Articles | Volume 21, issue 3
https://doi.org/10.5194/os-21-989-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-21-989-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Turbulent erosion of a subducting intrusion in the Western Mediterranean Sea
Giovanni Testa
CORRESPONDING AUTHOR
Institute of Marine Sciences, Italian National Research Council (CNR-ISMAR), Venice, Italy
Mathieu Dever
Woods Hole Oceanographic Institution, Woods Hole, 02543 MA, USA
RBR, Ottawa, Canada
Mara Freilich
Department of Earth, Environmental and Planetary Sciences, Brown University, Providence, RI, USA
Amala Mahadevan
Woods Hole Oceanographic Institution, Woods Hole, 02543 MA, USA
T. M. Shaun Johnston
Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, USA
Lorenzo Pasculli
Institute of Marine Sciences, Italian National Research Council (CNR-ISMAR), Venice, Italy
Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30172 Mestre, Italy
Francesco M. Falcieri
Institute of Marine Sciences, Italian National Research Council (CNR-ISMAR), Venice, Italy
Related authors
No articles found.
M. M. Omand and A. Mahadevan
Biogeosciences, 12, 3273–3287, https://doi.org/10.5194/bg-12-3273-2015, https://doi.org/10.5194/bg-12-3273-2015, 2015
Related subject area
Approach: In situ Observations | Properties and processes: Internal waves, turbulence and mixing
Overlapping turbulent boundary layers in an energetic coastal sea
Dissipation ratio and eddy diffusivity of turbulent and salt finger mixing derived from microstructure measurements
Internal-wave-induced dissipation rates in the Weddell Sea Bottom Water gravity current
Technical note: Spectral slopes in a deep, weakly stratified ocean and coupling between sub-mesoscale motion and small-scale mechanisms
Enhanced bed shear stress and mixing in the tidal wake of an offshore wind turbine monopile
A global summary of seafloor topography influenced by internal-wave induced turbulent water mixing
Parameter Sensitivity Study of Energy Transfer Between Mesoscale Eddies and Wind-Induced Near-Inertial Oscillations
Turbulent dissipation from AMAZOMIX off the Amazon shelf along internal tides paths
Internal-tide vertical structure and steric sea surface height signature south of New Caledonia revealed by glider observations
Observations of strong turbulence and mixing impacting water exchange between two basins in the Baltic Sea
Arnaud F. Valcarcel, Craig L. Stevens, Joanne M. O'Callaghan, and Sutara H. Suanda
Ocean Sci., 21, 965–987, https://doi.org/10.5194/os-21-965-2025, https://doi.org/10.5194/os-21-965-2025, 2025
Short summary
Short summary
This paper describes underwater robotic measurements in an energetic strait. The data show how energy is transferred from winds and tides to turbulent processes. Boundary layers of strong turbulence affected the water from surface to seafloor across an unusually deep extent, except when fresher or warmer waters moved into the region. Numerical models revealed that turbulent energy transport allowed boundary layers to interact. This phenomenon may impact the biological structure of coastal seas.
Jianing Li, Qingxuan Yang, and Hui Sun
Ocean Sci., 21, 829–849, https://doi.org/10.5194/os-21-829-2025, https://doi.org/10.5194/os-21-829-2025, 2025
Short summary
Short summary
The Osborn relation is widely used to estimate the diapycnal mixing rate, but its accuracy is questioned due to the assumed constant dissipation ratio (Γ) without identifying mixing types. We identify a salt finger and turbulence in the western Pacific and midlatitude Atlantic, finding that Γ is highly variable and related to turbulence parameters, through which we improve mixing rate estimates. Identifying mixing types and refining Γ are necessary to improve mixing parameterization accuracy.
Ole Pinner, Friederike Pollmann, Markus Janout, Gunnar Voet, and Torsten Kanzow
Ocean Sci., 21, 701–726, https://doi.org/10.5194/os-21-701-2025, https://doi.org/10.5194/os-21-701-2025, 2025
Short summary
Short summary
The Weddell Sea Bottom Water gravity current transports dense water from the continental shelf to the deep sea and is crucial for the formation of new deep-sea water. Building on vertical profiles and time series measured in the northwestern Weddell Sea, we apply three methods to distinguish turbulence caused by internal waves from that by other sources. We find that in the upper part of the gravity current, internal waves are important for the mixing of less dense water down into the current.
Hans van Haren
Ocean Sci., 21, 555–565, https://doi.org/10.5194/os-21-555-2025, https://doi.org/10.5194/os-21-555-2025, 2025
Short summary
Short summary
Ocean circulations include small-scale processes like transport through sub-mesoscale eddies and turbulence by internal wave breaking. Knowledge is lacking on the interaction between the different processes. In deep, weakly stratified waters, continuous spectral slopes are observed that extend from sub-mesoscales across the internal wave band to the turbulence range. Such correspondence is suggested as being a potential feedback mechanism stabilizing large-scale ocean circulations.
