Articles | Volume 21, issue 6
https://doi.org/10.5194/os-21-2829-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-21-2829-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Estimating oceanic physics-driven vertical velocities in a wind-influenced coastal environment
Maxime Arnaud
CORRESPONDING AUTHOR
Aix Marseille Univ., Université de Toulon, CNRS, MIO, 13288, Marseille, France
Anne Petrenko
Aix Marseille Univ., Université de Toulon, CNRS, MIO, 13288, Marseille, France
Jean-Luc Fuda
Aix Marseille Univ., Université de Toulon, CNRS, MIO, 13288, Marseille, France
Caroline Comby
Aix Marseille Univ., Université de Toulon, CNRS, MIO, 13288, Marseille, France
Anthony Bosse
Aix Marseille Univ., Université de Toulon, CNRS, MIO, 13288, Marseille, France
Yann Ourmières
Aix Marseille Univ., Université de Toulon, CNRS, MIO, 13288, Marseille, France
Stéphanie Barrillon
Aix Marseille Univ., Université de Toulon, CNRS, MIO, 13288, Marseille, France
Related authors
No articles found.
Amine M'hamdi, Ariane Koch-Larrouy, Alex Costa da Silva, Isabelle Dadou, Carina Regina de Macedo, Anthony Bosse, Vincent Vantrepotte, Habib Micaël Aguedjou, Trung-Kien Tran, Pierre Testor, Laurent Mortier, Arnaud Bertrand, Pedro Augusto Mendes de Castro Melo, James Lee, Marcelo Rollnic, and Moacyr Araujo
Ocean Sci., 21, 2873–2894, https://doi.org/10.5194/os-21-2873-2025, https://doi.org/10.5194/os-21-2873-2025, 2025
Short summary
Short summary
In the ocean off the Amazon shelf, internal waves caused by tides move water layers up and down and mix them. Using an underwater glider and satellites, we found internal tides redistribute chlorophyll from the deep chlorophyll maximum upward to the surface and downward to depth. Turbulent chlorophyll fluxes supply about 38 % of surface chlorophyll, and total chlorophyll increases by 14–29 % during strong tides, potentially affecting the marine food web.
Gillian M. Damerell, Anthony Bosse, and Ilker Fer
Ocean Sci., 21, 2763–2785, https://doi.org/10.5194/os-21-2763-2025, https://doi.org/10.5194/os-21-2763-2025, 2025
Short summary
Short summary
The Lofoten Vortex is an unusual feature in the ocean: a permanent eddy which does not dissipate as most eddies do. We have long thought that other eddies must merge into the vortex in order to maintain its heat content and energetics, but such mergers are very difficult to observe due to their transient, unpredictable nature. For the first time, we have observed a merger using an ocean glider and high-resolution satellite data and can document how the merger affects the properties of the vortex.
Arne Bendinger, Sophie Cravatte, Lionel Gourdeau, Luc Rainville, Clément Vic, Guillaume Sérazin, Fabien Durand, Frédéric Marin, and Jean-Luc Fuda
Ocean Sci., 20, 945–964, https://doi.org/10.5194/os-20-945-2024, https://doi.org/10.5194/os-20-945-2024, 2024
Short summary
Short summary
A unique dataset of glider observations reveals tidal beams south of New Caledonia – an internal-tide-generation hot spot in the southwestern tropical Pacific. Observations are in good agreement with numerical modeling output, highlighting the glider's capability to infer internal tides while assessing the model's realism of internal-tide dynamics. Discrepancies are in large part linked to eddy–internal-tide interactions. A methodology is proposed to deduce the internal-tide surface signature.
Nicolas Metzl, Jonathan Fin, Claire Lo Monaco, Claude Mignon, Samir Alliouane, David Antoine, Guillaume Bourdin, Jacqueline Boutin, Yann Bozec, Pascal Conan, Laurent Coppola, Frédéric Diaz, Eric Douville, Xavier Durrieu de Madron, Jean-Pierre Gattuso, Frédéric Gazeau, Melek Golbol, Bruno Lansard, Dominique Lefèvre, Nathalie Lefèvre, Fabien Lombard, Férial Louanchi, Liliane Merlivat, Léa Olivier, Anne Petrenko, Sébastien Petton, Mireille Pujo-Pay, Christophe Rabouille, Gilles Reverdin, Céline Ridame, Aline Tribollet, Vincenzo Vellucci, Thibaut Wagener, and Cathy Wimart-Rousseau
Earth Syst. Sci. Data, 16, 89–120, https://doi.org/10.5194/essd-16-89-2024, https://doi.org/10.5194/essd-16-89-2024, 2024
Short summary
Short summary
This work presents a synthesis of 44 000 total alkalinity and dissolved inorganic carbon observations obtained between 1993 and 2022 in the Global Ocean and the Mediterranean Sea at the surface and in the water column. Seawater samples were measured using the same method and calibrated with international Certified Reference Material. We describe the data assemblage, quality control and some potential uses of this dataset.
