Articles | Volume 21, issue 5
https://doi.org/10.5194/os-21-2419-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-21-2419-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Mechanisms of warm-water intrusions onto the West Spitsbergen Shelf during winter
Department of Arctic Geophysics, The University Centre in Svalbard, Longyearbyen, Norway
Geophysical Institute, University of Bergen, Bergen, Norway
Jon Albretsen
Institute of Marine Research, Bergen, Norway
Ragnheid Skogseth
Department of Arctic Geophysics, The University Centre in Svalbard, Longyearbyen, Norway
Frank Nilsen
Department of Arctic Geophysics, The University Centre in Svalbard, Longyearbyen, Norway
Geophysical Institute, University of Bergen, Bergen, Norway
Marius O. Jonassen
Department of Arctic Geophysics, The University Centre in Svalbard, Longyearbyen, Norway
Geophysical Institute, University of Bergen, Bergen, Norway
Related authors
Kjersti Kalhagen, Ilker Fer, Till M. Baumann, Jon Albretsen, and Lukas Frank
EGUsphere, https://doi.org/10.5194/egusphere-2025-4402, https://doi.org/10.5194/egusphere-2025-4402, 2025
This preprint is open for discussion and under review for Ocean Science (OS).
Short summary
Short summary
Warm Atlantic Water loses heat as it flows eastwards along the continental slope north of Svalbard. Year-long mooring records show the current is most energetic in autumn and winter, when it is the strongest and warmest. Also conversion from mean and potential energy to eddy energy peak in autumn and winter. An ocean model shows energy conversion also on the deeper, offshore side, suggesting eddies transport heat towards the basin, contributing to along-slope heat loss.
Lukas Frank, Marius Opsanger Jonassen, Teresa Remes, Florina Roana Schalamon, and Agnes Stenlund
Earth Syst. Sci. Data, 15, 4219–4234, https://doi.org/10.5194/essd-15-4219-2023, https://doi.org/10.5194/essd-15-4219-2023, 2023
Short summary
Short summary
The Isfjorden Weather Information Network (IWIN) provides continuous meteorological near-surface observations from Isfjorden in Svalbard. The network combines permanent automatic weather stations on lighthouses along the coast line with mobile stations on board small tourist cruise ships regularly trafficking the fjord during spring to autumn. All data are available online in near-real time. Besides their scientific value, IWIN data crucially enhance the safety of field activities in the region.
Kjersti Kalhagen, Ilker Fer, Till M. Baumann, Jon Albretsen, and Lukas Frank
EGUsphere, https://doi.org/10.5194/egusphere-2025-4402, https://doi.org/10.5194/egusphere-2025-4402, 2025
This preprint is open for discussion and under review for Ocean Science (OS).
Short summary
Short summary
Warm Atlantic Water loses heat as it flows eastwards along the continental slope north of Svalbard. Year-long mooring records show the current is most energetic in autumn and winter, when it is the strongest and warmest. Also conversion from mean and potential energy to eddy energy peak in autumn and winter. An ocean model shows energy conversion also on the deeper, offshore side, suggesting eddies transport heat towards the basin, contributing to along-slope heat loss.
Kai Håkon Christensen, Jon Albretsen, Lars Asplin, Håvard Guldbrandsen Frøysa, Yvonne Gusdal, Silje Christine Iversen, Mari Fjalstad Jensen, Ingrid Askeland Johnsen, Nils Melsom Kristensen, Pål Næverlid Sævik, Anne Dagrun Sandvik, Magne Simonsen, Jofrid Skarðhamar, Ann Kristin Sperrevik, and Marta Trodahl
EGUsphere, https://doi.org/10.5194/egusphere-2025-3986, https://doi.org/10.5194/egusphere-2025-3986, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
This paper describes "Norkyst", the operational coastal ocean forecasting system for mainland Norway, which is now in version 3. The system produces five day forecasts of ocean currents, temperature, salinity, and sea surface height every day, and we also maintain an archive of historical data going back to 2012. We show that the outputs of Norkyst have sufficient quality so that it's intended use as a free public service supporting scientists, ocean managers, and industry is justified.
