Articles | Volume 9, issue 2
https://doi.org/10.5194/os-9-293-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/os-9-293-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Sea level trend and variability in the Singapore Strait
P. Tkalich
Tropical Marine Science Institute, National University of Singapore, 14 Kent Ridge Road, 119227, Singapore
P. Vethamony
National Institute of Oceanography, Council of Scientific and Industrial Research, Dona Paula, Goa, 403004, India
Q.-H. Luu
Tropical Marine Science Institute, National University of Singapore, 14 Kent Ridge Road, 119227, Singapore
M. T. Babu
National Institute of Oceanography, Council of Scientific and Industrial Research, Dona Paula, Goa, 403004, India
Related authors
Bijoy Thompson, Claudio Sanchez, Boon Chong Peter Heng, Rajesh Kumar, Jianyu Liu, Xiang-Yu Huang, and Pavel Tkalich
Geosci. Model Dev., 14, 1081–1100, https://doi.org/10.5194/gmd-14-1081-2021, https://doi.org/10.5194/gmd-14-1081-2021, 2021
Short summary
Short summary
This article describes the development and ocean forecast evaluation of an atmosphere–ocean coupled prediction system for the Maritime Continent domain, which includes the eastern Indian and western Pacific oceans. The coupled system comprises regional configurations of the atmospheric model MetUM and ocean model NEMO, coupled using the OASIS3-MCT libraries. The model forecast deviation of selected fields relative to observations is within acceptable error limits of operational forecast models.
Q. H. Luu, P. Tkalich, and T. W. Tay
Ocean Sci., 11, 617–628, https://doi.org/10.5194/os-11-617-2015, https://doi.org/10.5194/os-11-617-2015, 2015
M. H. Dao, H. Xu, E. S. Chan, and P. Tkalich
Nat. Hazards Earth Syst. Sci., 13, 3457–3467, https://doi.org/10.5194/nhess-13-3457-2013, https://doi.org/10.5194/nhess-13-3457-2013, 2013
Bijoy Thompson, Claudio Sanchez, Boon Chong Peter Heng, Rajesh Kumar, Jianyu Liu, Xiang-Yu Huang, and Pavel Tkalich
Geosci. Model Dev., 14, 1081–1100, https://doi.org/10.5194/gmd-14-1081-2021, https://doi.org/10.5194/gmd-14-1081-2021, 2021
Short summary
Short summary
This article describes the development and ocean forecast evaluation of an atmosphere–ocean coupled prediction system for the Maritime Continent domain, which includes the eastern Indian and western Pacific oceans. The coupled system comprises regional configurations of the atmospheric model MetUM and ocean model NEMO, coupled using the OASIS3-MCT libraries. The model forecast deviation of selected fields relative to observations is within acceptable error limits of operational forecast models.
Samiksha S. Volvaiker, Ponnumony Vethamony, Prasad K. Bhaskaran, Premanand Pednekar, Mhamsa Jishad, and Arthur James
Ocean Sci. Discuss., https://doi.org/10.5194/os-2018-24, https://doi.org/10.5194/os-2018-24, 2018
Revised manuscript not accepted
Short summary
Short summary
The primary aim of the study is to estimate wave energy attenuation by mangrove vegetation using SWAN model, and validate the model results with measurements for the Mumbai coastal region. Wave measurements presents wave height attenuation of the order of 52 %. Spectral analysis performed for the cases with and without vegetation very clearly portrays energy dissipation in the vegetation area. The model reproduced attenuation, ranging from 49 to 55 %, which matches well with the measured data.
Volvaiker Samiksha, Ponnumony Vethamony, Charls Antony, Prasad Bhaskaran, and Balakrishnan Nair
Nat. Hazards Earth Syst. Sci., 17, 2059–2074, https://doi.org/10.5194/nhess-17-2059-2017, https://doi.org/10.5194/nhess-17-2059-2017, 2017
Short summary
Short summary
The present work describes the interaction between waves and currents utilizing a coupled ADCIRC+SWAN model for the very severe cyclonic storm Hudhud which made landfall at Visakhapatnam on the east coast of India in October 2014. Model-computed wave and surge heights were validated with measurements near the landfall point. An increase of ≈0.2 m in Hs was observed with the inclusion of model currents.