Roxane Tzortzis, Andrea M. Doglioli, Monique Messié, Stéphanie Barrillon, Anne A. Petrenko, Lloyd Izard, Yuan Zhao, Francesco d'Ovidio, Franck Dumas, and Gérald Gregori
Biogeosciences, 20, 3491–3508, https://doi.org/10.5194/bg-20-3491-2023, https://doi.org/10.5194/bg-20-3491-2023, 2023
Short summary
Short summary
We studied a finescale frontal structure in order to highlight its influence on the dynamics and distribution of phytoplankton communities. We computed the growth rates of several phytoplankton groups identified by flow cytometry in two water masses separated by the front. We found contrasted phytoplankton dynamics on the two sides of the front, consistent with the distribution of their abundances. Our study gives new insights into the physical and biological coupling on a finescale front.
Stéphanie Barrillon, Robin Fuchs, Anne A. Petrenko, Caroline Comby, Anthony Bosse, Christophe Yohia, Jean-Luc Fuda, Nagib Bhairy, Frédéric Cyr, Andrea M. Doglioli, Gérald Grégori, Roxane Tzortzis, Francesco d'Ovidio, and Melilotus Thyssen
Biogeosciences, 20, 141–161, https://doi.org/10.5194/bg-20-141-2023, https://doi.org/10.5194/bg-20-141-2023, 2023
Short summary
Short summary
Extreme weather events can have a major impact on ocean physics and biogeochemistry, but their study is challenging. In May 2019, an intense storm occurred in the north-western Mediterranean Sea, during which in situ multi-platform measurements were performed. The results show a strong impact on the surface phytoplankton, highlighting the need for high-resolution measurements coupling physics and biology during these violent events that may become more common in the context of global change.
Katia Mallil, Pierre Testor, Anthony Bosse, Félix Margirier, Loic Houpert, Hervé Le Goff, Laurent Mortier, and Ferial Louanchi
Ocean Sci., 18, 937–952, https://doi.org/10.5194/os-18-937-2022, https://doi.org/10.5194/os-18-937-2022, 2022
Short summary
Short summary
Our study documents the circulation in the Algerian Basin of the western Mediterranean Sea using in situ data. It shows that the Algerian Gyres have an impact on the distribution at intermediate depth of Levantine Intermediate Water. They allow a westward transport from the south of Sardinia toward the interior of the Algerian Basin. Temperature and salinity trends of this water mass are also investigated, confirming a recent acceleration of the warming and salinification during the last decade.
Roxane Tzortzis, Andrea M. Doglioli, Stéphanie Barrillon, Anne A. Petrenko, Francesco d'Ovidio, Lloyd Izard, Melilotus Thyssen, Ananda Pascual, Bàrbara Barceló-Llull, Frédéric Cyr, Marc Tedetti, Nagib Bhairy, Pierre Garreau, Franck Dumas, and Gérald Gregori
Biogeosciences, 18, 6455–6477, https://doi.org/10.5194/bg-18-6455-2021, https://doi.org/10.5194/bg-18-6455-2021, 2021
Short summary
Short summary
This work analyzes an original high-resolution data set collected in the Mediterranean Sea. The major result is the impact of a fine-scale frontal structure on the distribution of phytoplankton groups, in an area of moderate energy with oligotrophic conditions. Our results provide an in situ confirmation of the findings obtained by previous modeling studies and remote sensing about the structuring effect of the fine-scale ocean dynamics on the structure of the phytoplankton community.
Léo Berline, Andrea Michelangelo Doglioli, Anne Petrenko, Stéphanie Barrillon, Boris Espinasse, Frederic A. C. Le Moigne, François Simon-Bot, Melilotus Thyssen, and François Carlotti
Biogeosciences, 18, 6377–6392, https://doi.org/10.5194/bg-18-6377-2021, https://doi.org/10.5194/bg-18-6377-2021, 2021
Short summary
Short summary
While the Ionian Sea is considered a nutrient-depleted and low-phytoplankton biomass area, it is a crossroad for water mass circulation. In the central Ionian Sea, we observed a strong contrast in particle distribution across a ~100 km long transect. Using remote sensing and Lagrangian simulations, we suggest that this contrast finds its origin in the long-distance transport of particles from the north, west and east of the Ionian Sea, where phytoplankton production was more intense.
