Articles | Volume 21, issue 5
https://doi.org/10.5194/os-21-2149-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-21-2149-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Assessment of ocean bottom pressure variations in CMIP6 HighResMIP simulations
Institute of Geodesy and Geoinformation, University of Bonn, Bonn, Germany
Michael Schindelegger
Institute of Geodesy and Geoinformation, University of Bonn, Bonn, Germany
Lara Börger
Institute of Geodesy and Geoinformation, University of Bonn, Bonn, Germany
Judith Foth
Institute of Geodesy and Geoinformation, University of Bonn, Bonn, Germany
Junyang Gou
Institute of Geodesy and Photogrammetry, ETH Zurich, Zurich, Switzerland
Related authors
No articles found.
Linus Shihora, Torge Martin, Anna Christina Hans, Rebecca Hummels, Michael Schindelegger, and Henryk Dobslaw
Ocean Sci., 21, 1533–1548, https://doi.org/10.5194/os-21-1533-2025, https://doi.org/10.5194/os-21-1533-2025, 2025
Short summary
Short summary
The Atlantic Meridional Overturning Circulation (AMOC) is a major part of the ocean circulation. Satellite gravimetry missions, like GRACE, which measure changes in Earth's mass distribution, could help monitor changes in the AMOC by detecting variations in ocean bottom pressure. To help assess if future satellite missions could detect these changes, we used ocean model simulation data to study their connection. Additionally, we created a synthetic data set for future satellite mission simulations.
Lara Börger, Michael Schindelegger, Mengnan Zhao, Rui M. Ponte, Anno Löcher, Bernd Uebbing, Jean-Marc Molines, and Thierry Penduff
Earth Syst. Dynam., 16, 75–90, https://doi.org/10.5194/esd-16-75-2025, https://doi.org/10.5194/esd-16-75-2025, 2025
Short summary
Short summary
Flows in the ocean are driven either by atmospheric forces or by small-scale internal disturbances that are inherently chaotic. We use computer simulation results to show that these chaotic oceanic disturbances can attain spatial scales large enough to alter the motion of Earth's pole of rotation. Given their size and unpredictable nature, the chaotic signals are a source of uncertainty when interpreting observed year-to-year polar motion changes in terms of other processes in the Earth system.
Petra Döll, Howlader Mohammad Mehedi Hasan, Kerstin Schulze, Helena Gerdener, Lara Börger, Somayeh Shadkam, Sebastian Ackermann, Seyed-Mohammad Hosseini-Moghari, Hannes Müller Schmied, Andreas Güntner, and Jürgen Kusche
Hydrol. Earth Syst. Sci., 28, 2259–2295, https://doi.org/10.5194/hess-28-2259-2024, https://doi.org/10.5194/hess-28-2259-2024, 2024
Short summary
Short summary
Currently, global hydrological models do not benefit from observations of model output variables to reduce and quantify model output uncertainty. For the Mississippi River basin, we explored three approaches for using both streamflow and total water storage anomaly observations to adjust the parameter sets in a global hydrological model. We developed a method for considering the observation uncertainties to quantify the uncertainty of model output and provide recommendations.
