analytical models are based on radiative transfer the-
ory (Maritorena et al., 2002), and can be applied to a wide
range of the ocean environments. Recently, commercial in-
struments (e.g. AC-S, BB9 (WET Labs Inc.)) have become
available for direct measurements of scattering and backscat-
tering properties (Twardowski et al., 2005, 2009). Unfortu-
nately, practical difficulties are associated with these instru-
ments for direct measurements of the volume scattering func-
tion (VSF) at sufficient angular and spectral ranges (Chami
et al., 2006).

The objectives of this work are to develop a robust model
to estimate spectral particulate backscattering coefficients in
oceanic waters, to evaluate its performance using indepen-
dent in situ data and SeaWiFS satellite match ups from a va-
riety of waters, and to compare its results with those of the
global inversion models (IOCCG, 2006).

2 Data and method

2.1 In situ data

The NASA bio-Optical Marine Algorithm Dataset (NO-
MAD) – a global, high-quality in situ data highly suitable
for algorithm development and validation (Werdell and Bai-
ley, 2005) was obtained from the NASA SeaWiFS Bio-
optical Archive and Storage System (SeaBASS). This data
set contains coincident measurements ofbb, Chl, Rrs(λ),
Kd and other data collected simultaneously in various re-
gional and global waters. It also contains concurrent SeaW-
iFS remote-sensing reflectances (Rrs) and in situbb at sev-
eral key wavelengths. A subset of NOMAD in situ data was
made of co-locatedbb (for several wavelengths between 405
and 683 nm) and corresponding remote-sensing reflectances
(N = 331, hereafter referred as NOMAD-A). The satellite
match ups consisted of 125 valid data points for bothbb and
Rrs at the SeaWiFS wavebands. This independent validation
data set is hereafter referred to as NOMAD-B.

The NASA NOMAD OOXIX IOP algorithm workshop
evaluation data (Version 2.0w APLHA) were used as inde-
pendent data sets (after eliminating certain data common to
NOMAD-A) for validating the new model in the context
of remote-sensing applications (Werdell and Bailey, 2005;
Werdell, 2009; Brewin et al., 2011). The later data set con-
sisted of 185 matched remote-sensing reflectances at Sea-
WiFS wavebands and in situ particulate backscattering co-
efficients (hereafter referred as NOMAD-C data). Note that
a few of these measurements were not independent of the
NOMAD-A samples used in NOMAD-C data sets (most

of the overlapping data sets removed to assess the valid-
ity of the models). For the NOMAD data set, the particu-
late backscatteringbbp (λ) values were obtained according
to bbp (λ) = bb(λ) − bbw(λ), wherebbw(λ) is the backscat-
tering coefficient of pure seawater obtained from Smith and
Baker (1981).

The IOCCG simulated data set (for the sun at 30◦ from
the zenith; consideredN = 500) previously used by the
IOCCG working group (for IOPs) for validation of several
inversion models (IOCCG, 2006) was also used in the present
investigation.

Figure 1 shows the histograms of four data sets (in situ and
IOCCG simulated) ofbbp(λ) at 530 and 555 nm and corre-
spondingRrs at 490 and 555 nm for a wide range of waters.
The low–high values of the histograms correspond to clear
waters to coastal waters.

3 Model description

3.1 Particulate backscattering coefficient – background

The backscattering coefficient (bb) is an inherent optical
property (IOP) (Preisendorfer, 1961) which is defined as a
function of the volume scattering function (VSF),β (λ, θ). It
describes the scattered radiant intensity into a scattering an-
gle θ per unit irradiance of the incident unpolarized beam
of the light per unit volume of water (Mobley, 1994 and
1995). The integration ofβ (λ, θ ) (VSF with units m−1 sr−1

whereθ is the scattering angle andλ the wavelength) over the
backward hemisphere provides the backscattering coefficient
through the following expression:

bb(λ) = 2π

π∫
π/2

β(λ,θ)sin(λ)dθ. (1)

This approach is not often used because it requires de-
tailed scattering information over a wide range, and the in-
strumentation is not yet commercially available to carry out
such measurements in the ocean environment. The combina-
tion of randomly oriented molecules, marine inorganic and
organic (living or nonliving) particles, and bubbles in seawa-
ter contributes tobb. However, determination of how the rel-
ative contributions of these components vary as a function of
the physical and bio-optical state of oceanic waters remains
an elusive task (Stramski et al., 2004).

The total backscattering coefficientbb(λ) is the sum of
the backscattering by pure waterbbw(λ) and particulate
backscatteringbbp(λ).

bb(λ) = bbw(λ) + bbp(λ) (2)

Hence, backscattering by particlesbbp can be described as
follows:

bbp(λ) = bb(λ) − bbw(λ), (3)

Ocean Sci., 9, 987–1001, 2013 www.ocean-sci.net/9/987/2013/
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Fig. 1. Histogram of the particulate backscattering (bbp) coefficients at 530 and 555nm 
and the remote sensing reflectance at 490 and 555nm from four data sets. (a) NOMAD-A 
(N = 331), (b) NOMAD-B (N = 125), (c) NOMAD-C (N = 217), and (d) IOCCG 
Simulated data set (N = 500). 
 