Elvira Pulido-Villena, Karine Desboeufs, Kahina Djaoudi, France Van Wambeke, Stéphanie Barrillon, Andrea Doglioli, Anne Petrenko, Vincent Taillandier, Franck Fu, Tiphanie Gaillard, Sophie Guasco, Sandra Nunige, Sylvain Triquet, and Cécile Guieu
Biogeosciences, 18, 5871–5889, https://doi.org/10.5194/bg-18-5871-2021, https://doi.org/10.5194/bg-18-5871-2021, 2021
Short summary
Short summary
We report on phosphorus dynamics in the surface layer of the Mediterranean Sea. Highly sensitive phosphate measurements revealed vertical gradients above the phosphacline. The relative contribution of diapycnal fluxes to total external supply of phosphate to the mixed layer decreased towards the east, where atmospheric deposition dominated. Taken together, external sources of phosphate contributed little to total supply, which was mainly sustained by enzymatic hydrolysis of organic phosphorus.
Cécile Guieu, Fabrizio D'Ortenzio, François Dulac, Vincent Taillandier, Andrea Doglioli, Anne Petrenko, Stéphanie Barrillon, Marc Mallet, Pierre Nabat, and Karine Desboeufs
Biogeosciences, 17, 5563–5585, https://doi.org/10.5194/bg-17-5563-2020, https://doi.org/10.5194/bg-17-5563-2020, 2020
Short summary
Short summary
We describe here the objectives and strategy of the PEACETIME project and cruise, dedicated to dust deposition and its impacts in the Mediterranean Sea. Our strategy to go a step further forward than in previous approaches in understanding these impacts by catching a real deposition event at sea is detailed. We summarize the work performed at sea, the type of data acquired and their valorization in the papers published in the special issue.
Cited articles
Bakun, A. and Agostini, V. N.: Seasonal patterns of wind-induced upwelling/downwelling in the Mediterranean Sea, Scientia Marina, 65, 243–257, https://doi.org/10.3989/scimar.2001.65n3243, 2001. a
Barral, Q.-B.: Caractérisation du front Nord-Baléares: Variabilité et rôle de la circulation des masses d'eau en Méditerranée Occidentale, These de doctorat, Toulon, https://theses.fr/2022TOUL0006 (last access: 15 March 2025), 2022. a
Barrier, N., Petrenko, A. A., and Ourmières, Y.: Strong intrusions of the Northern Mediterranean Current on the eastern Gulf of Lion: insights from in-situ observations and high resolution numerical modelling, Ocean Dynamics, 66, 313–327, https://doi.org/10.1007/s10236-016-0921-7, 2016. a, b, c, d, e
Barrillon, S.: FUMSECK cruise, RV Téthys II, https://doi.org/10.17600/18001155, 2019. a
Berta, M., Bellomo, L., Griffa, A., Magaldi, M. G., Molcard, A., Mantovani, C., Gasparini, G. P., Marmain, J., Vetrano, A., Béguery, L., Borghini, M., Barbin, Y., Gaggelli, J., and Quentin, C.: Wind-induced variability in the Northern Current (northwestern Mediterranean Sea) as depicted by a multi-platform observing system, Ocean Sci., 14, 689–710, https://doi.org/10.5194/os-14-689-2018, 2018. a, b, c, d
Bosse, A., Testor, P., Damien, P., Estournel, C., Marsaleix, P., Mortier, L., Prieur, L., and Taillandier, V.: Wind-Forced Submesoscale Symmetric Instability around Deep Convection in the Northwestern Mediterranean Sea, Fluids, 6, 123, https://doi.org/10.3390/fluids6030123, 2021. a, b
Bouyssel, F., Berre, L., Bénichou, H., Chambon, P., Girardot, N., Guidard, V., Loo, C., Mahfouf, J.-F., Moll, P., Payan, C., and Raspaud, D.: The 2020 Global Operational NWP Data Assimilation System at Météo-France, in: Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. IV), edited by: Park, S. K. and Xu, L., Springer International Publishing, Cham, 645–664, ISBN 978-3-030-77722-7, https://doi.org/10.1007/978-3-030-77722-7_25, 2022. a
Buongiorno Nardelli, B., Tronconi, C., Pisano, A., and Santoleri, R.: High and Ultra-High resolution processing of satellite Sea Surface Temperature data over Southern European Seas in the framework of MyOcean project, Remote Sensing of Environment, 129, 1–16, https://doi.org/10.1016/j.rse.2012.10.012, 2013. a, b
