Articles | Volume 21, issue 3
https://doi.org/10.5194/os-21-931-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-21-931-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Enhanced resolution capability of SWOT sea surface height measurements and their application in monitoring ocean dynamics variability
Yong Wang
School of Resources and Civil Engineering, Northeastern University, Shenyang, China
Shengjun Zhang
CORRESPONDING AUTHOR
School of Resources and Civil Engineering, Northeastern University, Shenyang, China
Yongjun Jia
National Satellite Ocean Application Service (NSOAS), Beijing 100081, China
Related authors
No articles found.
Mingtao Liu, Jinyun Guo, Yu Sun, Shaofeng Bian, Yongjun Jia, and Xin Liu
EGUsphere, https://doi.org/10.5194/egusphere-2025-4935, https://doi.org/10.5194/egusphere-2025-4935, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
Sea ice is vital in the global climate system, ecological balance and polar navigation. Arctic sea ice concentration (SIC) exhibits significant spatial heterogeneity and complex evolutionary patterns. In response to address these challenges, this study proposes a predictive model named sea ice concentration U-Net (SICUNet). SICUNet is a data-driven U-Net model that integrates attention mechanisms and residual structures for short-term prediction of SIC in the Arctic region.
Shengjun Zhang, Xu Chen, Runsheng Zhou, and Yongjun Jia
Geosci. Model Dev., 18, 1221–1239, https://doi.org/10.5194/gmd-18-1221-2025, https://doi.org/10.5194/gmd-18-1221-2025, 2025
Short summary
Short summary
NSOAS24, a new global marine gravity model derived from multi-satellite altimetry missions, represents a significant advancement over its predecessor, NSOAS22. Through optimized processing procedures, NSOAS24 resolves previous issues and demonstrates improved accuracy. Compared to NSOAS22, NSOAS24 shows a reduction of approximately 0.7 mGal in standard deviation when validated against recent shipborne data. Notably, its accuracy now rivals internationally recognized models DTU21 and V32.1.
Shuai Zhou, Jinyun Guo, Huiying Zhang, Yongjun Jia, Heping Sun, Xin Liu, and Dechao An
Earth Syst. Sci. Data, 17, 165–179, https://doi.org/10.5194/essd-17-165-2025, https://doi.org/10.5194/essd-17-165-2025, 2025
Short summary
Short summary
Our research focuses on using machine learning to enhance the accuracy and efficiency of bathymetric models. In this paper, a multi-layer perceptron (MLP) neural network is used to integrate multi-source marine geodetic data. And a new bathymetric model of the global ocean, spanning 0–360° E and 80° S–80° N, known as the Shandong University of Science and Technology 2023 Bathymetric Chart of the Oceans (SDUST2023BCO), has been constructed, with a grid size of 1′ × 1′.
Dechao An, Jinyun Guo, Xiaotao Chang, Zhenming Wang, Yongjun Jia, Xin Liu, Valery Bondur, and Heping Sun
Geosci. Model Dev., 17, 2039–2052, https://doi.org/10.5194/gmd-17-2039-2024, https://doi.org/10.5194/gmd-17-2039-2024, 2024
Short summary
Short summary
Seafloor topography, as fundamental geoinformation in marine surveying and mapping, plays a crucial role in numerous scientific studies. In this paper, we focus on constructing a high-precision seafloor topography and bathymetry model for the Philippine Sea (5° N–35° N, 120° E–150° E), based on shipborne bathymetric data and marine gravity anomalies, and evaluate the reliability of the model's accuracy.
Zhaoqing Dong, Lijian Shi, Mingsen Lin, Yongjun Jia, Tao Zeng, and Suhui Wu
The Cryosphere, 17, 1389–1410, https://doi.org/10.5194/tc-17-1389-2023, https://doi.org/10.5194/tc-17-1389-2023, 2023
Short summary
Short summary
We try to explore the application of SGDR data in polar sea ice thickness. Through this study, we find that it seems difficult to obtain reasonable results by using conventional methods. So we use the 15 lowest points per 25 km to estimate SSHA to retrieve more reasonable Arctic radar freeboard and thickness. This study also provides reference for reprocessing L1 data. We will release products that are more reasonable and suitable for polar sea ice thickness retrieval to better evaluate HY-2B.