Marianne Williams-Kerslake, Helene Reinertsen Langehaug, Ragnheid Skogseth, Frank Nilsen, Annette Samuelsen, Silvana Gonzalez, and Noel Keenlyside
EGUsphere, https://doi.org/10.5194/egusphere-2025-4269, https://doi.org/10.5194/egusphere-2025-4269, 2025
This preprint is open for discussion and under review for Ocean Science (OS).
Short summary
Short summary
Marine heatwaves—periods of extreme ocean temperatures—are increasing globally, posing a threat to marine ecosystems. One region where a high number of marine heatwave events per year has been observed is around Svalbard. This study characterises past marine heatwave events around Svalbard, including their extent in terms of both distance and depth. We identified eight events in western Svalbard that were largely driven by the movement of warmer water into the region by ocean currents.
Rafael Kenji Horota, Christian Haug Eide, Kim Senger, Marius Opsanger Jonassen, and Marie Annette Vander Kloet
EGUsphere, https://doi.org/10.5194/egusphere-2025-2248, https://doi.org/10.5194/egusphere-2025-2248, 2025
Short summary
Short summary
We explored how virtual tools can help students prepare for and reflect on outdoor learning in the Arctic. Using surveys from university courses in Svalbard, we found that digital field visits helped students feel more confident, better understand the landscape, and learn more effectively. These tools do not replace real fieldwork but make it more accessible and inclusive. Our research shows how technology can support hands-on learning in remote environments.
Andrew W. Seidl, Aina Johannessen, Alena Dekhtyareva, Jannis M. Huss, Marius O. Jonassen, Alexander Schulz, Ove Hermansen, Christoph K. Thomas, and Harald Sodemann
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-293, https://doi.org/10.5194/essd-2024-293, 2024
Revised manuscript under review for ESSD
Short summary
Short summary
ISLAS2020 set out to measure the stable water isotopic composition of Arctic moisture. By not only measuring at different sites around Ny-Ålesund, Svalbard, but also measuring at variable heights above surface level, we aim to characterize processes that produce or modify the isotopic composition. We also collect precipitation samples from sites that were typically downstream of Ny-Ålesund, so as to capture the isotopic composition during removal from the atmospheric water cycle.
Kjersti Kalhagen, Ragnheid Skogseth, Till M. Baumann, Eva Falck, and Ilker Fer
Ocean Sci., 20, 981–1001, https://doi.org/10.5194/os-20-981-2024, https://doi.org/10.5194/os-20-981-2024, 2024
Short summary
Short summary
Atlantic water (AW) is a key driver of change in the Barents Sea. We studied an emerging pathway through the Svalbard Archipelago that allows AW to enter the Barents Sea. We found that the Atlantic sector near the study site has warmed over the past 2 decades; that Atlantic-origin waters intermittently enter the Barents Sea through the aforementioned pathway; and that heat transport is driven by tides, wind events, and variations in the upstream current system.
Lukas Frank, Marius Opsanger Jonassen, Teresa Remes, Florina Roana Schalamon, and Agnes Stenlund
Earth Syst. Sci. Data, 15, 4219–4234, https://doi.org/10.5194/essd-15-4219-2023, https://doi.org/10.5194/essd-15-4219-2023, 2023
Short summary
Short summary
The Isfjorden Weather Information Network (IWIN) provides continuous meteorological near-surface observations from Isfjorden in Svalbard. The network combines permanent automatic weather stations on lighthouses along the coast line with mobile stations on board small tourist cruise ships regularly trafficking the fjord during spring to autumn. All data are available online in near-real time. Besides their scientific value, IWIN data crucially enhance the safety of field activities in the region.