Cited articles
Adcroft, A., Hughes, C., and Marshall, J.: Representation of topography by shaved cells in height coordinate ocean model, Mon. Weather Rev., 125, 2293–2315, https://doi.org/10.1175/1520-0493(1997)125<2293:ROTBSC>2.0.CO;2, 1997. a
Amante, C. and Eakins, B. W.: ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis, NOAA Technical Memorandum NESDIS NGDC-24, NCEI [data set], https://doi.org/10.7289/V5C8276M, 2009. a
Androsov, A., Boebel, O., Schröter, J., Danilov, S., Macrander, A., and Ivanciu, I.: Ocean bottom pressure variability: Can it be reliably modeled?, J. Geophys. Res.-Oceans, 125, e2019JC015469, https://doi.org/10.1029/2019JC015469, 2020. a, b, c, d
Beech, N., Rackow, T., Semmler, T., Danilov, S., Wang, Q., and Jung, T.: Long-term evolution of ocean eddy activity in a warming world, Nat. Clim. Change, 12, 910–917, https://doi.org/10.1038/s41558-022-01478-3, 2022. a, b, c, d
Bernard, B., Madec, G., Penduff, T., Molines, J.-M., Treguier, A.-M., Le Sommer, J., Beckmann, A., Biastoch, A., Böning, C., Dengg, J., Derval, C., Durand, E., Gulev, S., Remy, E., Talandier, C., Theeten, M., McClean, J., and De Cuevas, B.: Impact of partial steps and momentum advection schemes in a global ocean circulation model at eddy-permitting resolution, Ocean Dynam., 56, 543–567, https://doi.org/10.1007/s10236-006-0082-1, 2006. a, b
Bernard, E. N. and Meinig, C.: History and future of deep-ocean tsunami measurements, in: Proceedings of Oceans'11 MTS/IEEE Kona, 6106894, IEEE, 1–7, https://doi.org/10.23919/OCEANS.2011.6106894, 2011. a, b
Biastoch, A., Böning, C. W., Schwarzkopf, F. U., and Lutjeharms, J. R. E.: Increase in Agulhas leakage due to poleward shift of Southern Hemisphere westerlies, Nature, 462, 495–498, https://doi.org/10.1038/nature08519, 2009. a
Bingham, R. and Hughes, C.: The relationship between sea-level and bottom pressure variability in an eddy-permitting ocean model, Geophys. Res. Lett., 35, L03602, https://doi.org/10.1029/2007GL032662, 2008. a
Bingham, R. J. and Haines, K.: Decadal ocean bottom pressure variability and its associated gravitational effects in a coupled ocean-atmosphere model, in: Gravity, Geoid and Space Missions: GGSM 2004 IAG International Symposium Porto, Springer, 298–303, https://doi.org/10.1007/3-540-26932-0_52, 2005. a
Boening, C., Lee, T., and Zlotnicki, V.: A record-high ocean bottom pressure in the South Pacific observed by GRACE, Geophys. Res. Lett., 38, L04602, https://doi.org/10.1029/2010GL046013, 2011. a
Börger, L., Schindelegger, M., Dobslaw, H., and Salstein, D.: Are ocean reanalyses useful for Earth rotation research?, Earth Space Sci., 10, e2022EA002700, https://doi.org/10.1029/2022EA002700, 2023. a
Chen, L., Yang, J. Y., and Wu, L. X.: Topography effects on the seasonal variability of ocean bottom pressure in the North Pacific Ocean, J. Phys. Oceanogr., 53, 929–941, https://doi.org/10.1175/JPO-D-22-0140.1, 2023. a, b
Cheng, X., Ou, N. S., Chen, J. J., and Huang, R. X.: On the seasonal variations of ocean bottom pressure in the world oceans, Geosci. Lett., 8, 29, https://doi.org/10.1186/s40562-021-00199-3, 2021. a, b
Cherchi, A., Fogli, P. G., Lovato, T., Peano, D., Iovino, D., Gualdi, S., Masina, S., Scoccimarro, E., Materia, S., Bellucci, A., and Navarra, A.: Global mean climate and main patterns of variability in the CMCC-CM2 coupled model, J. Adv. Model. Earth Sy., 11, 185–209, https://doi.org/10.1029/2018MS001369, 2019. a
Csanady, G. T.: Circulation in the Coastal Ocean, Springer, https://doi.org/10.1007/978-94-017-1041-1, 1982. a