Buongiorno Nardelli, B., Pisano, A., Tronconi, C., and Santoleri, R.: Evaluation of different covariance models for the operational interpolation of high resolution satellite Sea Surface Temperature data over the Mediterranean Sea, Remote Sensing of Environment, 164, 334–343, https://doi.org/10.1016/j.rse.2015.04.025, 2015. a
Christensen, K. M., Gray, A. R., and Riser, S. C.: Global Estimates of Mesoscale Vertical Velocity Near 1,000 m From Argo Observations, Journal of Geophysical Research: Oceans, 129, e2023JC020003, https://doi.org/10.1029/2023JC020003, 2024. a
Cisewski, B., Hátún, H., Kristiansen, I., Hansen, B., Larsen, K. M. H., Eliasen, S. K., and Jacobsen, J. A.: Vertical Migration of Pelagic and Mesopelagic Scatterers From ADCP Backscatter Data in the Southern Norwegian Sea, Frontiers in Marine Science, 7, https://doi.org/10.3389/fmars.2020.542386, 2021. a, b
Clément, L., Merckelbach, L., and Frajka-Williams, E.: Turbulent Vertical Velocities in Labrador Sea Convection, Geophysical Research Letters, 51, e2024GL110318, https://doi.org/10.1029/2024GL110318, 2024. a
Comby, C., Barrillon, S., Fuda, J.-L., Doglioli, A. M., Tzortzis, R., Grégori, G., Thyssen, M., and Petrenko, A. A.: Measuring Vertical Velocities with ADCPs in Low-Energy Ocean, Journal of Atmospheric and Oceanic Technology, 39, 1669–1684, https://doi.org/10.1175/JTECH-D-21-0180.1, 2022. a, b, c, d
Cortés-Morales, D. and Lazar, A.: Vertical Velocity 3D Estimates from the Linear Vorticity Balance in the North Atlantic Ocean, Journal of Physical Oceanography, 54, 2185–2203, https://doi.org/10.1175/JPO-D-24-0011.1, 2024. a
Declerck, A., Ourmières, Y., and Molcard, A.: Assessment of the coastal dynamics in a nested zoom and feedback on the boundary current: the North-Western Mediterranean Sea case, Ocean Dynamics, 66, 1529–1542, https://doi.org/10.1007/s10236-016-0985-4, 2016. a
D’Asaro, E. A., Shcherbina, A. Y., Klymak, J. M., Molemaker, J., Novelli, G., Guigand, C. M., Haza, A. C., Haus, B. K., Ryan, E. H., Jacobs, G. A., Huntley, H. S., Laxague, N. J. M., Chen, S., Judt, F., McWilliams, J. C., Barkan, R., Kirwan, A. D., Poje, A. C., and Özgökmen, T. M.: Ocean convergence and the dispersion of flotsam, Proceedings of the National Academy of Sciences, 115, 1162–1167, https://doi.org/10.1073/pnas.1718453115, 2018. a
Doglioli, A., and Gregori, G.: BioSWOT-Med cruise, RV L'Atalante, https://doi.org/10.17600/18002392, 2023. a
d’Ovidio, F., De Monte, S., Alvain, S., Dandonneau, Y., and Lévy, M.: Fluid dynamical niches of phytoplankton types, Proceedings of the National Academy of Sciences, 107, 18366–18370, https://doi.org/10.1073/pnas.1004620107, 2010. a
d’Ovidio, F., Pascual, A., Wang, J., Doglioli, A. M., Jing, Z., Moreau, S., Grégori, G., Swart, S., Speich, S., Cyr, F., Legresy, B., Chao, Y., Fu, L., and Morrow, R. A.: Frontiers in Fine-Scale in situ Studies: Opportunities During the SWOT Fast Sampling Phase, Frontiers in Marine Science, 6, https://doi.org/10.3389/fmars.2019.00168, 2019. a
Enright, J. T. and Honegger, H.-W.: Diurnal vertical migration: Adaptive significance and timing. Part 2. Test of the model: Details of timing, Limnology and Oceanography, 22, 873–886, https://doi.org/10.4319/lo.1977.22.5.0873, 1977. a
Esposito, G., Donnet, S., Berta, M., Shcherbina, A. Y., Freilich, M., Centurioni, L., D’Asaro, E. A., Farrar, J. T., Johnston, T. M. S., Mahadevan, A., Özgökmen, T., Pascual, A., Poulain, P.-M., Ruiz, S., Tarry, D. R., and Griffa, A.: Inertial Oscillations and Frontal Processes in an Alboran Sea Jet: Effects on Divergence and Vertical Transport, Journal of Geophysical Research: Oceans, 128, e2022JC019004, https://doi.org/10.1029/2022JC019004, 2023. a
Fiekas, V., Leach, H., Mirbach, K.-J., and Woods, J. D.: Mesoscale Instability and Upwelling. Part 1: Observations at the North Atlantic Intergyre Front, Journal of Physical Oceanography, 24, 1750–1758, https://doi.org/10.1175/1520-0485(1994)024<1750:MIAUPO>2.0.CO;2, 1994. a
Frajka-Williams, E., Eriksen, C. C., Rhines, P. B., and Harcourt, R. R.: Determining Vertical Water Velocities from Seaglider, Journal of Atmospheric and Oceanic Technology, 28, 1641–1656, https://doi.org/10.1175/2011JTECHO830.1, 2011. a, b