Samiksha S. Volvaiker, Ponnumony Vethamony, Prasad K. Bhaskaran, Premanand Pednekar, MHamsa Jishad, and Arthur James
Ocean Sci. Discuss., https://doi.org/10.5194/os-2017-49, https://doi.org/10.5194/os-2017-49, 2017
Preprint withdrawn
Q. H. Luu, P. Tkalich, and T. W. Tay
Ocean Sci., 11, 617–628, https://doi.org/10.5194/os-11-617-2015, https://doi.org/10.5194/os-11-617-2015, 2015
P. Mehra, M. Soumya, P. Vethamony, K. Vijaykumar, T. M. Balakrishnan Nair, Y. Agarvadekar, K. Jyoti, K. Sudheesh, R. Luis, S. Lobo, and B. Harmalkar
Ocean Sci., 11, 159–173, https://doi.org/10.5194/os-11-159-2015, https://doi.org/10.5194/os-11-159-2015, 2015
Short summary
Short summary
This study examines the observed storm-generated sea-level variations at several Indian coastal locations in the Arabian Sea and the Bay of Bengal and identifies them as storm surges and harbour oscillations. The residual sea levels measured from sea-level stations in AS have been identified as Kelvin-type surges propagating northwards with almost constant amplitude. Multilinear regression analysis using local surface meteorological data is able to account for ~63% of daily mean sea level.
M. H. Dao, H. Xu, E. S. Chan, and P. Tkalich
Nat. Hazards Earth Syst. Sci., 13, 3457–3467, https://doi.org/10.5194/nhess-13-3457-2013, https://doi.org/10.5194/nhess-13-3457-2013, 2013
R. Mani Murali, M. Ankita, S. Amrita, and P. Vethamony
Nat. Hazards Earth Syst. Sci., 13, 3291–3311, https://doi.org/10.5194/nhess-13-3291-2013, https://doi.org/10.5194/nhess-13-3291-2013, 2013
R. Rashmi, V. M. Aboobacker, P. Vethamony, and M. P. John
Ocean Sci., 9, 281–292, https://doi.org/10.5194/os-9-281-2013, https://doi.org/10.5194/os-9-281-2013, 2013
S. V. Samiksha, P. Vethamony, V. M. Aboobacker, and R. Rashmi
Nat. Hazards Earth Syst. Sci., 12, 3605–3615, https://doi.org/10.5194/nhess-12-3605-2012, https://doi.org/10.5194/nhess-12-3605-2012, 2012
Related subject area
Approach: In situ Observations | Depth range: Surface | Geographical range: China Sea | Phenomena: Tides
Tidal variability in the Hong Kong region
Adam T. Devlin, Jiayi Pan, and Hui Lin
Ocean Sci., 15, 853–864, https://doi.org/10.5194/os-15-853-2019, https://doi.org/10.5194/os-15-853-2019, 2019
Short summary
Short summary
Ocean tides and mean sea level (MSL) can show correlations of
short-term variability in addition to the long-term trends, which may combine to increase total water levels at multiple timescales. Such changes may have implications for short-term high-water events such as nuisance flooding. This work analyses the variability in tides in the Hong Kong region to find that small changes in MSL may amplify tidal changes in Hong Kong, suggesting a strong sensitivity of water levels in the region.
Cited articles
AVISO, Altimetric data, Retrieved Jan 25, 2013, from http://www.aviso.oceanobs.com/en/data.html, 2013.
Becker, M., Meyssignac, B., Letetrel, C., Llovel, W., Cazenave, A., and Delcroix, T.: Sea level variations at tropical Pacific islands since 1950, Glob. Planet. Change, 80–81, 85–98, https://doi.org/10.1016/j.gloplacha.2011.09.004, 2011.
Bindoff, N. L., Willebrand, J., Artale, V, Cazenave, A., Gregory, J., Gulev, S., Hanawa, K., Le Quéré, C., Levitus, S., Nojiri, Y., Shum, C. K., Talley L. D., and Unnikrishnan, A.: Observations: Oceanic climate change and sea level, in: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., and Miller, H. L., Cambridge Univ. Press, Cambridge, UK and New York, USA, 2007.