 
 
 

a 

b 

c 

d 

NOMAD-A In-situ Data set 

NOMAD-B In-situ Data set 

NOMA-C In-situ Data set 

IOCCG Simulated Data set 

 

0.000 0.002 0.004 0.006 0.008 0.010
0

10

20

30

40

50

60

70

80

90
N

um
be

r o
f o

bs
er

va
tio

ns

In situ b
bp

(530) (m-1)

0.000 0.002 0.004 0.006 0.008 0.010
0

10

20

30

40

50

60

70

80

90

N
um

be
r o

f o
bs

er
va

tio
ns

In situ b
bp

(555) (m-1)

0.000 0.002 0.004 0.006 0.008 0.010
0

20

40

60

80

100

120

140

N
um

be
r o

f o
bs

er
va

tio
ns

In situ R
rs
(490) (sr-1)

0.000 0.002 0.004 0.006 0.008 0.010
0

20

40

60

80

100

120

140

160

180

N
um

be
r o

f o
bs

er
va

tio
ns

In situ R
rs
(555) (sr-1)

0.000 0.002 0.004 0.006 0.008 0.010
0

5

10

15

20

25

30

35

N
um

be
r o

f o
bs

er
va

tio
ns

In situ b
bp

(530) (m-1)
0.000 0.002 0.004 0.006 0.008 0.010
0

5

10

15

20

25

30

35

N
um

be
r o

f o
bs

er
va

tio
ns

In situ b
bp

(555) (m-1)

0.000 0.002 0.004 0.006 0.008 0.010
0

10

20

30

40

50

60

N
um

be
r o

f o
bs

er
va

tio
ns

Satellite R
rs
(490) (sr-1)

0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007
0

10

20

30

40

50

N
um

be
r o

f o
bs

er
va

tio
ns

Satellite R
rs
(555) (sr-1)

0.000 0.002 0.004 0.006 0.008 0.010
0

10

20

30

40

50

60

N
um

be
r o

f o
bs

er
va

tio
ns

In situ b
bp

(530) (m-1)

0.000 0.002 0.004 0.006 0.008 0.010
0

10

20

30

40

50

60

70

N
um

be
r o

f o
bs

er
va

tio
ns

In situ b
bp

(555) (m-1)

0.000 0.002 0.004 0.006 0.008
0

20

40

60

80

100

N
um

be
r o

f o
bs

er
va

tio
ns

In situ R
rs
(490) (sr-1)

0.000 0.002 0.004 0.006 0.008
0

20

40

60

80

100

120

N
um

be
r o

f o
bs

er
va

tio
ns

In situ R
rs
(555) (sr-1)

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
0

50

100

150

200

250

N
um

be
r o

f o
bs

er
va

tio
ns

Simulated b
bp

(530) (m-1)

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
0

50

100

150

200

250

N
um

be
r o

f o
bs

er
va

tio
ns

Simulated b
bp

(555) (m-1)

0.000 0.003 0.006 0.009 0.012 0.015 0.018
0

25

50

75

100

125

150

N
um

be
r o

f o
bs

er
va

tio
ns

Simulated R
rs
(490) (sr-1)

0.000 0.005 0.010 0.015 0.020 0.025 0.030
0

20

40

60

80

100

120

140

160

N
um

be
r o

f o
bs

er
va

tio
ns

Simulated R
rs
(555) (sr-1)

Fig. 1.Histogram of the particulate backscattering (bbp) coefficients at 530 and 555 nm and the remote-sensing reflectance at 490 and 555 nm
from four data sets.(a) NOMAD-A (N = 331), (b) NOMAD-B (N = 125), (c) NOMAD-C (N = 217), and(d) IOCCG simulated data set
(N = 500).

where the scattering coefficient of pure seawater (bw) is ob-
tained from Smith and Baker (1981) to derive the backscat-
tering by pure seawater (bbw = bw/2).

In the recent decades, many laboratory and field inves-
tigations yielded robust constraints on the absorption ba-
sis function spectral variations (Roesler et. al., 2003). Since
backscattering sensors are relatively new, there is less infor-
mation on backscattering basis functions. Previous studies
by Morel and Ahn (1991) and Stramski and Kiefer (1991)
demonstrated that most of the backscattering (70–90 %) in
ocean waters is caused by particles smaller than 1 µm. In fact,
the Mie theory was used to compute optical properties of par-
ticles (for absorbing spheres) which yielded strong spectral
features near the absorption peaks (van de Hulst, 1957; Gor-
don, 1974; Bricaud and Morel, 1986; Zaneveld and Kitchen,
1995). However, there was difficulty in constraining these

features which led to the implementation of the Mie the-
ory for populations of non-absorbing homogeneous spheres,
in which bbp was expressed as a smoothly varying function
(Morel, 1973). Thus, the particulate backscatteringbbp(λ)

can be defined as

bbp(λ) = bbp(λr) ×

(
555

λ

)Y

, (4)

wherebbp(λ) andbbp(λr) are the particulate backscattering
coefficient at a desired wavelength and a reference wave-
length, respectively.Y is the spectral slope that determines
variability, shape, and magnitude of the particulate backscat-
tering spectra. Most of the inversion models use Eq. (4) with
slight modification for retrieval of the particulate backscat-
tering coefficients from satellite ocean colour data.

www.ocean-sci.net/9/987/2013/ Ocean Sci., 9, 987–1001, 2013
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3.2 Modelling particulate backscattering coefficient