Fuda, J.-L., Barrillon, S., Comby, C., Doglioli, A., Le Gal, P., and Petrenko, A.: Estimating ocean vertical velocities using an autonomous multipurpose profiler, in: 2023 IEEE International Workshop on Metrology for the Sea, Learning to Measure Sea Health Parameters (MetroSea), IEEE, La Valletta, Malta, 6–10, ISBN 979-8-3503-4065-5, https://doi.org/10.1109/MetroSea58055.2023.10317407, 2023. a, b
Garcia-Jove, M., Mourre, B., Zarokanellos, N. D., Lermusiaux, P. F. J., Rudnick, D. L., and Tintoré, J.: Frontal Dynamics in the Alboran Sea: 2. Processes for Vertical Velocities Development, Journal of Geophysical Research: Oceans, 127, e2021JC017428, https://doi.org/10.1029/2021JC017428, 2022. a
Gastauer, S., Nickels, C. F., and Ohman, M. D.: Body size- and season-dependent diel vertical migration of mesozooplankton resolved acoustically in the San Diego Trough, Limnology and Oceanography, 67, 300–313, https://doi.org/10.1002/lno.11993, 2022. a
Giordani, H., Prieur, L., and Caniaux, G.: Advanced insights into sources of vertical velocity in the ocean, Ocean Dynamics, 56, 513–524, https://doi.org/10.1007/s10236-005-0050-1, 2006. a
Giordani, H., Lebeaupin-Brossier, C., Léger, F., and Caniaux, G.: A PV-approach for dense water formation along fronts: Application to the Northwestern Mediterranean, Journal of Geophysical Research: Oceans, 122, 995–1015, https://doi.org/10.1002/2016JC012019, 2017. a
Guenard, V., Drobinski, P., Caccia, J.-L., Campistron, B., and Bench, B.: An Observational Study of the Mesoscale Mistral Dynamics, Boundary-Layer Meteorology, 115, 263–288, https://doi.org/10.1007/s10546-004-3406-z, 2005. a
Guerra, D., Schroeder, K., Borghini, M., Camatti, E., Pansera, M., Schroeder, A., Sparnocchia, S., and Chiggiato, J.: Zooplankton diel vertical migration in the Corsica Channel (north-western Mediterranean Sea) detected by a moored acoustic Doppler current profiler, Ocean Sci., 15, 631–649, https://doi.org/10.5194/os-15-631-2019, 2019. a, b, c
Haney, J. F.: Diel Patterns of Zooplankton Behavior, Bulletin of Marine Science, 43, 583–603, 1988. a
He, J. and Mahadevan, A.: Vertical Velocity Diagnosed From Surface Data With Machine Learning, Geophysical Research Letters, 51, e2023GL104835, https://doi.org/10.1029/2023GL104835, 2024. a
Heywood, K. J.: Diel vertical migration of zooplankton in the Northeast Atlantic, Journal of Plankton Research, 18, 163–184, https://doi.org/10.1093/plankt/18.2.163, 1996. a, b
Hoskins, B. J., Draghici, I., and Davies, H. C.: A new look at the ω‐equation, Quarterly Journal of the Royal Meteorological Society, 104, 31–38, https://doi.org/10.1002/qj.49710443903, 1978. a, b
Jacox, M. G., Edwards, C. A., Hazen, E. L., and Bograd, S. J.: Coastal Upwelling Revisited: Ekman, Bakun, and Improved Upwelling Indices for the U.S. West Coast, Journal of Geophysical Research: Oceans, 123, 7332–7350, https://doi.org/10.1029/2018JC014187, 2018. a
Jakes, M., Phillips, H., Foppert, A., Cyriac, A., Bindoff, N., Rintoul, S., and Thompson, A.: Observational Evidence of Cold Filamentary Intensification in an Energetic Meander of the Antarctic Circumpolar Current, Journal of Physical Oceanography, 54, https://doi.org/10.1175/JPO-D-23-0085.1, 2024. a
Johnson, D. R.: Determining vertical velocities during upwelling off the Oregon coast, Deep Sea Research, 24, 171–180, https://doi.org/10.1016/0146-6291(77)90551-3, 1977. a
Lamy, A., Millot, C., and Molines, J. M.: Bottom Pressure and Sea Level Measurements in the Gulf of Lions, Journal of Physical Oceanography, 11, 394–409, https://doi.org/10.1175/1520-0485(1981)011<0394:BPASLM>2.0.CO;2, 1981. a
Lebeaupin Brossier, C., Drobinski, P., Béranger, K., Bastin, S., and Orain, F.: Ocean memory effect on the dynamics of coastal heavy precipitation preceded by a mistral event in the northwestern Mediterranean, Quarterly Journal of the Royal Meteorological Society, 139, 1583–1597, https://doi.org/10.1002/qj.2049, 2013. a
Mahadevan, A.: The Impact of Submesoscale Physics on Primary Productivity of Plankton, Annual Review of Marine Science, 8, 161–184, https://doi.org/10.1146/annurev-marine-010814-015912, 2016. a