Cited articles
AVISO: SARAL/AltiKa geophysical data record (SGDR), AVISO [data set], https://www.aviso.altimetry.fr/en/data/products/sea-surface-height-products/global/gdr-igdr-and-ogdr.html, last access: 19 May 2025a.
AVISO: Sentinel-3A Along-track Sea Level Anomalies (L2P), AVISO [data set], https://www.aviso.altimetry.fr/en/data/products/sea-surface-height-products/global/along-track-sea-level-anomalies-l2p.html, last access: 19 May 2025b.
AVISO/DUACS: SWOT level‐3 SSH expert (v1.0), CNES [data set], https://doi.org/10.24400/527896/A01-2023.018, 2025.
Bas, A. B. V., Lenain, L., Cornuelle, B. D., Gille, S. T., and Mazloff, M. R.: A broadband view of the sea surface height wavenumber spectrum, Geophys. Res. Lett., 49, e2021GL096699, https://doi.org/10.1029/2021GL096699, 2022.
Callies, J. and Wu, W.: Some expectations for submesoscale sea surface height variance spectra, J. Phys. Oceanogr., 49, 2271–2289, https://doi.org/10.1175/JPO-D-18-0272.1, 2019.
Callies, J., Ferrari, R., Klymak, J. M., and Gula, J.: Seasonality in submesoscale turbulence, Nat. Commun., 6, 6862, https://doi.org/10.1038/ncomms7862, 2015.
Cao, H., Fox-Kemper, B., and Jing, Z.: Submesoscale eddies in the upper ocean of the Kuroshio Extension from high-resolution simulation: Energy budget, J. Phys. Oceanogr., 51, 2181–2201, https://doi.org/10.1175/JPO-D-20-0267.1, 2021.
Chelton, D. B., Schlax, M. G., Samelson, R. M., and de Szoeke, R. A.: Global observations of large oceanic eddies, Geophys. Res. Lett., 34, L15606, https://doi.org/10.1029/2007GL030812, 2007.
Chelton, D. B., Schlax, M. G., and Samelson, R. M.: Global observations of nonlinear mesoscale eddies, Prog. Oceanogr., 91, 167–216, https://doi.org/10.1016/j.pocean.2011.01.002, 2011.
Chelton, D. B., Schlax, M. G., Samelson, R. M., Farrar, J. T., Molemaker, M. J., McWilliams, J. C., and Gula, J.: Prospects for future satellite estimation of small-scale variability of ocean surface velocity and vorticity, Prog. Oceanogr., 173, 256–350, https://doi.org/10.1016/j.pocean.2018.10.012, 2019.
Chen, G., Han, G., and Yang, X.: On the intrinsic shape of oceanic eddies derived from satellite altimetry, Remote Sens. Environ., 228, 75–89, https://doi.org/10.1016/j.rse.2019.04.011, 2019.
Chereskin, T. K., Rocha, C. B., Gille, S. T., Menemenlis, D., and Passaro, M.: Characterizing the transition from balanced to unbalanced motions in the Southern California Current, J. Geophys. Res.-Oceans, 124, 2088–2109, https://doi.org/10.1029/2018JC014583, 2019.
Dufau, C., Orsztynowicz, M., Dibarboure, G., Morrow, R. and Le Traon, P. Y.: Mesoscale resolution capability of altimetry: Present and future, J. Geophys. Res.-Oceans, 121, 4910–4927, https://doi.org/10.1002/2015JC010904, 2016.
Fu, L. L., Pavelsky, T., Cretaux, J. F., Morrow, R., Farrar, J. T., Vaze, P., Sengenes, P., Vinogradova-Shiffer, N., Sylvestre-Baron, A., Picot, N., and Dibarboure, G.: The Surface Water and Ocean Topography mission: A breakthrough in radar remote sensing of the ocean and land surface water, Geophys. Res. Lett., 51, e2023GL107652, https://doi.org/10.1029/2023GL107652, 2024.