Martin J. Austin, Christopher A. Unsworth, Katrien J. J. Van Landeghem, and Ben J. Lincoln
Ocean Sci., 21, 81–91, https://doi.org/10.5194/os-21-81-2025, https://doi.org/10.5194/os-21-81-2025, 2025
Short summary
Short summary
Novel hydrodynamic observations 40 m from an offshore wind turbine monopile show that the turbulent tidal lee wake doubles the drag acting on the seabed, potentially enhancing sediment transport and impacting the seabed habitat and the organisms that utilise it. It also enhances the vertical mixing of the water column, which drives the transport of heat, nutrients and oxygen. As offshore wind farms rapidly expand into deeper waters, array-scale wakes may have significant ecological impacts.
Hans van Haren and Henk de Haas
EGUsphere, https://doi.org/10.5194/egusphere-2024-3603, https://doi.org/10.5194/egusphere-2024-3603, 2024
Short summary
Short summary
Turbulent water motions are important for the exchange of momentum, heat, nutrients, and suspended matter in the deep-sea. The shape of marine topography influences most water turbulence via breaking internal waves at ‘critically’ sloping seafloors. In this paper, the concept of critical slopes is revisited from a global internal wave-turbulence viewpoint using seafloor topography- and moored temperature sensor data. Potential robustness of the seafloor-internal wave interaction is discussed.
Yu Zhang, Jintao Gu, Shengli Chen, Jianyu Hu, Jinyu Sheng, and Jiuxing Xing
EGUsphere, https://doi.org/10.5194/egusphere-2024-3457, https://doi.org/10.5194/egusphere-2024-3457, 2024
Short summary
Short summary
Current observations at two moorings in the northern South China Sea reveal that mesoscale eddies can transfer energy with near-inertial oscillations (NIOs). Numerical experiments are conducted to investigate important parameters affecting energy transfer between mesoscale eddies and NIOs, which demonstrate that the energy transferred by mesoscale eddies is larger with stronger winds and higher strength of the mesoscale eddy. Anticyclonic eddies can transfer more energy than cyclonic eddies.
Fabius Kouogang, Ariane Koch-Larrouy, Jorge Magalhaes, Alex Costa da Silva, Daphne Kerhervé, Arnaud Bertrand, Evan Cervelli, Jean-François Ternon, Pierre Rousselot, James Lee, Marcelo Rollnic, and Moacyr Araujo
EGUsphere, https://doi.org/10.5194/egusphere-2024-2548, https://doi.org/10.5194/egusphere-2024-2548, 2024
Short summary
Short summary
The first time direct measurements of turbulent dissipation from AMAZOMIX revealed high energy dissipations within [10-6,10-4] W.kg-1 caused at 65 % apart from internal tides in their generation zone, and [10-8,10-7] W.kg-1 caused at 50.4 % by mean circulation of surrounding water masses far fields. Finally, estimates of nutrient fluxes showed a very high flux of nitrate ([10-2, 10-0] mmol N m-2.s-1) and phosphate ([10-3, 10-1] mmol P m-2.s-1), due to both processes in Amazon region.
Arne Bendinger, Sophie Cravatte, Lionel Gourdeau, Luc Rainville, Clément Vic, Guillaume Sérazin, Fabien Durand, Frédéric Marin, and Jean-Luc Fuda
Ocean Sci., 20, 945–964, https://doi.org/10.5194/os-20-945-2024, https://doi.org/10.5194/os-20-945-2024, 2024
Short summary
Short summary
A unique dataset of glider observations reveals tidal beams south of New Caledonia – an internal-tide-generation hot spot in the southwestern tropical Pacific. Observations are in good agreement with numerical modeling output, highlighting the glider's capability to infer internal tides while assessing the model's realism of internal-tide dynamics. Discrepancies are in large part linked to eddy–internal-tide interactions. A methodology is proposed to deduce the internal-tide surface signature.
Julia Muchowski, Martin Jakobsson, Lars Umlauf, Lars Arneborg, Bo Gustafsson, Peter Holtermann, Christoph Humborg, and Christian Stranne
Ocean Sci., 19, 1809–1825, https://doi.org/10.5194/os-19-1809-2023, https://doi.org/10.5194/os-19-1809-2023, 2023
Short summary
Short summary
We show observational data of highly increased mixing and vertical salt flux rates in a sparsely sampled region of the northern Baltic Sea. Co-located acoustic observations complement our in situ measurements and visualize turbulent mixing with high spatial resolution. The observed mixing is generally not resolved in numerical models of the area but likely impacts the exchange of water between the adjacent basins as well as nutrient and oxygen conditions in the Bothnian Sea.
Cited articles
Abernathey, R., Gnanadesikan, A., Pradal, M. A., and Sundermeyer, M. A.: Isopycnal mixing, in: Ocean Mixing: Drivers, Mechanisms and Impacts, edited by: Meredith, M., and Naveira Garabato, A., Elsevier, 215–256, https://doi.org/10.1016/B978-0-12-821512-8.00016-5, 2022.