Mahadevan, A. and Tandon, A.: An analysis of mechanisms for submesoscale vertical motion at ocean fronts, Ocean Modelling, 14, 241–256, https://doi.org/10.1016/j.ocemod.2006.05.006, 2006. a
Margirier, F., Bosse, A., Testor, P., L'Hévéder, B., Mortier, L., and Smeed, D.: Characterization of Convective Plumes Associated With Oceanic Deep Convection in the Northwestern Mediterranean From High‐Resolution In Situ Data Collected by Gliders, Journal of Geophysical Research: Oceans, 122, 9814–9826, https://doi.org/10.1002/2016JC012633, 2017. a
Mauzole, Y. L., Torres, H. S., and Fu, L.-L.: Patterns and Dynamics of SST Fronts in the California Current System, Journal of Geophysical Research: Oceans, 125, e2019JC015499, https://doi.org/10.1029/2019JC015499, 2020. a
Merckelbach, L., Smeed, D., and Griffiths, G.: Vertical Water Velocities from Underwater Gliders, Journal of Atmospheric and Oceanic Technology, 27, 547–563, https://doi.org/10.1175/2009JTECHO710.1, 2010. a, b
Millot, C.: Circulation in the Western Mediterranean Sea, Journal of Marine Systems, 20, 423–442, https://doi.org/10.1016/S0924-7963(98)00078-5, 1999. a
Millot, C. and Taupier-Letage, I.: Circulation in the Mediterranean Sea, in: The Mediterranean Sea, edited by: Saliot, A., Vol. The Mediterranean Sea of Handbook of Environmental Chemistry, Springer, 29–66, https://doi.org/10.1007/b107143, 2005. a
Millot, C. and Wald, L.: Upwelling in the Gulf of Lions, in: Coastal Upwelling, American Geophysical Union (AGU), 160–166, ISBN 978-1-118-66532-9, https://agupubs.onlinelibrary.wiley.com/doi/10.1029/CO001p0160 (last access: 7 October 2025), 1981. a
Molinari, R. and Kirwan, A. D.: Calculations of Differential Kinematic Properties from Lagrangian Observations in the Western Caribbean Sea, Journal of Physical Oceanography, 5, 483–491, https://doi.org/10.1175/1520-0485(1975)005<0483:CODKPF>2.0.CO;2, 1975. a
Mourre, B., Reyes, E., Lorente, P., Santana, A., Hernández-Lasheras, J., Hernández-Carrasco, I., García-Jove, M., and Zarokanellos, N. D.: Intense wind-driven coastal upwelling in the Balearic Islands in response to Storm Blas (November 2021), in: 7th edition of the Copernicus Ocean State Report (OSR7), edited by: von Schuckmann, K., Moreira, L., Le Traon, P.-Y., Grégoire, M., Marcos, M., Staneva, J., Brasseur, P., Garric, G., Lionello, P., Karstensen, J., and Neukermans, G., Copernicus Publications, State Planet, 1-osr7, 15, https://doi.org/10.5194/sp-1-osr7-15-2023, 2023. a, b
Ngo, M.-H. and Hsin, Y.-C.: Three-dimensional structure of temperature, salinity, and Velocity of the summertime Vietnamese upwelling system in the South China Sea on the interannual timescale, Progress in Oceanography, 229, 103354, https://doi.org/10.1016/j.pocean.2024.103354, 2024. a
Odic, R., Bensoussan, N., Pinazo, C., Taupier-Letage, I., and Rossi, V.: Sporadic wind-driven upwelling/downwelling and associated cooling/warming along Northwestern Mediterranean coastlines, Continental Shelf Research, 250, 104843, https://doi.org/10.1016/j.csr.2022.104843, 2022. a
Petrenko, A., Barrier, N., Libes, M., Quentin, C., and Arnaud, M.: JULIO – Judicious Location for Intrusions Observations, SEANO [data set], https://doi.org/10.17882/91036, 2023. a, b
Petrenko, A. A.: Variability of circulation features in the Gulf of Lion NW Mediterranean Sea. Importance of inertial currents, Oceanologica Acta, 26, 323–338, https://doi.org/10.1016/S0399-1784(03)00038-0, 2003. a
Phillips, H. E. and Bindoff, N. L.: On the nonequivalent barotropic structure of the Antarctic Circumpolar Current: An observational perspective, Journal of Geophysical Research: Oceans, 119, 5221–5243, https://doi.org/10.1002/2013JC009516, 2014. a
Pisano, A., Fanelli, C., Ciani, D., Tronconi, C., Cesarini, C., La Padula, F., and Buongiorno Nardelli, B.: SST_MED_SST_L4_NRT_OBSERVATIONS_010_004, CMEMS [data set], https://doi.org/10.48670/moi-00172, 2024. a