Cabanes, C., Cazenzve, A., and Le Provost, C.: Sea level rise during past 40 years determined from satellite and in situ observations, Science, 294, 840–842, https://doi.org/10.1126/science.1063556, 2001.
Carton, J. A., Giese, B. S., and Grodsky, S. A.: Sea level rise and the warming of the oceans in the Simple Ocean Data Assimilation (SODA) ocean reanalysis, J. Geophys. Res., 110, C09006, https://doi.org/10.1029/2004JC002817, 2005.
Chambers, D. P., Melhaff, C. A., Urban, T. J., Fuji, D., and Nerem, R. S.: Low-frequency variations in global mean sea level: 1950–2000, J. Geophys. Res., 107, 3026, https://doi.org/10.1029/2001JC001089, 2002.
Cheng, X. and Qi, Y.: Trends of sea level variations in the South China Sea from merged altimetry data, Glob. Planet. Change, 57, 371–382, https://doi.org/10.1016/j.gloplacha.2007.01.005, 2007.
Church, J. A., Gregory, J. M., Huybrechts, P., Kuhn, M., Lambeck, K., Nhuan, M. T., Qin, D., and Woodworth, P. L.: Changes in Sea Level, Intergovernmental Panel on Climate Change, Third Assessment Report, Cambridge Univ. Press, New York, 639–694, 2001.
Church, J. A., White, N. J., Coleman, R., Lambeck, K., and Mitrovica, J. X.: Estimates of the regional distribution of sea-level rise over the 1950 to 2000 period, J. Climate, 17, 2609–2625, https://doi.org/10.1175/1520-0442(2004)017<2609:EOTRDO>2.0.CO;2, 2004.
Church, J. A., White, N. J., and Arblaster, J. M.: Significant decadal-scale impact of volcanic eruptions on sea level and ocean heat content, Nature, 438, Nov. 3, https://doi.org/10.1038/nature04237, 2005.
Church, J. A., White, N. J., and Hunter, J. R.: Sea-level rise at tropical Pacific and Indian Ocean islands, Glob. Planet. Change, 53, 155–168, https://doi.org/10.1016/j.gloplacha.2006.04.001, 2006.
Church, J. A. and White, N. J.: Sea-level rise from the late 19th to the early 21st Century, Geophys. Res. Lett., 33, L01602, https://doi.org/10.1029/2005GL024826, 2006.
Church, J. A., White, N. J., Konikow, L. F., Domingues, C. M., Cogley, J. G., Rignot, E., Gregory, J. M., van den Broeke, M. R., Monaghan, A. J., and Velicogna, I.: Revisiting the Earth's sea-level and energy budgets from 1961 to 2008, Geophys. Res. Lett., 38, L18601, https://doi.org/10.1029/2011GL048794, 2011.
Church, J. A. and White, N. J.: Sea-level rise from the late 19th to the early 21st Century, Surv. Geophys., 32, 585–602, https://doi.org/10.1007/s10712-011-9119-1, 2011.
Domingues, C. M., Church, J. A., White, N. J., Gleckler, P. J., Wijffels, S. E., Barker, P. M., and Dunn, J. R.: Improved estimates of upper-ocean warming and multidecadal sea-level rise, Nature, 453, 1090–1093, https://doi.org/10.1038/nature07080,, 2008.
Douglas, B. C.: Global sea level rise, J. Geophys. Res., 96, 6981–6992, https://doi.org/10.1029/91JC00064, 1991.
Fang, G., Kwok, Y.-K., Yu, K., and Zhu, Y.: Numerical simulation of principal tidal constituents in SCS, Gulf of Tonkin & Thailand, Cont. Shelf Res., 19, 845–869, https://doi.org/10.1016/S0278-4343(99)00002-3, 1999.
Fernandes, R. M. S., Raju, D., and Khoo, V.: Evaluation of the Tectonic Stability of Singapore based on SiReNT, Joint International Symposium on Deformation Monitoring, Hong Kong, Nov 4, 2011.