He, J., Xu, Y., Sun, H., Jiang, Q., Yang, L., Kong, W., and Liu, Y.: Sea surface height wavenumber spectrum from airborne interferometric radar altimeter, Remote Sens., 16, 1359, https://doi.org/10.3390/rs16081359, 2024.
Heslop, E. E., Sánchez-Román, A., Pascual, A., Rodríguez, D., Reeve, K. A., Faugère, Y., and Raynal, M.: Sentinel-3A views ocean variability more accurately at finer resolution, Geophys. Res. Lett., 44, 12–367, https://doi.org/10.1002/2017GL076244, 2017.
Jousset, S.: Mean dynamic topography MDT CNES_CLS 2022 (version 2022), CNES [data set], https://doi.org/10.24400/527896/a01-2023.003, 2025.
Lapeyre, G. and Klein, P.: Dynamics of the upper oceanic layers in terms of surface quasigeostrophy theory, J. Phys. Oceanogr., 36, 165–176, https://doi.org/10.1175/JPO2840.1, 2008.
Le Traon, P. Y., Klein, P., Hua, B. L., and Dibarboure, G.: Do altimeter wavenumber spectra agree with the interior or surface quasigeostrophic theory?, J. Phys. Oceanogr., 38, 1137–1142, https://doi.org/10.1175/2007JPO3806.1, 2008.
Lillibridge, J., Scharroo, R., Abdalla, S., and Vandemark, D.: One- and two-dimensional wind speed models for Ka-band altimetry, J. Atmos. Ocean. Tech., 31, 630–638, https://doi.org/10.1175/JTECH-D-13-00167.1, 2014.
Marks, K. M. and Smith, W. H. F.: Detecting small seamounts in AltiKa repeat cycle data, Mar. Geophys. Res., 37, 349–359, https://doi.org/10.1007/s11001-016-9293-0, 2016.
McWilliams, J. C.: Submesoscale currents in the ocean, Proc. Math. Phys. Eng. Sci., 472, 20160117, https://doi.org/10.1098/rspa.2016.0117, 2016.
NSOAS: HY-2B geophysical data record (SGDR), NSOAS [data set], https://osdds.nsoas.org.cn/OceanDynamics, 2025.
Qiu, B., Chen, S., Klein, P., Wang, J., Torres, H., Fu, L. L., and Menemenlis, D.: Seasonality in transition scale from balanced to unbalanced motions in the World Ocean, J. Phys. Oceanogr., 48, 591–605, https://doi.org/10.1175/JPO-D-17-0169.1, 2018.
Qiu, B., Nakano, T., Chen, S., and Klein, P.: Bi-directional energy cascades in the Pacific Ocean from equator to subarctic gyre, Geophys. Res. Lett., 49, e2022GL097713, https://doi.org/10.1029/2022GL097713, 2022.
Quartly, G. D. and Passaro, M.: Initial examination of AltiKa's individual echoes, Mar. Geod., 38, 73–85, https://doi.org/10.1080/01490419.2014.984882, 2015.
Raynal, M., Labroue, S., Moreau, T., Boy, F., and Picot, N.: From conventional to Delay Doppler altimetry: A demonstration of continuity and improvements with the Cryosat-2 mission, Adv. Space Res., 62, 1564–1575, https://doi.org/10.1016/j.asr.2018.01.006, 2018.
Richman, J. G., Arbic, B. K., Shriver, J. F., Metzger, E. J., and Wallcraft, A. J.: Inferring dynamics from the wavenumber spectra of an eddying global ocean model with embedded tides, J. Geophys. Res.-Oceans, 117, C12012, https://doi.org/10.1029/2012JC008364, 2012.
Rocha, C. B., Chereskin, T. K., Gille, S. T., and Menemenlis, D.: Mesoscale to submesoscale wavenumber spectra in Drake Passage, J. Phys. Oceanogr., 46, 601–620, https://doi.org/10.1175/JPO-D-15-0087.1, 2016.