Pedro Duarte, Jostein Brændshøi, Dmitry Shcherbin, Pauline Barras, Jon Albretsen, Yvonne Gusdal, Nicholas Szapiro, Andreas Martinsen, Annette Samuelsen, Keguang Wang, and Jens Boldingh Debernard
Geosci. Model Dev., 15, 4373–4392, https://doi.org/10.5194/gmd-15-4373-2022, https://doi.org/10.5194/gmd-15-4373-2022, 2022
Short summary
Short summary
Sea ice models are often implemented for very large domains beyond the regions of sea ice formation, such as the whole Arctic or all of Antarctica. In this study, we implement changes in the Los Alamos Sea Ice Model, allowing it to be implemented for relatively small regions within the Arctic or Antarctica and yet considering the presence and influence of sea ice outside the represented areas. Such regional implementations are important when spatially detailed results are required.
Sissal Vágsheyg Erenbjerg, Jon Albretsen, Knud Simonsen, Erna Lava Olsen, Eigil Kaas, and Bogi Hansen
Ocean Sci., 17, 1639–1655, https://doi.org/10.5194/os-17-1639-2021, https://doi.org/10.5194/os-17-1639-2021, 2021
Short summary
Short summary
Here, we describe a strait that has narrow and shallow sills in both ends and is close to an amphidromic region. This generates tidally driven flows into and out of the strait, but with very different exchange rates across the entrances in both ends so that it behaves like a mixture between a strait and a fjord. Using a numerical model, we find a fortnightly signal in the net transport through the strait, generated by long-period tides. Our findings are verified by observations.
Cited articles
Asplin, L., Albretsen, J., Johnsen, I. A., and Sandvik, A. D.: The hydrodynamic foundation for salmon lice dispersion modeling along the Norwegian coast, Ocean Dynamics, 70, 1151–1167, 2020. a
Berge, J., Johnsen, G., Nilsen, F., Gulliksen, B., and Slagstad, D.: Ocean temperature oscillations enable reappearance of blue mussels Mytilus edulis in Svalbard after a 1000 year absence, Marine Ecology Progress Series, 303, 167–175, 2005. a
Beszczynska-Möller, A., Fahrbach, E., Schauer, U., and Hansen, E.: Variability in Atlantic water temperature and transport at the entrance to the Arctic Ocean, 1997–2010, ICES Journal of Marine Science, 69, 852–863, 2012. a
Bloshkina, E. V., Pavlov, A. K., and Filchuk, K.: Warming of Atlantic Water in three west Spitsbergen fjords: recent patterns and century-long trends, Polar Research, 40, https://doi.org/10.33265/polar.v40.5392, 2021. a
Bourke, R., Weigel, A., and Paquette, R.: The westward turning branch of the West Spitsbergen Current, Journal of Geophysical Research: Oceans, 93, 14065–14077, 1988. a
Boyd, T. J. and D'Asaro, E. A.: Cooling of the West Spitsbergen Current: wintertime observations west of Svalbard, Journal of Geophysical Research: Oceans, 99, 22597–22618, 1994. a
Budgell, W. P.: Numerical simulation of ice-ocean variability in the Barents Sea region, Ocean Dynamics, 55, 370–387, https://doi.org/10.1007/s10236-005-0008-3, 2005. a
Carmack, E., Polyakov, I., Padman, L., Fer, I., Hunke, E., Hutchings, J., Jackson, J., Kelley, D., Kwok, R., Layton, C., Melling, H., Perovich, D., Persson, O., Ruddick, B., Timmermans, M.-L., Toole, J., Ross, T., Vavrus, S. and Winsor, P.: Toward quantifying the increasing role of oceanic heat in sea ice loss in the new Arctic, Bulletin of the American Meteorological Society, 96, 2079–2105, 2015. a