For deriving the particulate backscattering coefficients, some
studies showed good correlation betweenbbp and Rrs and
others found better correlations betweenbbp and chlorophyll
(Chl) or suspended sediment (SS) concentration (Boss et al.,
2009; Sun et al., 2009; Victor et al., 2010). It should be
noted that these relationships are not always consistent due
to the lack of a theoretical framework for predictingbbp. Our
present understanding of major contributions tobbp in natural
waters is therefore uncertain, and it is unknown which parti-
cles backscatter light most efficiently (Stramski et al., 2004).
Mie calculations (for scattering) suggest that significant con-
tributions tobbp come from submicron particles (Stramski
and Kiefer, 1991), but there is evidence that application of
this theory is inadequate for computation ofbbp for particle
assemblages in natural waters (Bohren and Singham, 1991;
Kitchen and Zenveld, 1992; Clavano et al., 2007). Thus, the
current inversion models are limited to relatively clear ocean
waters because of their difficulty in determiningbbp features
(i.e. spectral signature and magnitude) in turbid coastal wa-
ters (Shanmugam et al., 2011). This prevents our knowledge
of bbp and thus interpretation of ocean colour signals (An-
toine et al., 2011). In order to obtain more accuratebbp val-
ues, new models with better parameterizations are needed to
derivebbp features over the entire visible wavelength domain.

The spectral diffuse attenuation coefficientKd (λ) is one
of the most important apparent optical properties (AOPs)
(Preisendorfer, 1976) of seawater, directly linked to IOPs
such as absorption and backscattering properties (Sathyen-
dranath and Platt, 1988; Gordon, 1989; Lee et al., 2005a
and b). Several studies were already conducted onKd (λ) in
different waters (Kirk, 1981, 1984, 1991; Morel and Loisel,
1998; Lee et al., 2005a and b).

This optical property is indicative of how strongly light at a
particular wavelength is attenuated within the water column,
thus it has wide applicability in ocean optics and remote-
sensing applications. It plays a very critical role to under-
stand backscattering and absorption properties, photosynthe-
sis and primary productivity models (Platt, 1986; Sathyen-
dranath, 1989), heat budgets (Lewis, 1990; Morel, 1994),
other biological processes in the water column, and to clas-
sify water types (Jerlov, 1976).

The relationships between the diffuse attenuation coeffi-
cient and particulate backscattering can be understood by
studying the underwater light. The propagation of down-
welling irradiance at particular wavelength (λ) from the sur-
face to a particular depth (z) in the water column is known
as diffuse attenuation coefficient.Kd values show an in-
creasing dependency on solar zenith angle and absorption
from blue to the red wavelengths. In principle,Kd repre-
sents a cumulative decrease in the downwelling irradiance
along the depth and generally should be proportional to the
path length of photons in the water. It is known that an in-
verse relationship between theKd and average cosine an-

gle is expected for a purely absorptive water body. However,
in natural water bodies, scattering by water molecules and
particulate matters tends to cause the underwater light field
geometry to be more isotropic radiance distribution. There-
fore,Kd is weakly dependent on the solar zenith angle at the
wavelengths< 510 nm than at the red wavelengths, and the
backscattering effect is dominant over the absorption (Zheng
et al., 2002). Therefore, a proportionality ofKd andbbp can
be correlated on the above underwater light conditions. Since
the present study focuses on the surface water backscattering
properties, it is clear that the dependency ofKd at 490 nm on
solar zenith angle is nearly negligible or a very weak func-
tion while the influence of backscattering onKd at the short
wavelengths is dominant.

The nonlinear least-square method is better suited to fit a
nonlinear model to data. This type of model is defined by an
equation that is nonlinear in the coefficients or a combination
of linear and nonlinear in the coefficients. Mathematically,
the nonlinear model is given by the formulaz = f (χ,γ )+ε,
where z is the response, and can be derived using a set of co-
efficients (γ ) and variable quantity (χ ) with an approximate
error value (ε). Linear models are easy to solve using the sim-
ple mathematical regression analysis, while nonlinear mod-
els are more difficult to fit; thus, an iterative method is used
to determine the required coefficients to obtain the desired
response including the approximate error value. The fitted
response valuez∧

= f (χ,p) is produced after the succes-
sive iterative process to produce a new set of coefficients (p)
and reduce residuals between the data and the fitted curve,
until the fit reaches the specified convergence criteria, which
involves the calculation of the Jacobian off (χ,p), which is
defined as a matrix of partial derivatives taken with respect
to the coefficients.

In this study, a suitableKd-based model is developed
to derive bbp (λ) in the entire visible wavelength (400 to
700 nm) domain. To estimate slope values andbbp at a ref-
erence wavelength, the relationships ofKd(490) computed
from updated Mueller (2000) algorithm (http://oceancolor.
gsfc.nasa.gov/REPROCESSING/R2009/kdv4/) versus bbp
(530) and (555) are obtained using the NOMAD-A bio-
optical data set. The power function is fitted to this in situ
data using the non-linear least-square method, with good
correlation coefficients (R2

= 0.786 forbbp (530) versusKd
(490) andR2

= 0.790 for bbp (555) versusKd (490)), very
small RMSE values (0.00076 and 0.00072, respectively), and
95 % confidence bounds (Fig. 2). The best-fit power equa-
tions coefficients are achieved using the trust region method
along with Bisquare weights scheme to adjust the coeffi-
cients for a better fit, as it can solve difficult nonlinear prob-
lems more efficiently than the other methods (Coleman et
al., 1996). The Bisquare weights scheme is used because
it is very useful in minimizing the effect of outliers. The
Mueller (2000) model is then used to estimateKd at 490nm.