Acha, E. M., Piola, A., Iribarne, O., and Mianzan, H. (Eds.).: Ecological processes at marine fronts: Oases in the ocean, Springer, Berlin, Germany, 68 pp., ISBN 978-3-319-15479-4, 2015.
Alou-Font, M., Carbonero, A., and Allen, J.: NRV Alliance report on delayed mode calibration of chlorophyll data, CALYPSO19 cruise 28-03/10-04/19 V-1.0.0, Tech. Rep., SOCIB-Biogeochemistry, 2019.
Alpers, W., Brandt, P., and Rubino, A.: Internal waves generated in the Straits of Gibraltar and Messina: Observations from space, in: Remote Sensing of the European Seas, Springer Netherlands, 319–330, https://doi.org/10.1007/978-1-4020-6772-3_24, 2008.
Bachman, S. D., Fox-Kemper, B., Taylor, J. R., and Thomas, L. N.: Parameterization of frontal symmetric instabilities. I: Theory for resolved fronts, Ocean Model., 109, 72–95, https://doi.org/10.1016/j.ocemod.2016.12.003, 2017.
Barral, Q. B., Zakardjian, B., Dumas, F., Garreau, P., Testor, P., and Beuvier, J.: Characterization of fronts in the Western Mediterranean with a special focus on the North Balearic Front, Prog. Oceanogr., 197, 102636, https://doi.org/10.1016/j.pocean.2021.102636, 2021.
Belkin, I. M. and Cornillon, P. C.: Fronts in the world ocean's Large Marine Ecosystems, in: International Council for the Exploration of the Sea, Annual Science Conference, 17–21 September 2007, Helsinki, Finland, CM 2007/D:21, 33 pp., 2007.
Bolado-Penagos, M., Sala, I., Jesús Gomiz-Pascual, J., González, C. J., Izquierdo, A., Álvarez, Ó., Vázquez, Á., Bruno, M., and van Haren, H.: Analysis of internal soliton signals and their eastward propagation in the Alboran Sea: exploring the effect of subinertial forcing and fortnightly variability, Prog. Oceanogr., 217, 103077, https://doi.org/10.1016/j.pocean.2023.103077, 2023.
Bonaduce, A., Cipollone, A., Johannessen, J. A., Staneva, J., Raj, R. P., and Aydogdu, A.: Ocean mesoscale variability: a case study on the Mediterranean sea from a re-analysis perspective, Front. Earth Sci., 9, 816, https://doi.org/10.3389/feart.2021.724879, 2021.
Brett, G. J., Pratt, L. J., Rypina, I. I., and Sánchez-Garrido, J. C.: The western Alboran gyre: An analysis of its properties and its exchange with surrounding water, J. Phys. Oceanogr., 50, 3379–3402, https://doi.org/10.1175/JPO-D-20-0028.1, 2020.
Canuto, V. M., Cheng, Y., and Howard, A. M.: Vertical diffusivities of active and passive tracers, Ocean Model., 36, 198–207, https://doi.org/10.1016/J.OCEMOD.2010.12.002, 2011.
Capó, E. and McWilliams, J. C.: Coherent lagrangian pathways near an east Alboran front, J. Geophys. Res.-Oceans, 127, e2021JC018022, https://doi.org/10.1029/2021JC018022, 2022.
Capó, E., Orfila, A., Mason, E., and Ruiz, S.: Energy conversion routes in the western Mediterranean sea estimated from eddy-mean flow interactions, J. Phys. Oceanogr., 49, 247–267, https://doi.org/10.1175/JPO-D-18-0036.1, 2019.
Carpenter, J. R., Rodrigues, A., Schultze, L. K. P., Merckelbach, L. M., Suzuki, N., Baschek, B., and Umlauf, L.: Shear Instability and Turbulence Within a Submesoscale Front Following a Storm, Geophys. Res. Lett., 47, e2020GL090365, https://doi.org/10.1029/2020GL090365, 2020.
Chapman, C. C., Lea, M. A., Meyer, A., Sallée, J. B., and Hindell, M.: Defining Southern Ocean fronts and their influence on biological and physical processes in a changing climate, Nat. Clim. Change, 10, 209–219, https://doi.org/10.1038/s41558-020-0705-4, 2020.
Chen, S., Wells, M. L., Huang, R. X., Xue, H., Xi, J., and Chai, F.: Episodic subduction patches in the western North Pacific identified from BGC-Argo float data, Biogeosciences, 18, 5539–5554, https://doi.org/10.5194/bg-18-5539-2021, 2021.
Crowe, M. N. and Taylor, J. R.: The evolution of a front in turbulent thermal wind balance. Part 1. Theory, J. Fluid Mech., 850, 179–211, https://doi.org/10.1017/jfm.2018.448, 2018.
Cushman-Roisin, B. and Beckers, J.-M.: Introduction to Geophysical Fluid Dynamics: Physical and Numerical Aspects, Academic Press, ISBN 978-0-12-088759-0, 2011.