Pollard, R. T. and Regier, L. A.: Vorticity and Vertical Circulation at an Ocean Front, Journal of Physical Oceanography, 22, 609–625, https://doi.org/10.1175/1520-0485(1992)022<0609:VAVCAA>2.0.CO;2, 1992. a
Pujol, M. I.: SEALEVEL_EUR_PHY_L4_MY_008_068, CMEMS [data set], https://doi.org/10.48670/moi-00141, 2024. a
Ragone, F., Meli, A., Napoli, A., and Pasquero, C.: Ocean Surface Anomalies after Strong Winds in the Western Mediterranean Sea, Journal of Marine Science and Engineering, 7, 182, https://doi.org/10.3390/jmse7060182, 2019. a
Rey, V., Dufresne, C., Fuda, J.-L., Mallarino, D., Missamou, T., Paugam, C., Rougier, G., and Taupier-Letage, I.: On the use of long-term observation of water level and temperature along the shore for a better understanding of the dynamics: example of Toulon area, France, Ocean Dynamics, 70, 913–933, https://doi.org/10.1007/s10236-020-01363-7, 2020. a
Richez, C.: The West Spitsbergen Current as seen by SOFAR floats during the ARCTEMIZ 88 Experiment: Statistics, differential kinematic properties, and potential vorticity balance, Journal of Geophysical Research: Oceans, 103, 15539–15565, https://doi.org/10.1029/97JC02421, 1998. a
Righi, D. D. and Strub, P. T.: The use of simulated drifters to estimate vorticity, Journal of Marine Systems, 29, 125–140, https://doi.org/10.1016/S0924-7963(01)00013-6, 2001. a
Rousselet, L., Doglioli, A. M., de Verneil, A., Pietri, A., Della Penna, A., Berline, L., Marrec, P., Grégori, G., Thyssen, M., Carlotti, F., Barrillon, S., Simon-Bot, F., Bonal, M., d'Ovidio, F., and Petrenko, A.: Vertical Motions and Their Effects on a Biogeochemical Tracer in a Cyclonic Structure Finely Observed in the Ligurian Sea, Journal of Geophysical Research: Oceans, 124, 3561–3574, https://doi.org/10.1029/2018JC014392, 2019. a
Rudnick, D. L.: Intensive surveys of the Azores Front: 2. Inferring the geostrophic and vertical velocity fields, Journal of Geophysical Research: Oceans, 101, 16291–16303, https://doi.org/10.1029/96JC01144, 1996. a
Ruiz, S., Pascual, A., Garau, B., Pujol, I., and Tintoré, J.: Vertical motion in the upper ocean from glider and altimetry data, Geophysical Research Letters, 36, https://doi.org/10.1029/2009GL038569, 2009. a
Sammartino, S., García-Lafuente, J., Nadal, I., and Sánchez-Leal, R. F.: Coupled echosounder and Doppler profiler measurements in the Strait of Gibraltar, Scientific Reports, 14, 31261, https://doi.org/10.1038/s41598-024-82670-7, 2024. a
Siegel, D. A., DeVries, T., Cetinić, I., and Bisson, K. M.: Quantifying the Ocean's Biological Pump and Its Carbon Cycle Impacts on Global Scales, Annual Review of Marine Science, 15, 329–356, https://doi.org/10.1146/annurev-marine-040722-115226, 2023. a
Soukissian, T. and Sotiriou, M.-A.: Long-Term Variability of Wind Speed and Direction in the Mediterranean Basin, Wind, 2, 513–534, https://doi.org/10.3390/wind2030028, 2022. a
Sourisseau, M., Simard, Y., and Saucier, F. J.: Krill diel vertical migration fine dynamics, nocturnal overturns, and their roles for aggregation in stratified flows, Canadian Journal of Fisheries and Aquatic Sciences, 65, 574–587, https://doi.org/10.1139/f07-179, 2008. a
Spydell, M. S., Feddersen, F., and Macmahan, J.: The Effect of Drifter GPS Errors on Estimates of Submesoscale Vorticity, Journal of Atmospheric and Oceanic Technology, 36, 2101–2119, https://doi.org/10.1175/JTECH-D-19-0108.1, 2019. a
Tarling, G., Thorpe, S., Fielding, S., Klevjer, T., Ryabov, A., and Somerfield, P.: Varying depth and swarm dimensions of open-ocean Antarctic krill Euphausia superba Dana, 1850 (Euphausiacea) over diel cycles, Journal of Crustacean Biology, https://doi.org/10.1093/jcbiol/ruy040, 2018. a
Tarling, G. A. and Thorpe, S. E.: Oceanic swarms of Antarctic krill perform satiation sinking, Proceedings of the Royal Society B: Biological Sciences, 284, 20172015, https://doi.org/10.1098/rspb.2017.2015, 2017. a, b
Tarling, G. A., Matthews, J. B. L., David, P., Guerin, O., and Buchholz, F.: The swarm dynamics of northern krill (Meganyctiphanes norvegica) and pteropods (Cavolinia inflexa) during vertical migration in the Ligurian Sea observed by an acoustic Doppler current profiler, Deep Sea Research Part I: Oceanographic Research Papers, 48, 1671–1686, https://doi.org/10.1016/S0967-0637(00)00105-9, 2001. a, b