Ocean Sci., 9, 987–1001, 2013 www.ocean-sci.net/9/987/2013/
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Fig. 2. Relationships between the bbp(530) and bbp (555) and diffuse attenuation 
coefficient Kd(490) from the NOMAD-A in-situ data set (N = 331).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3. Comparison of the calculated slope values (Y) with those derived from the 
NOMAD In-situ data and IOCCG simulated Data.  
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Fig. 2. Relationships between thebbp(530) andbbp (555) and diffuse attenuation coefficientKd(490) from the NOMAD-A in situ data set
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Fig. 3. Comparison of the calculated slope values (Y ) with those
derived from the NOMAD in situ data and IOCCG simulated Data.

Consequently, the following equations are obtained:

Kd(490) = 10
(
−0.8515−1.8263X+1.8714X2

−2.4414X3
−1.0690X4

)
+ 0.0166 (5)

with X = log10[Rrs(490) /Rrs (555)] (2009 Version).

bbp(530) = −0.0001618+ 0.0309× (Kd(490))1.095
;

R2
= 0.786

(6)

bbp(555) = −0.0001568+ 0.0304× (Kd(490))1.109
;

R2
= 0.790.

(7)

The values ofY are derived from the above Eqs. (6) and
(7) of thebbp (530) andbbp (555) as follows:

SlopeY =
log10

[
bbp(530)/bbp(555)

]
log10[555/530]

. (8)

The derivedY values vary from 0.574–1.55 (average
1.126) for the NOMAD-B in situ data, 0.695–1.428 (aver-
age 1.053) for the NOMAD-C in situ data, and 0.128–1.822

(average 1.0789; after eliminating few negative slope values
encountered with this data) for the IOCCG simulated data.
These calculatedY values are also compared with the in
situ Y values from the above data sets (Fig. 3). No compar-
ison was made with other models because they use constant
slope values or their slopes are restricted to a narrow range.
The calculated values ofbbp at the reference wavelength of
555 nm andY values from Eqs. (7) and (8) can be substituted
in Eq. (4) to estimatebbp(λ) coefficients in the entire visible
wavelength domain. Indeed whilebbp can be relatively well
estimated at each wavelength, the slight bias or errors on the
estimated value ofbbp at each wavelength may have strong
consequences on thebbp slope estimated value, which can
be used to assess the particle size distribution (Loisel et al.,
2006; Kostadinov et al., 2009).

4 Performance assessment

The accuracy of the model is assessed by comparing its pre-
dictedbbp (λ) values with in situbbp (λ) data. Two basic sta-
tistical measures are used such as the root mean square error
(RMSE) and mean relative error (MRE). The accuracy ofbbp
(λ) predictions is also assessed based on the slope (S), inter-
cept (I), and correlation coefficient (R2) of the linear regres-
sion between the in situ and predictedbbp (λ) values. Sys-
tematic and random errors are calculated by the MRE and
RMSE, respectively (IOCCG, 2006); these metrics are de-
fined as

RMSE=


N∑

i=1

[
log

(
b¯

model
bpi

)
− log

(
bin situ

bpi

)]2

N − 2


1/2

(9)

MRE =

N∑
i=1

log
(
b¯

model
bpi

)
− log

(
bin situ

bpi

)
log

(
bin situ

bpi

) × 100%, (10)

www.ocean-sci.net/9/987/2013/ Ocean Sci., 9, 987–1001, 2013
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Table 1.Statistical comparisons between the modelled and known particulate backscattering (NOMAD-A in situ data). RMSE, MRE, BIAS
and linear-regression results for the SeaWiFS bands centred at 412, 443, 490, 510, 530, 555, 670, and 683 nm.

IOP RMSE MRE (%) BIAS Slope Intercept R2 N

NOMAD-A

bbp(412) 0.156 0.450 0.011 0.66 −0.85 0.71 331
bbp(443) 0.149 0.370 0.010 0.69 −0.80 0.74 331
bbp(490) 0.141 0.230 0.006 0.72 −0.74 0.77 331
bbp(510) 0.139 0.170 0.005 0.73 −0.72 0.78 331
bbp(530) 0.137 0.110 0.003 0.73 −0.70 0.79 331
bbp(555) 0.135 0.040 0.001 0.74 −0.69 0.80 331
bbp(670) 0.137 −0.290 −0.008 0.76 −0.67 0.81 331
bbp(683) 0.138 −0.330 −0.009 0.76 −0.68 0.81 331
Average 0.141 0.094 0.002 0.72 −0.73 0.77 331

Table 2.Statistical comparisons between the modelled (predicted by using the satellite SeaWiFS remote-sensing reflectance) and NOMAD-
B in situ data. RMSE, MRE, BIAS and linear-regression results for the SeaWiFS bands centred at 412, 443, 490, 510, and 555 nm. It is
expected that more errors are with abnormally/erroneously highbbp(λ) values produced by the LM model.

