Articles | Volume 9, issue 4
https://doi.org/10.5194/os-9-609-2013
https://doi.org/10.5194/os-9-609-2013
Research article
 | 
09 Jul 2013
Research article |  | 09 Jul 2013

A comparison between gradient descent and stochastic approaches for parameter optimization of a sea ice model

H. Sumata, F. Kauker, R. Gerdes, C. Köberle, and M. Karcher

Related authors

Evaluation of Arctic sea ice drift and its dependency on near-surface wind and sea ice conditions in the coupled regional climate model HIRHAM–NAOSIM
Xiaoyong Yu, Annette Rinke, Wolfgang Dorn, Gunnar Spreen, Christof Lüpkes, Hiroshi Sumata, and Vladimir M. Gryanik
The Cryosphere, 14, 1727–1746, https://doi.org/10.5194/tc-14-1727-2020,https://doi.org/10.5194/tc-14-1727-2020, 2020
Short summary
UDASH – Unified Database for Arctic and Subarctic Hydrography
Axel Behrendt, Hiroshi Sumata, Benjamin Rabe, and Ursula Schauer
Earth Syst. Sci. Data, 10, 1119–1138, https://doi.org/10.5194/essd-10-1119-2018,https://doi.org/10.5194/essd-10-1119-2018, 2018
Short summary
Decorrelation scales for Arctic Ocean hydrography – Part I: Amerasian Basin
Hiroshi Sumata, Frank Kauker, Michael Karcher, Benjamin Rabe, Mary-Louise Timmermans, Axel Behrendt, Rüdiger Gerdes, Ursula Schauer, Koji Shimada, Kyoung-Ho Cho, and Takashi Kikuchi
Ocean Sci., 14, 161–185, https://doi.org/10.5194/os-14-161-2018,https://doi.org/10.5194/os-14-161-2018, 2018
Short summary
Seasonal sea ice predictions for the Arctic based on assimilation of remotely sensed observations
F. Kauker, T. Kaminski, R. Ricker, L. Toudal-Pedersen, G. Dybkjaer, C. Melsheimer, S. Eastwood, H. Sumata, M. Karcher, and R. Gerdes
The Cryosphere Discuss., https://doi.org/10.5194/tcd-9-5521-2015,https://doi.org/10.5194/tcd-9-5521-2015, 2015
Revised manuscript not accepted
Short summary

Related subject area

Approach: Numerical Models | Depth range: Surface | Geographical range: Deep Seas: Arctic Ocean | Phenomena: Sea Ice
Arctic rapid sea ice loss events in regional coupled climate scenario experiments
R. Döscher and T. Koenigk
Ocean Sci., 9, 217–248, https://doi.org/10.5194/os-9-217-2013,https://doi.org/10.5194/os-9-217-2013, 2013

Cited articles

Athias, V., Mazzega, P., and Jeandel, C.: Selecting a global optimization method to estimate the oceanic particle cycling rate constants, J. Mar. Res., 58, 675–707, 2000.
Bocquet, M.: Parameter-field estimation for atmospheric dispersion: application to the Chernobyl accident using 4D-Var, Q. J. Roy. Meteorol. Soc., 138, 664–681, 2012.
Carroll, D. L.: Chemical Laser Modeling with Genetic Algorithms, AIAA J., 34, 338–346, 1996.
Cetin, B. C., Barhen, J., and Burdick, J. W.: Terminal Repeller Unconstrained Subenergy Tunneling (TRUST) for Fast Global Optimization, J. Optimiz. Theory App., 77, 97–126, 1993.
Chapman, W. L., Welch, W. J., Bowman, K. P., Sacks, J., and Walsh, J. E.:Arctic sea ice variability: Model sensitivities and a multidecadal simulation, J. Geophys. Res., 99, 919–935, 1994.
Download