Challet, F., Raj, R., Chatterjee, S., Herbaut, C., and Bonaduce, A.: Weakening of the Arctic water outflow from the Barents Sea and consequences on the Fram Strait warming, Journal of Geophysical Research: Oceans, 130, e2024JC021054, https://doi.org/10.1029/2024JC021054, 2025. a
Cottier, F., Tverberg, V., Inall, M., Svendsen, H., Nilsen, F., and Griffiths, C.: Water mass modification in an Arctic fjord through cross-shelf exchange: The seasonal hydrography of Kongsfjorden, Svalbard, Journal of Geophysical Research: Oceans, 110, 1–18, https://doi.org/10.1029/2004JC002757, 2005. a
Cottier, F., Nilsen, F., Enall, M. E., Gerland, S., Tverberg, V., and Svendsen, H.: Wintertime warming of an Arctic shelf in response to large-scale atmospheric circulation, Geophysical Research Letters, 34, 10607, https://doi.org/10.1029/2007GL029948, 2007. a, b, c
De Rovere, F., Zanchettin, D., Rubino, A., Langone, L., Calogiuri, F., Ruggieri, P., Lupi, A., and Chiggiato, J.: Winter intrusions of Atlantic water in Kongsfjorden: Oceanic preconditioning and atmospheric triggering, Journal of Geophysical Research: Oceans, 129, e2023JC020095, https://doi.org/10.1029/2023JC020095, 2024. a, b
Descamps, S., Aars, J., Fuglei, E., Kovacs, K. M., Lydersen, C., Pavlova, O., Pedersen, A., Ravolainen, V., and Strøm, H.: Climate change impacts on wildlife in a High Arctic archipelago–Svalbard, Norway, Global Change Biology, 23, 490–502, 2017. a
Fer, I., Peterson, A. K., and Nilsen, F.: Atlantic water boundary current along the southern Yermak Plateau, Arctic Ocean, Journal of Geophysical Research: Oceans, 128, e2023JC019645, https://doi.org/10.1029/2023JC019645, 2023. a
Foss, O., Maton, J., Moholdt, G., Schmidt, L., Sutherland, D., Fer, I., Nilsen, F., Kohler, J., and Sundfjord, A.: Ocean warming drives immediate mass loss from calving glaciers in the high Arctic, Nature Communications, 15, 1–9, 2024. a
Fossheim, M., Primicerio, R., Johannesen, E., Ingvaldsen, R. B., Aschan, M. M., and Dolgov, A. V.: Recent warming leads to a rapid borealization of fish communities in the Arctic, Nature Climate Change, 5, 673–677, 2015. a
Frank, L. and Albretsen, J.: Post-processed ROMS model and atmospheric wind forcing data for the West Spitsbergen Shelf, Svalbard, Zenodo [data set], https://doi.org/10.5281/zenodo.15188605, 2025. a, b
Fraser, N. J., Skogseth, R., Nilsen, F., and Inall, M. E.: Circulation and exchange in a broad Arctic fjord using glider-based observations, Polar Research, 37, 1485417, https://doi.org/10.1080/17518369.2018.1485417, 2018. a
Gluchowska, M., Kwasniewski, S., Prominska, A., Olszewska, A., Goszczko, I., Falk-Petersen, S., Hop, H., and Weslawski, J. M.: Zooplankton in Svalbard fjords on the Atlantic–Arctic boundary, Polar Biology, 39, 1785–1802, 2016. a
Hanzlick, D. J.: The West Spitsbergen Current: transport, forcing, and variability, PhD thesis, University of Washington Seattle, https://apps.dtic.mil/sti/tr/pdf/ADA137532.pdf (last access: 3 October 2025), 1983. a
Hattermann, T., Isachsen, P. E., von Appen, W.-J., Albretsen, J., and Sundfjord, A.: Eddy-driven recirculation of Atlantic water in Fram Strait, Geophysical Research Letters, 43, 3406–3414, 2016. a