IOP RMSE MRE (%) BIAS Slope Intercept R2 N

NM

bbp(412) 0.192 1.300 0.032 0.50 −1.19 0.38 125
bbp(443) 0.189 1.120 0.028 0.53 −1.15 0.41 125
bbp(490) 0.186 0.710 0.018 0.56 −1.10 0.43 125
bbp(510) 0.185 0.620 0.016 0.57 −1.09 0.44 125
bbp(555) 0.186 0.330 0.009 0.58 −1.07 0.45 125
Average 0.188 0.816 0.020 0.55 −1.12 0.42 125

LM

bbp(412) 0.411 −11.940 −0.335 0.94 −0.49 0.52 125
bbp(443) 0.418 −11.990 −0.341 0.93 −0.53 0.51 125
bbp(490) 0.431 −12.180 −0.352 0.90 −0.60 0.48 125
bbp(510) 0.435 −12.170 −0.354 0.89 −0.64 0.47 125
bbp(555) 0.445 −12.230 −0.360 0.85 −0.73 0.44 125
Average 0.428 −12.102 −0.348 0.90 −0.60 0.48 125

QAA

bbp(412) 0.383 −8.310 −0.224 0.21 −2.18 0.04 125
bbp(443) 0.309 −6.190 −0.165 0.30 −1.92 0.11 125
bbp(490) 0.225 −3.310 −0.087 0.42 −1.56 0.29 125
bbp(510) 0.202 −2.080 −0.054 0.46 −1.42 0.36 125
bbp(555) 0.188 0.480 0.012 0.55 −1.14 0.43 125
Average 0.261 −3.882 −0.10 0.39 −1.65 0.25 125

GSM

bbp(412) 0.396 −10.920 −0.302 0.72 −1.00 0.32 125
bbp(443) 0.349 −8.790 −0.240 0.72 −0.94 0.33 125
bbp(490) 0.297 −5.890 −0.159 0.72 −0.87 0.33 125
bbp(510) 0.280 −4.660 −0.124 0.72 −0.85 0.33 125
bbp(555) 0.258 −2.080 −0.055 0.70 −0.82 0.33 125
Average 0.316 −6.468 −0.176 0.71 −0.90 0.33 125
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Table 3.Statistical comparisons between the modelled and NOMAD-C in situ data. RMSE, MRE, BIAS and linear-regression results for the
SeaWiFS bands centred at 412, 443, 490, 510, and 555 nm.

IOP RMSE MRE (%) BIAS Slope Intercept R2 N

NM

bbp(412) 0.129 −0.005 −0.012 0.74 −0.66 0.70 185
bbp(443) 0.125 −0.003 −0.007 0.76 −0.61 0.73 185
bbp(490) 0.121 −0.002 −0.004 0.78 −0.57 0.75 185
bbp(510) 0.121 −0.001 −0.001 0.78 −0.57 0.76 185
bbp(555) 0.122 0.001 0.002 0.79 −0.56 0.77 185
Average 0.124 −0.002 −0.004 0.77 −0.60 0.74 185

LM

bbp(412) 0.335 −8.770 −0.239 1.34 0.60 0.67 185
bbp(443) 0.327 −8.510 −0.234 1.35 0.64 0.70 185
bbp(490) 0.319 −8.250 −0.231 1.34 0.65 0.72 185
bbp(510) 0.315 −8.070 −0.228 1.33 0.64 0.73 185
bbp(555) 0.308 −7.780 −0.223 1.31 0.60 0.74 185
Average 0.321 −8.276 −0.231 1.33 0.63 0.71 185

QAA

bbp(412) 0.213 −2.210 −0.056 0.32 −1.74 0.25 185
bbp(443) 0.188 −0.560 −0.014 0.42 −1.49 0.38 185
bbp(490) 0.169 1.580 0.040 0.54 −1.14 0.55 185
bbp(510) 0.168 2.490 0.063 0.59 −1.01 0.60 185
bbp(555) 0.179 4.320 0.109 0.68 −0.74 0.69 185
Average 0.183 1.124 0.028 0.51 −1.22 0.49 185

GSM

bbp(412) 0.226 −6.310 −0.167 1.01 −0.15 0.71 185
bbp(443) 0.173 −3.630 −0.095 1.01 −0.07 0.74 185
bbp(490) 0.136 0.050 0.001 1.00 0.00 0.76 185
bbp(510) 0.141 1.610 0.041 0.99 0.03 0.77 185
bbp(555) 0.181 4.880 0.123 0.97 0.05 0.78 185
Average 0.171 −0.680 −0.019 1.00 −0.03 0.75 185

where b¯
model
bpi stands for the model derived values,bin situ

bpi

stands for the in situ measurements, and N is the number
of valid retrievals. Tables 1, 2 and 3 summarise the statistical
analyses results of the model validation with knownbbp (λ)
data.

5 Results

The performance of the new model for predictingbbp(λ)

values was evaluated with three data sets: NOMAD-A data
(used for the model parameterization at two wavelengths
530 and 555 nm) at the wavelengths 412–683 nm, indepen-
dent NOMAD-B data (SeaWiFS satellite match ups) at the
wavelengths 412–555 nm, and NOMAD-C data at the wave-
lengths 412–555 nm. The results of the new model are also
compared with those of the other inversion models (e.g. LM,
QAA, and GSM semi-analytical models). Further validation
with IOCCG simulated data set was also performed. The sta-

tistical evaluation results of these models are summarised in
Tables 1, 2, 3, and 4. To gain further insight into their per-
formances, scatter plots of the modelbbp (λ) values versus in
situbbp (λ) values are shown at the key wavelengths in Fig. 5
and Figs. 8–10.