Tarling, G. A., Klevjer, T., Fielding, S., Watkins, J., Atkinson, A., Murphy, E., Korb, R., Whitehouse, M., and Leaper, R.: Variability and predictability of Antarctic krill swarm structure, Deep Sea Research Part I: Oceanographic Research Papers, 56, 1994–2012, https://doi.org/10.1016/j.dsr.2009.07.004, 2009. a
Tarry, D. R., Essink, S., Pascual, A., Ruiz, S., Poulain, P., Özgökmen, T., Centurioni, L. R., Farrar, J. T., Shcherbina, A., Mahadevan, A., and D’Asaro, E.: Frontal Convergence and Vertical Velocity Measured by Drifters in the Alboran Sea, Journal of Geophysical Research: Oceans, 126, e2020JC016614, https://doi.org/10.1029/2020JC016614, 2021. a
Tarry, D. R., Ruiz, S., Johnston, T. M. S., Poulain, P., Özgökmen, T., Centurioni, L. R., Berta, M., Esposito, G., Farrar, J. T., Mahadevan, A., and Pascual, A.: Drifter Observations Reveal Intense Vertical Velocity in a Surface Ocean Front, Geophysical Research Letters, 49, e2022GL098969, https://doi.org/10.1029/2022GL098969, 2022. a
Testor, P., Bosse, A., Houpert, L., Margirier, F., Mortier, L., Legoff, H., Dausse, D., Labaste, M., Karstensen, J., Hayes, D., Olita, A., Ribotti, A., Schroeder, K., Chiggiato, J., Onken, R., Heslop, E., Mourre, B., D'ortenzio, F., Mayot, N., Lavigne, H., de Fommervault, O., Coppola, L., Prieur, L., Taillandier, V., Durrieu de Madron, X., Bourrin, F., Many, G., Damien, P., Estournel, C., Marsaleix, P., Taupier-Letage, I., Raimbault, P., Waldman, R., Bouin, M.-N., Giordani, H., Caniaux, G., Somot, S., Ducrocq, V., and Conan, P.: Multiscale Observations of Deep Convection in the Northwestern Mediterranean Sea During Winter 2012–2013 Using Multiple Platforms, Journal of Geophysical Research: Oceans, 123, 1745–1776, https://doi.org/10.1002/2016JC012671, 2018. a
Thurnherr, A. M.: Vertical velocity from LADCP data, in: 2011 IEEE/OES 10th Current, Waves and Turbulence Measurements (CWTM), IEEE, Monterey, CA, USA, 198–204, ISBN 978-1-4244-9285-5, https://doi.org/10.1109/CWTM.2011.5759552, 2011. a
Tintoré, J., Gomis, D., Alonso, S., and Parrilla, G.: Mesoscale Dynamics and Vertical Motion in the Alborán Sea, Journal of Physical Oceanography, 21, 811–823, https://doi.org/10.1175/1520-0485(1991)021<0811:MDAVMI>2.0.CO;2, 1991. a
Tzortzis, R., Doglioli, A. M., Barrillon, S., Petrenko, A. A., d'Ovidio, F., Izard, L., Thyssen, M., Pascual, A., Barceló-Llull, B., Cyr, F., Tedetti, M., Bhairy, N., Garreau, P., Dumas, F., and Gregori, G.: Impact of moderately energetic fine-scale dynamics on the phytoplankton community structure in the western Mediterranean Sea, Biogeosciences, 18, 6455–6477, https://doi.org/10.5194/bg-18-6455-2021, 2021. a
van Haren, H.: Internal wave–zooplankton interactions in the Alboran Sea (W-Mediterranean), Journal of Plankton Research, 36, 1124–1134, https://doi.org/10.1093/plankt/fbu031, 2014. a, b
Zhu, R., Yang, H., Li, M., Chen, Z., Ma, X., Cai, J., and Wu, L.: Observations reveal vertical transport induced by submesoscale front, Scientific Reports, 14, 4407, https://doi.org/10.1038/s41598-024-54940-x, Group, 2024. a
Zveryaev, I. I.: Seasonal differences in intraseasonal and interannual variability of Mediterranean Sea surface temperature, Journal of Geophysical Research: Oceans, 120, 2813–2825, https://doi.org/10.1002/2014JC010387, 2015. a
Short summary
Measuring oceanic vertical velocities accurately is a challenge in today’s physical oceanography. Our work shows intense wind-induced coastal events involving upward or downward water movements that have been detected using an acoustic current profiler. These data has also been validated with other in situ and satellite observations. A brand new method to identify and filter out biology-induced velocities is also presented, giving an interdisciplinary point of view of such coastal processes.
Measuring oceanic vertical velocities accurately is a challenge in today’s physical...