Hegseth, E. N. and Tverberg, V.: Effect of Atlantic water inflow on timing of the phytoplankton spring bloom in a high Arctic fjord (Kongsfjorden, Svalbard), Journal of Marine Systems, 113, 94–105, 2013. a
Hegseth, E. N., Assmy, P., Wiktor, J. M., Wiktor, J., Kristiansen, S., Leu, E., Tverberg, V., Gabrielsen, T. M., Skogseth, R., and Cottier, F.: Phytoplankton seasonal dynamics in Kongsfjorden, Svalbard and the adjacent shelf, The Ecosystem of Kongsfjorden, Svalbard, 173–227, https://doi.org/10.1007/978-3-319-46425-1_6, 2019. a
Helland-Hansen, B. and Nansen, F.: The Norwegian Sea: its physical oceanography based upon the Norwegian researches 1900–1904, Vol. 2, Det Mallingske bogtrykkeri, 1909. a
Hop, H., Wold, A., Vihtakari, M., Daase, M., Kwasniewski, S., Gluchowska, M., Lischka, S., Buchholz, F., and Falk-Petersen, S.: Zooplankton in Kongsfjorden (1996–2016) in relation to climate change, The ecosystem of Kongsfjorden, Svalbard, Springer, 229–300, https://doi.org/10.1007/978-3-319-46425-1_7, 2019. a
Jakobsson, M., Mayer, L. A., Bringensparr, C., Castro, C. F., Mohammad, R., Johnson, P., Ketter, T., Accettella, D., Amblas, D., An, L., Arndt, J. E., Canals, M., Casamor, J. L., Chauché, N., Coakley, B., Danielson, S., Demarte, M., Dickson, M.-L., Dorschel, B., Dowdeswell, J. A., Dreutter, S., Fremand, A. C., Gallant, D., Hall, J. K., Hehemann, L., Hodnesdal, H., Hong, J., Ivaldi, R., Kane, E., Klaucke, I., Krawczyk, D. W., Kristoffersen, Y., Kuipers, B. R., Millan, R., Masetti, G., Morlighem, M., Noormets, R., Prescott, M. M., Rebesco, M., Rignot, E., Semiletov, I., Tate, A. J., Travaglini, P., Velicogna, I., Weatherall, P., Weinrebe, W., Willis, J. K., Wood, M., Zarayskaya, Y., Zhang, T., Zimmermann M. and Zinglersen, K. B.: The international bathymetric chart of the Arctic Ocean version 4.0, Scientific data, 7, 176, https://doi.org/10.1038/s41597-020-0520-9, 2020. a
Kolås, E. H., Baumann, T. M., Skogseth, R., Koenig, Z., and Fer, I.: Circulation and hydrography in the northwestern Barents Sea: insights from recent observations and historical data (1950–2022), Journal of Geophysical Research: Oceans, 129, e2023JC020211, https://doi.org/10.1029/2023JC020211, 2024. a
Large, W. and Pond, S.: Open ocean momentum flux measurements in moderate to strong winds, Journal of Physical Oceanography, 11, 324–336, 1981. a
Leopold, P., Renaud, P. E., Ambrose, W. G., and Berge, J.: High Arctic Mytilus spp.: occurrence, distribution and history of dispersal, Polar Biology, 42, 237–244, 2019. a
Loeng, H.: Features of the physical oceanographic conditions of the Barents Sea, Polar Research, 10, 5–18, 1991. a
Luckman, A., Benn, D. I., Cottier, F., Bevan, S., Nilsen, F., and Inall, M.: Calving rates at tidewater glaciers vary strongly with ocean temperature, Nature Communications, 6, https://doi.org/10.1038/ncomms9566, 2015. a
Manley, T., Bourke, R., and Hunkins, K.: Near-surface circulation over the Yermak Plateau in northern Fram Strait, Journal of Marine Systems, 3, 107–125, 1992. a
McDougall, T. J. and Barker, P. M.: Getting started with TEOS-10 and the Gibbs Seawater (GSW) oceanographic toolbox, Scor/iapso WG, 127, 1–28, 2011. a