Cutolo, E., Pascual, A., Ruiz, S., Shaun Johnston, T. M., Freilich, M., Mahadevan, A., Shcherbina, A., Poulain, P. M., Ozgokmen, T., Centurioni, L. R., Rudnick, D. L., and D'Asaro, E.: Diagnosing Frontal Dynamics From Observations Using a Variational Approach, J. Geophys. Res.-Oceans, 127, e2021JC018336, https://doi.org/10.1029/2021JC018336, 2022.
Cuypers, Y., Bouruet-Aubertot, P., and Marec, C.: Characterization of turbulence from a fine-scale parameterization and microstructure measurements in the Mediterranean Sea during the BOUM experiment, Biogeosciences, 9, 3131–3149, https://doi.org/10.5194/bg-9-3131-2012, 2012.
D'Asaro, E., Lee, C., Rainville, L., Harcourt, R., and Thomas, L.: Enhanced turbulence and energy dissipation at ocean fronts, Science, 332, 318–322, https://doi.org/10.1126/science.1201515, 2011.
D'Asaro, E. A.: Turbulence in the upper-ocean mixed layer, Annu. Rev. Mar. Sci., 6, 101–115, https://doi.org/10.1146/annurev-marine-010213-135138, 2014.
de Boyer Montégut, C., Madec, G., Fischer, A. S., Lazar, A., and Iudicone, D.: Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology, J. Geophys. Res.-Oceans, 109, 1–20, https://doi.org/10.1029/2004JC002378, 2004.
Dever, M., Freilich, M., Hodges, B., Farrar, J., Lanagan, T., and Mahadevan, A.: UCTD and ECOCTD observations from the CALYPSO pilot experiment (2018): Cruise and data report, Tech. Rep. WHOI-2019-01, Woods Hole Oceanographic Institution, https://doi.org/10.1575/1912/23637, 2019.
Du, C., Liu, Z., Kao, S. J., and Dai, M.: Diapycnal Fluxes of Nutrients in an Oligotrophic Oceanic Regime: The South China Sea, Geophys. Res. Lett., 44, 11510–11518, https://doi.org/10.1002/2017GL074921, 2017.
Fedele, G., Mauri, E., Notarstefano, G., and Poulain, P. M.: Characterization of the Atlantic Water and Levantine Intermediate Water in the Mediterranean Sea using 20 years of Argo data, Ocean Sci., 18, 129–142, https://doi.org/10.5194/os-18-129-2022, 2022.
Fer, I., Dengler, M., Holtermann, P., Le Boyer, A., and Lueck, R.: ATOMIX benchmark datasets for dissipation rate measurements using shear probes, Sci. Data, 11, 518, https://doi.org/10.1038/s41597-024-03323-y, 2024.
Fernández-Castro, B., Mouriño-Carballido, B., Benítez-Barrios, V. M., Chouciño, P., Fraile-Nuez, E., Graña, R., Piedeleu, M., and Rodríguez-Santana, A.: Microstructure turbulence and diffusivity parameterization in the tropical and subtropical Atlantic, Pacific and Indian Oceans during the Malaspina 2010 expedition, Deep-Sea Res. Pt. I, 94, 15–30, https://doi.org/10.1016/j.dsr.2014.08.006, 2014.
Ferron, B., Bouruet-Aubertot, P., Schroeder, K., Bryden, H. L., Cuypers, Y., and Borghini, M.: Contribution of Thermohaline Staircases to Deep Water Mass Modifications in the Western Mediterranean Sea From Microstructure Observations, Front. Mar. Sci., 8, 544, https://doi.org/10.3389/fmars.2021.664509, 2021.
Forryan, A., Allen, J. T., Edhouse, E., Silburn, B., Reeve, K., and Tesi, E.: Turbulent mixing in the eddy transport of Western Mediterranean Intermediate Water to the Alboran Sea, J. Geophys. Res.-Oceans, 117, 9008, https://doi.org/10.1029/2012JC008284, 2012.
Freilich, M. and Mahadevan, A.: Coherent Pathways for Subduction From the Surface Mixed Layer at Ocean Fronts, J. Geophys. Res.-Oceans, 126, e2020JC017042, https://doi.org/10.1029/2020JC017042, 2021.
Freilich, M. A., Poirier, C., Dever, M., Alou-Font, E., Allen, J., Cabornero, A., Sudek, L., Choi, C. J., Ruiz, S., Pascual, A., Farrar, J. T., Johnston, T. M. S., D'Asaro, E., Worden, A. Z., and Mahadevan, A.: 3D-intrusions transport active surface microbial assemblages to the dark ocean, P. Natl. Acad. Sci. USA, 121, e2319937121, https://doi.org/10.1073/pnas.2319937121, 2024.
Garcia-Jove, M., Mourre, B., Zarokanellos, N. D., Lermusiaux, P. F. J., Rudnick, D. L., and Tintoré, J.: Frontal Dynamics in the Alboran Sea: 2. Processes for Vertical Velocities Development, J. Geophys. Res.-Oceand, 127, e2021JC017428, https://doi.org/10.1029/2021JC017428, 2022.