5.1 Spectral variability of the particulate
backscattering coefficient

A large set of the particulate backscattering spectra was gen-
erated by the present model, with the varying spectral slope
values that influence on the shape and magnitude of spectral
bbp(λ) curves, and compared with the corresponding in situ
spectra (NOMAD-A) at the selected wavelengths (Fig. 4).
The spectral comparison is interesting as the shape and mag-
nitude of the modelled spectralbbp(λ) curves are consis-
tent with those of the in situ spectralbbp(λ) curves. It is
observed that thebbp values are strong in the blue (e.g.
412 and 443 nm) domain and decrease towards the longer

www.ocean-sci.net/9/987/2013/ Ocean Sci., 9, 987–1001, 2013
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Fig. 4. Spectral variations in the particulate backscattering spectra bbp (λ) (m-1)) from the 
NOMAD-A in-situ data (left panel) and new model (right panel).  
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Fig. 4.Spectral variations in the particulate backscattering spectrabbp(λ) (m−1) from the NOMAD-A in situ data (left panel) and new model
(right panel).

wavelengths. The difference between modelled and in situ
spectra is small and confined to a few observations made in
particle-loaded waters. Such a small deviation of the model
results may arise from the inadequate range of the slope co-
efficients to account for different compositions of the par-
ticulate materials. The difference may also be caused by the
bottom influence and/or sea state conditions.

Earlier studies have reported that thebbp values vary from
0.0002 to 0.001 m−1 in clear oligotrophic waters (Antoine et
al., 2011; Loisel et al., 2011), and from 0.03 up to 0.3 m−1

in turbid waters (Neukermans et al., 2011; Boss et al., 2009).
The present model has the potential to estimate thebbp values
in oceanic waters, where these values vary from 0.0003 to
0.011 m−1 (Figs. 4 and 7).

5.2 Model validation

Figure 5 shows the scatter plots of the model-derivedbbp (λ)
values versus in situbbp (λ) values at the key wavelengths
(including red wavelengths) and the corresponding statistical
evaluation results are summarised in Table 1. Note that the
bbp (λ)insitu andbbp (λ)modelcoefficients are highly correlated
(close to the 1: 1 line) indicating that the agreement between
them is very good at 412, 443, 490, 510, 530, 555, 670, and
683 nm with small statistical errors (note that other inver-
sion models do not providebbp (λ) values at the red wave-
lengths). These results reveal thatbbp (λ) values predicted
by the new model at these wavelengths match with their cor-
responding in situbbp (λ) values well. Figure 6 provides a
better clarity in the variations of RMSE and MRE (%) of
the new model at different wavelengths (412–683). The per-
centile MRE values are very small for the NOMAD-A data
set, with the maximum value at 412 nm (∼ 0.45 %) and the
minimum value at 683 nm (∼ −0.33 %). The model yields
relatively high RMSE at 412nm and low RMSE at 530 and
555nm. Overall (average), the model gives excellent statis-

tics for the NOMAD-A data set (RMSE∼ 0.141 and MRE
∼ 0.094 %).

5.3 Inter-comparison with other inversion models

In order to inter-compare the results of new model with those
of the existing inversion models (Garver–Siegel–Maritorena
model – GSM, quasi-analytical algorithm – QAA, and con-
strained linear matrix inversion model – CLM), all four mod-
els were applied to the independent NOMAD-B (NOMAD
SeaWiFS match ups) and NOMAD-C (OOXIX IOP Algo-
rithm Workshop data) data sets. Figure 7 shows that the
bbp (λ) spectra (shape and magnitude) derived from the new
models are similar to the in situbbp (λ) spectra, although
showing slight differences with in situbbp at the selected
wavelengths. By contrast, other inversion models tend to dis-
tort the spectral shape and magnitude ofbbp (λ ) to a no-
ticeable extent. GSM model produces increasingly highbbp
values at the green wavelengths compared to the other two
models. Overall, the new model provides more accuratebbp
(λ) values in oceanic waters, therefore enabling us to extend
it for application to the ocean colour remote-sensing applica-
tions.

Figure 8 shows the comparison of model-predictedbbp
(λ) values versus in situ values (NOMAD-B) for the se-
lected wavelengths (412, 443, 490, 510 and 555 nm). Table 2
presents the results of statistical analysis for all the models.
It is observed thatbbp (λ) values derived from the QAA and
GSM models are fairly linearly correlated with the in situbbp
(λ) values at all five wavelengths, although producing signif-
icant underestimations or overestimations across the range of
bbp (λ) values at these wavelengths. On the contrary,bbp (λ)

values are significantly underestimated by the LM model (at
the lower end ofbbp at these wavelengths) for this data set. As
a result, the errors associated with this model are very high
compared to those with the GSM and QAA models (Table 2).
However, the LM model performs fairly well at higherbbp
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Fig. 5. Comparison between the in-situ bbp (NOMAD-A) and model bbp (m-1) at 412, 443, 
490, 510, 530, 555, 670, and 683nm (N = 331). 
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Fig. 5. Comparison between the in situbbp (NOMAD-A) and

modelbbp (m−1) at 412, 443, 490, 510, 530, 555, 670, and 683nm
(N = 331).