Muckenhuber, S., Nilsen, F., Korosov, A., and Sandven, S.: Sea ice cover in Isfjorden and Hornsund, Svalbard (2000–2014) from remote sensing data, The Cryosphere, 10, 149–158, https://doi.org/10.5194/tc-10-149-2016, 2016. a
Muilwijk, M., Smedsrud, L. H., Ilicak, M., and Drange, H.: Atlantic Water heat transport variability in the 20th century Arctic Ocean from a global ocean model and observations, Journal of Geophysical Research: Oceans, 123, 8159–8179, 2018. a
Müller, M., Batrak, Y., Kristiansen, J., Køltzow, M., Noer, G., and Korosov, A.: Characteristics of a convective-scale weather forecasting system for the European Arctic, Monthly Weather Review, 145, 4771–4787, https://doi.org/10.1175/MWR-D-17-0194.1, 2017. a
Nilsen, F., Cottier, F., Skogseth, R., and Mattsson, S.: Fjord-shelf exchanges controlled by ice and brine production: The interannual variation of Atlantic Water in Isfjorden, Svalbard, Continental Shelf Research, 28, 1838–1853, https://doi.org/10.1016/j.csr.2008.04.015, 2008. a, b
Nilsen, F., Ersdal, E. A., and Skogseth, R.: Wind-Driven Variability in the Spitsbergen Polar Current and the Svalbard Branch Across the Yermak Plateau, Journal of Geophysical Research: Oceans, 126, e2020JC016734, https://doi.org/10.1029/2020JC016734, 2021. a, b
Nøst, O. A. and Isachsen, P. E.: The large-scale time-mean ocean circulation in the Nordic Seas and Arctic Ocean estimated from simplified dynamics, Journal of Marine Research, 61, 175–210, 2003. a
Onarheim, I. H., Smedsrud, L. H., Ingvaldsen, R. B., and Nilsen, F.: Loss of sea ice during winter north of Svalbard, Tellus A: Dynamic Meteorology and Oceanography, 66, 23933, https://www.tandfonline.com/doi/full/10.3402/tellusa.v66.23933 (last access: 14 October 2025), 2014. a
Pavlov, A. K., Tverberg, V., Ivanov, B. V., Nilsen, F., Falk-Petersen, S., and Granskog, M. A.: Warming of Atlantic Water in two west Spitsbergen fjords over the last century (1912–2009), Polar Research, 32, 11206, https://doi.org/10.3402/polar.v32i0.11206, 2013. a
Promińska, A., Cisek, M., and Walczowski, W.: Kongsfjorden and Hornsund hydrography–comparative study based on a multiyear survey in fjords of west Spitsbergen, Oceanologia, 59, 397–412, 2017. a
Renaud, P. E., Berge, J., Varpe, O., Lønne, O. J., Nahrgang, J., Ottesen, C., and Hallanger, I.: Is the poleward expansion by Atlantic cod and haddock threatening native polar cod, Boreogadus saida?, Polar Biology, 35, 401–412, 2012. a
Rudels, B.: The thermohaline circulation of the Arctic Ocean and the Greenland Sea, in: Arctic and Environmental Change, 87–99, Routledge, https://doi.org/10.1201/9781315137759, 2019. a
Röhrs, J., Gusdal, Y., Rikardsen, E. S. U., Durán Moro, M., Brændshøi, J., Kristensen, N. M., Fritzner, S., Wang, K., Sperrevik, A. K., Idžanović, M., Lavergne, T., Debernard, J. B., and Christensen, K. H.: Barents-2.5km v2.0: an operational data-assimilative coupled ocean and sea ice ensemble prediction model for the Barents Sea and Svalbard, Geosci. Model Dev., 16, 5401–5426, https://doi.org/10.5194/gmd-16-5401-2023, 2023. a
Saloranta, T. M. and Haugan, P. M.: Northward cooling and freshening of the warm core of the West Spitsbergen Current, Polar Research, 23, 79–88, 2004. a
Schmidt, L. S., Schuler, T. V., Thomas, E. E., and Westermann, S.: Meltwater runoff and glacier mass balance in the high Arctic: 1991–2022 simulations for Svalbard, The Cryosphere, 17, 2941–2963, https://doi.org/10.5194/tc-17-2941-2023, 2023. a