García-Martínez, M. del C., Vargas-Yáñez, M., Moya, F., Santiago, R., Muñoz, M., Reul, A., Ramírez, T., and Balbín, R.: Average nutrient and chlorophyll distributions in the western Mediterranean: RADMED project, Oceanologia, 61, 143–169, https://doi.org/10.1016/j.oceano.2018.08.003, 2019.
Gregg, M. C.: Scaling turbulent dissipation in the thermocline, J. Geophys. Res.-Oceans, 94, 9686–9698, https://doi.org/10.1029/jc094ic07p09686, 1989.
Gregg, M. C., D'Asaro, E. A., Riley, J. J., and Kunze, E.: Mixing efficiency in the ocean, Annu. Rev. Mar. Sci., 10, 443-473, https://doi.org/10.1146/annurev-marine-121916-063643, 2018.
IOC, SCOR, and IAPSO: The international thermodynamic equation of seawater – 2010: Calculation and use of thermodynamic properties. Intergovernmental Oceanographic Commission, Manuals and Guides, 56, UNESCO, 196 pp., https://https://www.teos-10.org/pubs/TEOS-10_Manual.pdf (last access: 18 January 2023), 2010.
Johnson, A. R. and Omand, M. M.: Evolution of a Subducted Carbon-Rich Filament on the Edge of the North Atlantic Gyre, J. Geophys. Res.-Oceans, 126, e2020JC016685, https://doi.org/10.1029/2020JC016685, 2021.
Johnston, T. M. S., Rudnick, D. L., and Pallàs-Sanz, E.: Elevated mixing at a front, J. Geophys. Res.-Oceans, 116, 11033, https://doi.org/10.1029/2011JC007192, 2011.
Kelley, D. E., Fernando, H. J. S., Gargett, A. E., Tanny, J., and Özsoy, E.: The diffusive regime of double-diffusive convection, Prog. Oceanogr., 56, 461–481, https://doi.org/10.1016/S0079-6611(03)00026-0, 2003.
Klein, P. and Lapeyre, G.: The oceanic vertical pump induced by mesoscale and submesoscale turbulence, Annu. Rev. Mar. Sci., 1, 351–375, https://doi.org/10.1146/annurev.marine.010908.163704, 2009.
Lazzari, P., Solidoro, C., Salon, S., and Bolzon, G.: Spatial variability of phosphate and nitrate in the Mediterranean Sea: A modeling approach, Deep-Sea Res. Pt. I, 108, 39–52, https://doi.org/10.1016/j.dsr.2015.12.006, 2016.
Le Boyer, A., Couto, N., Alford, M. H., Drake, H. F., Bluteau, C. E., Hughes, K. G., Naveira Garabato, A. C., Moulin, A. J., Peacock, T., Fine, E. C., Mashayek, A., Cimoli, L., Meredith, M. P., Melet, A., Fer, I., Dengler, M., and Stevens, C. L.: Turbulent diapycnal fluxes as a pilot Essential Ocean Variable, Front. Mar. Sci., 10, 1241023, https://doi.org/10.3389/fmars.2023.1241023, 2023.
Llort, J., Langlais, C., Matear, R., Moreau, S., Lenton, A., and Strutton, P. G.: Evaluating Southern Ocean Carbon Eddy-Pump From Biogeochemical-Argo Floats, J. Geophys. Res.-Oceans, 123, 971–984, https://doi.org/10.1002/2017JC012861, 2018.
Lozovatsky, I. D., Fernando, H. J. S., Jinadasa, S. U. P., and Wijesekera, H. W.: Eddy diffusivity in stratified ocean: a case study in Bay of Bengal, Environ. Fluid Mech., 23, 1131–1143, https://doi.org/10.1007/s10652-022-09872-3, 2023.
Lueck, R., Fer, I., Bluteau, C., Dengler, M., Holtermann, P., Inoue, R., LeBoyer, A., Nicholson, S. A., Schulz, K., and Stevens, C.: Best practices recommendations for estimating dissipation rates from shear probes, Front. Mar. Sci., 11, 1334327, https://doi.org/10.3389/fmars.2024.1334327, 2024.
MacKinnon, J., St Laurent, L., and Naveira Garabato, A. C.: Diapycnal mixing processes in the ocean interior, in: International Geophysics, vol. 103, Academic Press, 159–183, https://doi.org/10.1016/B978-0-12-391851-2.00007-6, 2013.
Mahadevan, A.: The Impact of Submesoscale Physics on Primary Productivity of Plankton, Annu. Rev. Mar. Sci., 8, 161–184, https://doi.org/10.1146/annurev-marine-010814-015912, 2016.
Mahadevan, A., Pascual, A., Rudnick, D. L., Ruiz, S., Tintoré, J., and D'Asaro, E.: Coherent pathways for vertical transport from the surface ocean to interior, B. Am. Meteorol. Soc., 101, E1996–E2004, https://doi.org/10.1175/BAMS-D-19-0305.1, 2020a.