Smith, K. S. and Vallis, G. K.: The scales and equilibration of midocean eddies: Freely evolving flow, J. Phys. Oceanogr., 31, 554–571, https://doi.org/10.1175/1520-0485(2001)031<0554:TSAEOM>2.0.CO;2, 2001.
Smith, W. H. F.: Resolution of seamount geoid anomalies achieved by the SARAL/AltiKa and Envisat RA2 satellite radar altimeters, Mar. Geod., 38, 644–671, https://doi.org/10.1080/01490419.2015.1014950, 2015.
Tchilibou, M., Gourdeau, L., Morrow, R., Serazin, G., Djath, B., and Lyard, F.: Spectral signatures of the tropical Pacific dynamics from model and altimetry: a focus on the meso-/submesoscale range, Ocean Sci., 14, 1283–1301, https://doi.org/10.5194/os-14-1283-2018, 2018.
Vergara, O., Morrow, R., Pujol, I., Dibarboure, G., and Ubelmann, C.: Revised Global Wave Number Spectra From Recent Altimeter Observations, J. Geophys. Res.-Oceans, 124, 3523–3537, https://doi.org/10.1029/2018JC014773, 2019.
Vergara, O., Morrow, R., Pujol, M.-I., Dibarboure, G., and Ubelmann, C.: Global submesoscale diagnosis using along-track satellite altimetry, Ocean Sci., 19, 363–379, https://doi.org/10.5194/os-19-363-2023, 2023.
Verron, J., Bonnefond, P., Andersen, O., Ardhuin, F., Bergé-Nguyen, M., Bhowmick, S., Blumstein, D., Boy, F., Brodeau, L., Crétaux, J. F., and Dabat, M. L.: The SARAL/AltiKa mission: A step forward to the future of altimetry, Adv. Space Res., 68, 808–828, https://doi.org/10.1016/j.asr.2020.01.030, 2021.
Verron, J., Sengenes, P., Lambin, J., Noubel, J., Steunou, N., Guillot, A., Picot, N., Coutin-Faye, S., Sharma, R., Gairola, R. M., and Murthy, D. R.: The SARAL/AltiKa Altimetry Satellite Mission, Mar. Geod., 38, 2–21, https://doi.org/10.1080/01490419.2014.1000471, 2015.
Xu, Y. and Fu, L. L.: Global Variability of the Wavenumber Spectrum of Oceanic Mesoscale Turbulence, J. Phys. Oceanogr., 41, 802–809, https://doi.org/10.1175/2010JPO4558.1, 2011.
Xu, Y. and Fu, L. L.: The Effects of Altimeter Instrument Noise on the Estimation of the Wavenumber Spectrum of Sea Surface Height, J. Phys. Oceanogr., 42, 2229–2233, https://doi.org/10.1175/JPO-D-12-0106.1, 2012.
Yi, J., Du, Y., He, Z., and Zhou, C.: Enhancing the accuracy of automatic eddy detection and the capability of recognizing the multi-core structures from maps of sea level anomaly, Ocean Sci., 10, 39–48, https://doi.org/10.5194/os-10-39-2014, 2014.
Zhou, R. S., Zhang, S. J., and Kong, X. X.: Investigation on Along-Track Geoid Resolution Capabilities of HY-2 Based on Spectrum Analysis, J. Northeastern Univ. (Nat. Sci.), 44, 1328, https://doi.org/10.12068/j.issn.1005-3026.2023.09.014, 2023.
Short summary
The distance-weighted averaging method was used to calculate the along-orbit sea surface height (SSH) wavenumber spectra of four satellites and to evaluate the along-track resolution capability of the four satellites. The results show that the resolution of Surface Water and Ocean Topography (SWOT) in the Kuroshio region is 25 km, which is twice the resolution of conventional satellites. A parameter was defined using the cross-power-spectrum approach and used to analyse the global ocean.
The distance-weighted averaging method was used to calculate the along-orbit sea surface height...