Gregory, J. M., Lowe, J. A., and Tett, S. F. B.: Simulated global-mean sea level changes over the last half-millennium, J. Climate, 19, 4576–4591, https://doi.org/10.1175/JCLI3881.1, 2006.
Hamlington, B. D., Leben, R., Nerem, S., Han, W., and Kim, K. Y.: Reconstructing sea level using cyclostationary empirical orthogonal functions, J. Geophys. Res., 116, C12015, https://doi.org/10.1029/2011JC00752, 2011.
Holgate, S. J. and Woodworth, P. L.: Evidence for enhanced coastal sea level rise during the 1990s, Geophys. Res. Lett., 31, L07305, https://doi.org/10.1029/2004GL019626, 2004.
Jevrejeva, S., Moore, J. C., Grinsted, A., and Woodworth, P. L.: Recent global sea level acceleration started over 200 years ago?, Geophys. Res. Lett., 35, L08715, https://doi.org/10.1029/2008GL033611, 2008.
Ko, D. S., Martin, P. J., Chao, S. Y., Shaw, P. T., and Lien, R. C.: Large-amplitude internal waves in the South China Sea, Ocean Sci. Tech. (Naval Res. Lab. Review), 197–200, 2008.
Li, L., Xu, J., and Cai, R.: Trends of sea level rise in the South China Sea during the 1990s: an altimetry result, Chin. Sci. Bull., 47, 582–585, 2002.
Lui, P. C. and Tan, T. S.: Building integrated large-scale urban infrastructures: Singapore's experience, J. Urban Tech., 8, 49–68, https://doi.org/10.1080/10630730120052172, 2001.
MEI, Multivariate ENSO Index, Retrieved Jan 25, 2013, from http://www.esrl.noaa.gov/psd/enso/mei/, 2013.
Meyssignac, B. and Cazenave, A.: Sea level: a review of present-day and recent-past changes and variability, J. Geodyn., 58, 96–109, https://doi.org/10.1016/j.jog.2012.03.005, 2012.
Meyssignac, B., Llovel, W., Becker, M., and Cazenave, A.: An assessment of two-dimensional past sea level reconstructions over 1950–2009 based on tide gauge data and different input sea level grids, Surv. Geophys., 33, 945–972, https://doi.org/10.1007/s10712-011-9171-x, 2012a.
Meyssignac, B., Salas y Melia, D., Becker, M., Llovel, W., and Cazenave, A.: Tropical Pacific spatial trend patterns in observed sea level: internal variability and/or anthropogenic signature?, Clim. Past, 8, 787–802, https://doi.org/10.5194/cp-8-787-2012, 2012b.
Mitas, C. M. and Clement A.: Has the Hadley cell been strengthening in recent decades? Geophys. Res. Lett., L03809, https://doi.org/10.1029/2004GL021765, 2005.
Nerem, R. S., Chambers, D., Choe, C., and Mitchum, G. T.: Estimating mean sea level change from the TOPEX and Jason altimeter missions, Mar. Geod., 33, Supp 1, 435, https://doi.org/10.1080/01490419.2010.491031, 2010.
Nicholls, R. J. and Cazenave, A.: Sea-level rise & it impact on coastal zones, Science, 328, 1517, Jun 18, https://doi.org/10.1126/science.1185782, 2010.
Pawlowicz, R., Beardsley, B., and Lentz, S.: Classical tidal harmonic analysis including error estimates in MATLAB using T$_$TIDE, Comp. Geosci., 28, 929–937, 2002.
PSMSL, Obtaining Tide Gauge Data, Retrieved Jan 25, 2013, from http://www.psmsl.org/data/obtaining/, 2013.
Qiu, B. and Chen, S.: Concurrent decadal mesoscale eddy modulations in the western North Pacific subtropical gyre, J. Phys. Oceanogr., https://doi.org/10.1175/JPO-D-12-0133.1, 2012.
Qu, T., Du, Y., Meyers, G., Ishida, A., and Wang, D.: Connecting the tropical Pacific with Indian Ocean through South China Sea, Geophys. Res. Lett., 32, L24609, https://doi.org/10.1029/2005GL024698, 2005.