Mahadevan, A., D'Asaro, E. A., Allen, J. T., Almaraz García, P., Alou-Font, E., Aravind, H. M., Balaguer, P., Caballero, I., Calafat, N., Carbornero, A., Casas, B., Castilla, C., Centurioni, L. R., Conley, M., Cristofano, G., Cutolo, E., Dever, M., Enrique Navarro, A., Falcieri, F., Freilich, M., Goodwin, E., Graham, R., Guigand, C., Hodges, B. A., Huntley, H., Johnston, S., Lankhorst, M., Lermusiaux, P. F. J., Lizaran, I., Mirabito, C., Miralles, A., Mourre, B., Navarro, G., Ohmart, M., Ouala, S., Ozgokmen, T. M., Pascual, A., Pou, J. M. H., Poulain, P. M., Ren, A., Rodriguez Tarry, D., Rudnick, D. L., Rubio, M., Ruiz, S., Rypina, I. I., Tintore, J., Send, U., Shcherbina, A. Y., Torner, M., Salvador-Vieira, G., Wirth, N., and Zarokanellos, N.: CALYPSO 2019 Cruise Report: field campaign in the Mediterranean, Woods Hole Oceanographic Institution, https://doi.org/10.1575/1912/25266, 2020b.
McDougall, T. and Krzysik, O.: Spiciness, J. Mar. Res., 73, 141–152, https://doi.org/10.1357/002224015816665589, 2015.
McDougall, T. J., Thorpe, S. A., and Gibson, C. H.: Small-Scale Turbulence and Mixing in the Ocean: A Glossary, in: Small-scale turbulence and mixing in the ocean, vol. 46, edited by: Nihoul, J. C. J. and Jamart, B. M., Elsevier, 3–9, https://doi.org/10.1016/S0422-9894(08)70533-6, 1988.
McDougall, T. J., Barker, P. M., and Stanley, G. J.: Spice Variables and Their Use in Physical Oceanography, J. Geophys. Res.-Oceans, 126, e2019JC01593, https://doi.org/10.1029/2019JC015936, 2021.
McWilliams, J. C.: Oceanic Frontogenesis, Annu. Rev. Mar. Sci., 13, 227–253, https://doi.org/10.1146/annurev-marine-032320-120725, 2021.
Mena, C., Reglero, P., Hidalgo, M., Sintes, E., Santiago, R., Martín, M., Moyà, G., and Balbín, R.: Phytoplankton community structure is driven by stratification in the oligotrophic mediterranean sea, Front. Microbiol., 10, 456694, https://doi.org/10.3389/fmicb.2019.01698, 2019.
Mouriño-Carballido, B., Otero Ferrer, J. L., Fernández Castro, B., Marañón, E., Blazquez Maseda, M., Aguiar-González, B., Chouciño, P., Graña, R., Moreira-Coello, V., and Villamaña, M.: Magnitude of nitrate turbulent diffusion in contrasting marine environments, Sci. Rep., 11, 1–16, https://doi.org/10.1038/s41598-021-97731-4, 2021.
Nasmyth, P. W.: Oceanic turbulence, PhD thesis, University of British Columbia, Canada, https://doi.org/10.14288/1.0302459, 1970.
Oguz, T., Macias, D., Garcia-Lafuente, J., Pascual, A., and Tintore, J.: Fueling plankton production by a meandering frontal jet: A case study for the Alboran sea (Western Mediterranean), PLoS One, 9, e111482, https://doi.org/10.1371/journal.pone.0111482, 2014.
Olita, A., Capet, A., Claret, M., Mahadevan, A., Poulain, P. M., Ribotti, A., Ruiz, S., Tintoré, J., Tovar-Sánchez, A., and Pascual, A.: Frontal dynamics boost primary production in the summer stratified Mediterranean sea, Ocean Dynam., 67, 767–782, https://doi.org/10.1007/s10236-017-1058-z, 2017.
Omand, M. M., D'Asaro, E. A., Lee, C. M., Perry, M. J., Briggs, N., Cetinić, I., and Mahadevan, A.: Eddy-driven subduction exports particulate organic carbon from the spring bloom, Science, 348, 222–225, https://doi.org/10.1126/science.1260062, 2015.
Onken, R. and Brambilla, E.: Double diffusion in the Mediterranean Sea: Observation and parameterization of salt finger convection, J. Geophys. Res.-Oceans, 108, 8124, https://doi.org/10.1029/2002jc001349, 2003.
Pinkel, R., Sherman, J., Smith, J., and Anderson, S.: Strain: Observations of the Vertical Gradient of Isopycnal Vertical Displacement, J. Phys. Oceanogr., 21, 527–540, https://doi.org/10.1175/1520-0485(1991)021<0527:sootvg>2.0.co;2, 1991.
Ramondenc, S., Madeleine, G., Lombard, F., Santinelli, C., Stemmann, L., Gorsky, G., and Guidi, L.: An initial carbon export assessment in the Mediterranean Sea based on drifting sediment traps and the Underwater Vision Profiler data sets, Deep-Sea Res. Pt. I, 117, 107–119, https://doi.org/10.1016/j.dsr.2016.08.015, 2016.