(λ) values (coastal waters). It was also noticed that the LM
model produced abnormally/erroneously highbbp(λ) values
(i.e. bbp 10 m−1 at 412–555nm for the SeaWiFS match up
data,N = 51 (bbp 10 m−1) out ofN = 125 valid data). These
satellite match-up data provided insight into the model per-
formance at the key wavelengths. When the new model was
applied to the same data sets, it can be seen that thebbp (λ)

values are more realistic (aligned more closely to the 1: 1
line) without much overestimation and underestimation. This
indicates relatively good agreement between the modelled
bbp (λ) and in situbbp (λ) values at 412, 443, 490, 510, and
555 nm. The statistical evaluation results also show that the
overall performance of the new model is good at the five Sea-
WiFS wavebands.

Further validation with the NOMAD-C (OOXIX IOP Al-
gorithm Workshop) data set was performed to assess the ef-

ficiency of these models. The results of this validation are
shown in Fig. 9 and Table 3, where similar trends inbbp
(λ) retrievals are observed with the other inversion models
despite their errors being considerably low for this data set
(except QAA model which caused more scattering of data
between predicted and in situbbp (λ) with the increased er-
rors). By contrast, the new model outperforms these inver-
sion models in terms of producing accuratebbp (λ) values
(close agreement with in situbbp (λ) values as indicated by
the data around the 1: 1 line) at 412, 443, 490, 510, and
555nm with low statistical errors (Table 3). These results
confirm the potential of the new model to producebbp (λ)

values in a wide range of waters.
To further investigate the performance of this new model,

it was applied to the IOCCG simulated data set, which is
representative of a wide range of waters (from clear to tur-
bid). Figure 10 shows the comparisons ofbbp (λ) values de-
rived from the new model with the IOCCG simulated data.
It is observed that there is a slight underestimation between
the modelled and in situbbp (λ), but with good correla-
tion coefficient (0.82–0.87) and slope (0.76–0.81) for the se-
lected wavelengths (410–670 nm). The RMSE and MRE (%)
ranged from 0.388 to 0.417 and 14.25 to 15.28 %, respec-
tively (Table 4). The results of the new model are notably
stable across the wavelengths.

6 Discussion and conclusion

The importance of the particulate backscattering coefficients
in ocean colour remote sensing has been discussed and em-
phasized in the previous studies (Hoge et al., 1996; Loisel
and Stramski, 2000; Maritorena et al., 2002; Lee et al., 2002;
Boss and Roesler, Wang et al., 2005; 2006; Smyth et al.,
2006; Pinkerton et al., 2006; Gordon et al., 2009; Antoine et
al., 2011; Shanmugam et al., 2011). Though several models
are available to retrievebbp(λ), as the function of chlorophyll
concentration or spectral remote-sensing reflectance, there is
a lack of models to provide accurate estimates ofbbp (λ) over
the entire visible wavelengths with any ocean colour sen-
sors such as SeaWiFS, MODIS and MERIS. Furthermore,
none of these models provide accuratebbp (λ) values, even
in the blue-green wavelengths in turbid coastal waters (Shan-
mugam et al., 2011). This is indeed due to improper parame-
terizations and inadequatebbp(λ) measurements in a variety
of waters covering a large geographical extent. As a conse-
quence, very little information is available on thebbpspectral
variability (shape and magnitude). One of the differences
with other inversion models is the input parameter. The new
model makes use ofKd(490) as an input parameter which
can be easily estimated from satellite ocean colour measure-
ments. The non-linear least-square approach that does not re-
quire any assumption on the spectral shapes of absorption,
scattering, and backscattering is identified as one of the best
methods to accurately predict thebbp(λ) spectral variability
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Fig. 6. RMSE and MRE (%) between the derived and NOMAD-A in-situ data (N = 331) 
of the particulate backscattering coefficient (bbp) (m-1) for the new model. 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. RMSE and MRE (%) between the derived and NOMAD-A in situ data (N = 331) of the particulate backscattering coefficient (bbp)

(m−1) for the new model.

Table 4.Statistical comparisons between the modelled and known particulate backscattering (IOCCG Simulated data). RMSE, MRE, BIAS
and linear-regression results for the SeaWiFS bands centred at 410, 440, 490, 510, 530, 555, and 670 nm.

IOCCG Simulated Data Set

IOP RMSE MRE (%) BIAS Slope Intercept R2 N

bbp(412) 0.388 14.250 0.271 0.76 −0.26 0.82 500
bbp(443) 0.389 14.040 0.271 0.77 −0.24 0.82 500
bbp(490) 0.397 14.640 0.286 0.78 −0.20 0.84 500
bbp(510) 0.401 14.980 0.294 0.79 −0.19 0.85 500
bbp(530) 0.405 15.220 0.300 0.79 −0.18 0.85 500
bbp(555) 0.409 15.430 0.306 0.80 −0.16 0.86 500
bbp(670) 0.417 15.280 0.313 0.81 −0.13 0.87 500
Average 0.401 14.834 0.292 0.78 −0.20 0.84 500

from the estimatedKd(490). A set of equations that relate
AOPs to IOPs is derived and tested using independent in
situ data and SeaWiFS satellite match-up data. In this study,
Kd (490) is found to be an appropriate proxy to predict the
bbp(λ), which increases the accuracy ofbbp(λ) predictions
with the new model in oceanic waters.