Shchepetkin, A. F. and McWilliams, J. C.: The regional oceanic modeling system (ROMS): A split-explicit, free-surface, topography-following-coordinate oceanic model, Ocean Modelling, 9, 347–404, https://doi.org/10.1016/j.ocemod.2004.08.002, 2005. a
Skogseth, R.: Mooring data (temperature, salinity, pressure, density, oxygen content, current velocity) from the Isfjorden Mouth – South (I-SM) from Oct 2021 to Sep 2022, Norwegian Polar Institute, Norwegian Polar Data Centre [data set], https://doi.org/10.21334/NPOLAR.2024.58EC5E73, 2024. a, b
Skogseth, R.: Hydrographic (CTD) data from Isfjorden and the West Spitsbergen Shelf, Svalbard, in September 2020, Norwegian Institute for Marine Research, Norwegian Marine Data Centre [data set], https://doi.org/10.21335/NMDC-1286491748, 2025a. a, b
Skogseth, R.: Hydrographic (CTD) data from Isfjorden, the West Spitsbergen Shelf, the Storfjorden Through, and Storfjorden, Svalbard, in October 2021, Norwegian Institute for Marine Research, Norwegian Marine Data Centre [data set], https://doi.org/10.21335/NMDC-429341787, 2025b. a, b
Skogseth, R.: Hydrographic (CTD) data from Isfjorden, St Jonsfjorden, and the West Spitsbergen Shelf, Svalbard, in September 2019, Norwegian Institute for Marine Research, Norwegian Marine Data Centre [data set], https://doi.org/10.21335/NMDC-559999043, 2025c. a, b
Skogseth, R. and Ellingsen, P. G.: Mooring data from the Isfjorden Mouth – South (I-SM) during 06 Oct 2020 to 10 Oct 2021, Norwegian Polar Institute, Norwegian Polar Data Centre [data set], https://doi.org/10.21334/NPOLAR.2022.42927488, 2022. a, b
Skogseth, R., Haugan, P., and Jakobsson, M.: Watermass transformations in Storfjorden, Continental Shelf Research, 25, 667–695, 2005. a
Skogseth, R., Olivier, L. L. A., Nilsen, F., Falck, E., Fraser, N., Tverberg, V., Ledang, A. B., Vader, A., Jonassen, M. O., Søreide, J., Cottier, F., Berge, J., Ivanov, B. V., and Falk-Petersen, S.: Variability and decadal trends in the Isfjorden (Svalbard) ocean climate and circulation – An indicator for climate change in the European Arctic, Progress in Oceanography, 187, 102394, https://doi.org/10.1016/j.pocean.2020.102394, 2020. a, b, c, d, e, f
Smedsrud, L. H., Sorteberg, A., and Kloster, K.: Recent and future changes of the Arctic sea-ice cover, Geophysical Research Letters, 35, https://doi.org/10.1029/2008GL034813, 2008. a
Stroeve, J. C., Notz, D., Dawson, J., Schuur, E. A., Dahl-Jensen, D., and Giesse, C.: Disappearing landscapes: The Arctic at +2.7 °C global warming, Science, 387, 616–621,2025. a
Strzelewicz, A., Przyborska, A., and Walczowski, W.: Increased presence of Atlantic Water on the shelf south-west of Spitsbergen with implications for the Arctic fjord Hornsund, Progress in Oceanography, 200, 102714, https://doi.org/10.1016/j.pocean.2021.102714, 2022. a
Šupraha, L., Klemm, K., Gran-Stadniczeñko, S., Hörstmann, C., Vaulot, D., Edvardsen, B., and John, U.: Diversity and biogeography of planktonic diatoms in Svalbard fjords: The role of dispersal and Arctic endemism in phytoplankton community structuring, Elem. Sci. Anth., 10, 00117, https://doi.org/10.1525/elementa.2021.00117, 2022. a