Reale, M., Giorgi, F., Solidoro, C., Di Biagio, V., Di Sante, F., Mariotti, L., Farneti, R., and Sannino, G.: The Regional Earth System Model RegCM-ES: Evaluation of the Mediterranean Climate and Marine Biogeochemistry, J. Adv. Model. Earth Syst., 12, e2019MS001812, https://doi.org/10.1029/2019MS001812, 2020.
Rudnick, D. L. and Klinke, J.: The underway conductivity-temperature-depth instrument, J. Atmos. Ocean. Tech., 24, 1910–1923, https://doi.org/10.1175/JTECH2100.1, 2007.
Rudnick, D. L., Zarokanellos, N. D., and Tint, J.: A Four-Dimensional Survey of the Almeria–Oran Front by Underwater Gliders: Tracers and Circulation, J. Phys. Oceanogr., 52, 225–242, https://doi.org/10.1175/JPO-D-21-0181.1, 2022.
Ruiz, S., Claret, M., Pascual, A., Olita, A., Troupin, C., Capet, A., Tovar-Sánchez, A., Allen, J., Poulain, P. M., Tintoré, J., and Mahadevan, A.: Effects of Oceanic Mesoscale and Submesoscale Frontal Processes on the Vertical Transport of Phytoplankton, J. Geophys. Res.-Oceans, 124, 5999–6014, https://doi.org/10.1029/2019JC015034, 2019.
Sala, I., Bolado-Penagos, M., Bartual, A., Bruno, M., García, C. M., López-Urrutia, Á., González-García, C., and Echevarría, F.: A Lagrangian approach to the Atlantic Jet entering the Mediterranean Sea: Physical and biogeochemical characterization, J. Mar. Syst., 226, 103652, https://doi.org/10.1016/j.jmarsys.2021.103652, 2022.
Sánchez-Garrido, J. C. and Nadal, I.: The Alboran Sea circulation and its biological response: A review, Front. Mar. Sci., 9, 933390, https://doi.org/10.3389/fmars.2022.933390, 2022.
Schmitt, R. W.: Double-Diffusive Convection, in: Encyclopedia of Ocean Sciences, Academic Press, 162–170, https://doi.org/10.1016/B978-012374473-9.00604-4, 2009.
Schroeder, K., Chiggiato, J., Bryden, H. L., Borghini, M., and Ben Ismail, S.: Abrupt climate shift in the Western Mediterranean Sea, Sci. Rep., 6, 1–7, https://doi.org/10.1038/srep23009, 2016.
Schulz, K., Mohrholz, V., Fer, I., Janout, M., Hoppmann, M., Schaffer, J., and Koenig, Z.: A full year of turbulence measurements from a drift campaign in the Arctic Ocean 2019–2020, Sci. Data, 9, 1–11, https://doi.org/10.1038/s41597-022-01574-1, 2022.
Sheehan, P. M. F., Damerell, G. M., Leadbitter, P. J., Heywood, K. J., and Hall, R. A.: Turbulent kinetic energy dissipation rate and associated fluxes in the western tropical Atlantic estimated from ocean glider observations, Ocean Sci., 19, 77–92, https://doi.org/10.5194/os-19-77-2023, 2023.
Shroyer, E. L., Nash, J. D., Waterhouse, A. F., and Moum, J. N.: Measuring Ocean Turbulence, in: Observing the Oceans in Real Time, edited by: Venkatesan, R., Tandon, A., D'Asaro, E., and Atmanand, M. A., Springer, Cham, 99–122, https://doi.org/10.1007/978-3-319-66493-4_6, 2018.
Storer, B. A., Buzzicotti, M., Khatri, H., Griffies, S. M., and Aluie, H.: Global energy spectrum of the general oceanic circulation, Nat. Commun., 13, 1–9, https://doi.org/10.1038/s41467-022-33031-3, 2022.
Stukel, M. R., Aluwihare, L. I., Barbeau, K. A., Chekalyuk, A. M., Goericke, R., Miller, A. J., Ohman, M. D., Ruacho, A., Song, H., Stephens, B. M., and Landry, M. R.: Mesoscale ocean fronts enhance carbon export due to gravitational sinking and subduction, P. Natl. Acad. Sci. USA, 114, 1252–1257, https://doi.org/10.1073/pnas.1609435114, 2017.
Sudre, F., Hernández-Carrasco, I., Mazoyer, C., Sudre, J., Dewitte, B., Garçon, V., and Rossi, V.: An ocean front dataset for the Mediterranean sea and southwest Indian ocean, Sci. Data, 10, 1–15, https://doi.org/10.1038/s41597-023-02615-z, 2023.
Tanhua, T., Hainbucher, D., Schroeder, K., Cardin, V., Álvarez, M., and Civitarese, G.: The Mediterranean Sea system: a review and an introduction to the special issue, Ocean Sci., 9, 789–803, https://doi.org/10.5194/os-9-789-2013, 2013.