Ray, R. and Douglas, B.: Experiments in reconstructing twentieth-century sea levels, Progr. Oceanogr., 91, 496–515, https://doi.org/10.1016/j.pocean.2011.07.021,, 2011.
Rong, Z., Liu Y., Zong, H., and Cheng, Y.: Interannual sea level variability in the South China Sea and its response to ENSO, Glob. Planet. Change, 55, 257–272, https://doi.org/10.1016/j.gloplacha.2006.08.001, 2007.
Simons, W. J. F., Socquet, A., Vigny, C., Ambrosius, B. A. C., Haji Abu, S., Promthong, C., Subarya, C., Sarsito, D. A., Matheussen, S., Morgan, P., and Spakman, W.: A decade of GPS in Southeast Asia: Resolving Sundaland motion and boundaries, J. Geophys. Res., 112, B06420, https://doi.org/10.1029/2005JB003868, 2007.
Tanaka, H. L., Ishizaki, N., and Kitoh, A.: Trend and interannual variability of Walker, monsoon and Hadley circulations defined by velocity potential in the upper troposphere, Tellus A, 56, 250–269, 2004.
Timmermann, A., McGregor, S., and Jin, F. F.: Wind effects on past and future regional sea level trends in the southern Indo-Pacific, J. Clim., 23, 4429–4437, https://doi.org/10.1175/2010jclim3519.1, 2010.
Tkalich, P., Vethamony, P., Babu, M. T., and Malanotte-Rizzoli, P.: Storm surges in the Singapore Strait due to winds in the South China Sea, Nat. Hazards, https://doi.org/10.1007/s11069-012-0211-8, 2012.
Trenberth, K. E. and Hurrell, J. W.: Decadal atmosphere-ocean variations in the Pacific, Clim. Dyn., 9, 303–319, https://doi.org/10.1007/bf00204745, 1994.
Trisirisatayawong, I., Naeije, M., Simons, W., and Fenoglio-Marc, L.: Sea level change in the Gulf of Thailand from GPS-corrected tide gauge data and multi-satellite altimetry, Glob. Planet. Change, 76, 137–151, https://doi.org/10.1016/j.gloplacha.2010.12.010, 2011.
Tsimplis, M. N. and Shaw, A. G. P.: The forcing of mean sea level variability around Europe, Glob. Planet. Change, 63, 196–202, https://doi.org/10.1016/j.gloplacha.2007.08.018, 2008.
UHSLC, Research quality data Tanjong Pagar, Retrieved Jan 25, 2013 from http://ilikai.soest.hawaii.edu/uhslc/htmld/d0699A.html, 2013.
Unnikrishnan, A. S. and Shankar, D.: Are sea-level-rise trends along the coasts of the north Indian Ocean consistent with global estimates?, Glob. Planet. Change, 57, 301–307, https://doi.org/10.1016/j.gloplacha.2006.11.029, 2007.
Wannasingha, U., Webb, D. J., de Cuevas, B. A., and Coward, A. C.: On the Indonesian through-flow in the OCCAM model, Abstracts EGS-AGU-EUG Joint Assembly, Nice, France, 06–11 April, 2003.
White, N. J., Church, J. A., and Gregory, J. M.: Coastal and global averaged sea level rise for 1950 to 2000, Geophys. Res. Lett., 32, L01601, https://doi.org/10.1029/2004GL021391, 2005.
Wolter, K. and Timlin, M. S.: Monitoring ENSO in COADS with a seasonally adjusted principal component index, Proc. 17th Climate Diagnostics Workshop, Norman, OK, NOAA/NMC/CAC, NSSL, Oklahoma Clim. Survey, CIMMS and School of Meteor., Univ. Oklahoma, 52–57, 1993.
Wolter, K. and Timlin, M.S.: Measuring the strength of ENSO events – how does 1997/98 rank?, Weather, 53, 315–324, https://doi.org/10.1002/j.1477-8696.1998.tb06408.x, 1998.
Yu, Z., Shen, S., McCreary, J. P., Yaremchuk, M., and Furue, R.: South China Sea throughflow as evidenced by satellite images and numerical experiments, Geophys. Res. Lett., 34, L01601, https://doi.org/10.1029/2006GL028103, 2007.