Teigen, S. H., Nilsen, F., and Gjevik, B.: Barotropic instability in the West Spitsbergen Current, Journal of Geophysical Research: Oceans, 115, https://doi.org/10.1029/2009JC005996, 2010. a, b, c
Teigen, S. H., Nilsen, F., Skogseth, R., Gjevik, B., and Beszczynska-Möller, A.: Baroclinic instability in the West Spitsbergen current, Journal of Geophysical Research: Oceans, 116, https://doi.org/10.1029/2011JC006974, 2011. a, b, c
Torsvik, T., Albretsen, J., Sundfjord, A., Kohler, J., Sandvik, A. D., Skardhamar, J., Lindbäck, K., and Everett, A.: Impact of tidewater glacier retreat on the fjord system: Modeling present and future circulation in Kongsfjorden, Svalbard, Estuarine, Coastal and Shelf Science, 220, 152–165, https://doi.org/10.1016/j.ecss.2019.02.005, 2019. a
Trenberth, K. E., Large, W. G., and Olson, J. G.: The mean annual cycle in global ocean wind stress, Journal of Physical Oceanography, 20, 1742–1760, 1990. a
Tverberg, V., Skogseth, R., Cottier, F., Sundfjord, A., Walczowski, W., Inall, M. E., Falck, E., Pavlova, O., and Nilsen, F.: The Kongsfjorden transect: seasonal and inter-annual variability in hydrography, in: The Ecosystem of Kongsfjorden, Svalbard, 49–104, Springer, https://doi.org/10.1007/978-3-319-46425-1_3, 2019. a, b, c, d, e
Vihtakari, M., Sundfjord, A., and de Steur, L.: Barents Sea ocean-current, GitHub [data set], https://github.com/MikkoVihtakari/Barents-Sea-currents (last access: 3 October 2025), 2019. a
Walczowski, W. and Piechura, J.: Influence of the West Spitsbergen Current on the local climate, International Journal of Climatology, 31, 1088–1093, https://doi.org/10.1002/joc.2338, 2011. a, b
Walczowski, W., Piechura, J., Osinski, R., and Wieczorek, P.: The West Spitsbergen Current volume and heat transport from synoptic observations in summer, Deep Sea Research Part I: Oceanographic Research Papers, 52, 1374–1391, 2005. a
Westermann, S., Ingeman-Nielsen, T., Scheer, J., Aalstad, K., Aga, J., Chaudhary, N., Etzelmüller, B., Filhol, S., Kääb, A., Renette, C., Schmidt, L. S., Schuler, T. V., Zweigel, R. B., Martin, L., Morard, S., Ben-Asher, M., Angelopoulos, M., Boike, J., Groenke, B., Miesner, F., Nitzbon, J., Overduin, P., Stuenzi, S. M., and Langer, M.: The CryoGrid community model (version 1.0) – a multi-physics toolbox for climate-driven simulations in the terrestrial cryosphere, Geosci. Model Dev., 16, 2607–2647, https://doi.org/10.5194/gmd-16-2607-2023, 2023. a
Wickström, S., Jonassen, M., Vihma, T., and Uotila, P.: Trends in cyclones in the high-latitude North Atlantic during 1979–2016, Quarterly Journal of the Royal Meteorological Society, 146, 762–779, https://doi.org/10.1002/qj.3707, 2020. a, b
Short summary
West of Svalbard, warm Atlantic Water frequently deviates from the West Spitsbergen Current onto shallow shelf areas, with significant implications for the regional climate system. The intrusions can be triggered by different processes, but their depths ultimately depend on the density difference between the intruding water and the ambient shelf water. These findings are an important step toward a better understanding of how warm Atlantic Water eventually reaches the fjords of Svalbard.
West of Svalbard, warm Atlantic Water frequently deviates from the West Spitsbergen Current onto...