Taylor, G. I.: Statistical theory of turbulence, P. Roy. Soc. Lond. A, 151, 421–444, https://doi.org/10.1098/rspa.1935.0158, 1935.
Testa, G., Mahadevan, A., Johnston, T. M. S., and Falcieri, F. M.: CTD, UCTD, ADCP, and MSS data collected during the 2019 CALYPSO campaign in the Western Alboran Gyre, Zenodo [data set], https://doi.org/10.5281/zenodo.15021606, 2025.
Thomas, L. N., Taylor, J. R., Ferrari, R., and Joyce, T. M.: Symmetric instability in the Gulf Stream, Deep-Sea Res. Pt. II, 91, 96–110, https://doi.org/10.1016/j.dsr2.2013.02.025, 2013.
Thorpe, S. A.: The turbulent ocean, Cambridge University Press, UK, 439 pp., https://doi.org/10.1017/CBO9780511819933, 2005.
Thorpe, S. A.: An introduction to ocean turbulence, Cambridge University Press, UK, 291 pp., https://doi.org/10.1017/CBO9780511801198, 2007.
van der Boog, C. G., Dijkstra, H. A., Pietrzak, J. D., and Katsman, C. A.: Double-diffusive mixing makes a small contribution to the global ocean circulation, Commun. Earth Environ., 2, 1–9, https://doi.org/10.1038/s43247-021-00113-x, 2021.
van Haren, H.: Sensitive Temperature Probes Detail Different Turbulence Processes in the Deep Mediterranean, Oceanography, 36, 18–27, https://doi.org/10.5670/OCEANOG.2023.108, 2023.
van Haren, H., Millot, C., and Taupier-Letage, I.: Fast deep sinking in Mediterranean eddies, Geophys. Res. Lett., 33, 4606, https://doi.org/10.1029/2005GL025367, 2006.
Vladoiu, A., Bouruet-Aubertot, P., Cuypers, Y., Ferron, B., Schroeder, K., Borghini, M., and Leizour, S.: Contrasted mixing efficiency in energetic versus quiescent regions: Insights from microstructure measurements in the Western Mediterranean Sea, Prog. Oceanogr., 195, 102594, https://doi.org/10.1016/j.pocean.2021.102594, 2021.
Williams, C., Sharples, J., Green, M., Mahaffey, C., and Rippeth, T.: The maintenance of the subsurface chlorophyll maximum in the stratified western Irish Sea, Limnol. Oceanogr. Fluids Environ., 3, 61–73, https://doi.org/10.1215/21573689-2285100, 2013.
Williams, R. G.: Ocean Subduction, in: Encyclopedia of Ocean Sciences: Second Edition, Academic Press, 156–166, https://doi.org/10.1016/B978-012374473-9.00109-0, 2001.
Yebra, L., Herrera, I., Mercado, J. M., Cortés, D., Gómez-Jakobsen, F., Alonso, A., Sánchez, A., Salles, S., and Valcárcel-Pérez, N.: Zooplankton production and carbon export flux in the western Alboran Sea gyre (SW Mediterranean), Prog. Oceanogr., 167, 64–77, https://doi.org/10.1016/j.pocean.2018.07.009, 2018.
Zarokanellos, N. D., Rudnick, D. L., Garcia-Jove, M., Mourre, B., Ruiz, S., Pascual, A., and Tintoré, J.: Frontal Dynamics in the Alboran Sea: 1. Coherent 3D Pathways at the Almeria-Oran Front Using Underwater Glider Observations, J. Geophys. Res.-Oceans, 127, e2021JC017405, https://doi.org/10.1029/2021JC017405, 2022.
Zhmur, V. V., Novoselova, E. V., and Belonenko, T. V.: Potential Vorticity in the Ocean: Ertel and Rossby Approaches with Estimates for the Lofoten Vortex, Izv.-Atmos. Ocean Phys., 57, 632–641, https://doi.org/10.1134/S0001433821050157, 2021.
Zhou, H., Dewar, W., Yang, W., Liu, H., Chen, X., Li, R., Liu, C., and Gopalakrishnan, G.: Observations and modeling of symmetric instability in the ocean interior in the Northwestern Equatorial Pacific, Commun. Earth Environ., 3, 1–11, https://doi.org/10.1038/s43247-022-00362-4, 2022.
Zippel, S. F., Farrar, J. T., Zappa, C. J., and Plueddemann, A. J.: Parsing the Kinetic Energy Budget of the Ocean Surface Mixed Layer, Geophys. Res. Lett., 49, e2021GL095920, https://doi.org/10.1029/2021GL095920, 2022.
Short summary
In the Western Alboran Gyre, waters from the Atlantic and Mediterranean meet, creating density differences that cause some water to sink, affecting ocean ventilation and nutrient cycles. We collected data showing patches of water with higher oxygen and chlorophyll levels moving towards the gyre's center, with active mixing at their edges. This mixing diluted the patches, and other factors like water density and light penetration likely played a role in these dynamics.
In the Western Alboran Gyre, waters from the Atlantic and Mediterranean meet, creating density...