The inter-comparison results based on the above indepen-
dent data sets are interesting that the new model provide
the statistically improvedbbp(λ) values (at selected wave-
lengths) compared to other inversion models (GSM, QAA
and LM). Among these three inversion models, GSM and
QAA models givebbp(λ) values better consistent with in
situ data, while LM model shows poor performance at the
selected wavelengths. Nevertheless, the new model outper-
forms these inversion models in terms of providing accu-
ratebbp(λ) values over the visible wavelength domain (400–
700 nm), and thus it has wide applicability in oceanic coastal
waters.

An underestimation of the new model for the IOCCG sim-
ulated data is due to the fact that the model parameterizations
do not include much data from turbid coastal waters. It can
be further improved by incorporating more in situ measure-
ments from such waters.

The present study is expected to form the basis for robust
relationships betweenbbp(λ) andKd(490) in a wide range

of oceanic waters. In this paper, we discussed how the dif-
fuse attenuation coefficient is significantly correlated with
the spectral particulate backscattering coefficient. The rela-
tionship betweenbbp andKd(490) is derived, exploiting the
fact that the inverse spectral dependency exists for particulate
backscattering coefficient (bbp) (i.e.bbp(λ) ∝ λ−Y ).

In such a case, the optical variability in the geometric
structure of the underwater light field is governed by the rel-
ative intensity of “bbp”, whereby leading to the formation of
isotropic region. The diffused field thus formed becomes less
dependent on illumination geometry and solar zenith angle at
the blue wavelengths (Zheng et al., 2002). The dominant ef-
fect of scattering over absorption process atKd(490) relates
a very weak dependency of solar zenith angle and absorption
onKd(490). Therefore, it is of prime importance to study the
change in apparent optical parameterKd(490) and the spatial
effect induced due to particulate backscattering (bbp) to the
geometric structure of the underwater light field, in proper
correlation.

Zheng et al. (2002) discussed that a weak dependency of
Kd at blue wavelengths based on early experimental (e.g.
Hojerslev et al. (1974) in clear water off Sardinia, Nelson
and Aas (1977) in turbid Oslofjord waters, and Baker and
Smith (1979) in San Vicente Reservoir near San Diego) and
model results reported by different researchers, indicated that
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Fig. 7. Spectral variations in the particulate backscattering spectra bbp (λ) (m-1)) from the 
NOMAD-B data (left panel) and NOMAD-C (right panel) data (a and b) and from the 
four inversion models (c-j).  
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Fig. 7.Spectral variations in the particulate backscattering spectrabbp(λ) (m−1) from the NOMAD-B data (left panel) and NOMAD-C (right
panel) data (a andb) and from the four inversion models (c–j).
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Fig. 8. Comparisons between the model bbp(λ) (m-1) (from NOMAD SeaWiFS Rrs match-
ups data set) and NOMAD-B in-situ data at the wavelengths from 412 to 555 nm (N = 
74). 
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Fig. 8. Comparisons between the modelbbp(λ) (m−1) (from NO-
MAD SeaWiFSRrs match-up data set) and NOMAD-B in situ data
at the wavelengths from 412 to 555 nm (N = 74).

the effect of solar elevation onKd is relatively small. It is
also studied that at shorter wavelengths,Kd has been consid-
ered to be independent of solar zenith angle. However, more
recent experimental results based on the time-series data col-
lected with moored instruments in the upper layer of the Sar-
gasso Sea showed a significant correlation betweenKd and
solar zenith angle, especially at the red wavelengths (Stram-
ska and Frye, 1997).

The offset values are considered constants in the present
study because there is weak dependency of model on solar
zenith angle and absorption and only the scattering effect is
dominant onKd at 490 nm. Since the formulation is based
on onlyKd at 490 nm which means that this spectral domain
is dominated by scattering effect rather than other effects,
there is good correlation betweenKd(490) andbbp(530) and
bbp(555) (Fig. 2). The new model has flexibility to use in-
put as a true measuredKd(490) orKd(490) computed from
remote-sensing reflectance-based algorithms. It should be
noted that accurate values ofKd(490) are necessary to cor-
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Fig. 9. Comparisons between the model bbp(λ) (m-1) and NOMAD-C in-situ data at the 
wavelengths from 412 to 555 nm (N = 185). 
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Fig. 9. Comparisons between the modelbbp(λ) (m−1) and
NOMAD-C in situ data at the wavelengths from 412 to 555 nm
(N = 185).

rectly estimate the particulate backscattering (bbp) using the
new approach.

Thus, comprehensive and consistent in situ measurements
of these optical properties in typical coastal waters will allow
the refinement of the new model which can be used to derive
information on the refractive index and particle size distribu-
tion based on certain optical models to study particle popu-
lations and their characteristics in coastal waters. The results
discussed in this paper will have important implications for
ocean colour remote sensing.
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Fig. 10. Comparisons between the model bbp(λ) (m-1) and IOCCG simulated data at the 
wavelengths from 410 to 670 nm (N = 500). 
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Fig. 10.Comparisons between the modelbbp(λ) (m−1) and IOCCG
simulated data at the wavelengths from 410 to 670 nm (N = 500).
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