Daras, I., March, G., Pail, R., Hughes, C. W., Braitenberg, C., Güntner, A., Eicker, A., Wouters, B., Heller-Kaikov, B., Pivetta, T., and Pastorutti, A.: Mass-change And Geosciences International Constellation (MAGIC) expected impact on science and applications, Geophys. J. Int., 236, 1288–1308, https://doi.org/10.1093/gji/ggad472, 2024. a, b
De Linage, C., Rivera, L., Hinderer, J., Boy, J.-P., Rogister, Y., Lambotte, S., and Biancale, R.: Separation of coseismic and postseismic gravity changes for the 2004 Sumatra–Andaman earthquake from 4.6 yr of GRACE observations and modelling of the coseismic change by normal-modes summation, Geophys. J. Int., 176, 695–714, https://doi.org/10.1111/j.1365-246X.2008.04025.x, 2009. a
de Miranda, A. P., Barnier, B., and Dewar, W. K.: On the dynamics of the Zapiola Anticyclone, J. Geophys. Res.-Oceans, 104, 21137–21149, https://doi.org/10.1029/1999JC900042, 1999. a
Deng, K., Azorin-Molina, C., Yang, S., Hu, C., Zhang, G., Minola, L., and Chen, D.: Changes of Southern Hemisphere westerlies in the future warming climate, Atmos. Res., 270, 106040, https://doi.org/10.1016/j.atmosres.2022.106040, 2022. a
Docquier, D., Grist, J. P., Roberts, M. J., Roberts, C. D., Semmler, T., Ponsoni, L., Massonnet, F., Sidorenko, D., Sein, D. V., Iovino, D., Bellucci, A., and Fichefet, T.: Impact of model resolution on Arctic sea ice and North Atlantic Ocean heat transport, Clim. Dynam., 53, 4989–5017, https://doi.org/10.1007/s00382-019-04840-y, 2019. a, b
EC-Earth Consortium (EC-Earth): EC-Earth-Consortium EC-Earth3P model output prepared for CMIP6 HighResMIP, Earth System Grid Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.2322, 2019. a
ECCO Consortium, Fukumori, I., Wang, O., Fenty, I., Forget, G., Heimbach, P., and Ponte, R. M.: ECCO Ocean Bottom Pressure - Monthly Mean 0.5 Degree (Version 4 Release 4 B), Ver. V4r4b, PO.DAAC [data set], CA, USA, https://doi.org/10.5067/ECG5M-OBP4B, 2021. a
Forget, G., Campin, J.-M., Heimbach, P., Hill, C. N., Ponte, R. M., and Wunsch, C.: ECCO version 4: an integrated framework for non-linear inverse modeling and global ocean state estimation, Geosci. Model Dev., 8, 3071–3104, https://doi.org/10.5194/gmd-8-3071-2015, 2015. a
Fukumori, I., Raghunath, R., and Fu, L. L.: Nature of global large-scale sea level variability in relation to atmospheric forcing: A modeling study, J. Geophys. Res.-Oceans, 103, 5493–5512, https://doi.org/10.1029/97JC02907, 1998. a
Gałdyn, F. and Sośnica, K.: Impact of the combination and replacement of SLR-based low-degree gravity field coefficients in GRACE solutions, Prog. Earth Planet. Sci., 11, 7, https://doi.org/10.1186/s40645-024-00608-z, 2024. a
Gill, A. E. and Niller, P. P.: The theory of the seasonal variability in the ocean, Deep-Sea Res. Oceanogr. Abstr., 20, 141–177, https://doi.org/10.1016/0011-7471(73)90049-1, 1973. a
Gou, J., Börger, L., Schindelegger, M., and Soja, B.: SeDA-OBP: Global ocean bottom pressure anomaly fields with a spatial resolution of 0.25 degrees from self-supervised data assimilation, ETH Research Collection [data set], https://doi.org/10.3929/ethz-b-000686843, 2024. a, b
Haarsma, R., Acosta, M., Bakhshi, R., Bretonnière, P.-A., Caron, L.-P., Castrillo, M., Corti, S., Davini, P., Exarchou, E., Fabiano, F., Fladrich, U., Fuentes Franco, R., García-Serrano, J., von Hardenberg, J., Koenigk, T., Levine, X., Meccia, V. L., van Noije, T., van den Oord, G., Palmeiro, F. M., Rodrigo, M., Ruprich-Robert, Y., Le Sager, P., Tourigny, E., Wang, S., van Weele, M., and Wyser, K.: HighResMIP versions of EC-Earth: EC-Earth3P and EC-Earth3P-HR – description, model computational performance and basic validation, Geosci. Model Dev., 13, 3507–3527, https://doi.org/10.5194/gmd-13-3507-2020, 2020. a
Haarsma, R. J., Roberts, M. J., Vidale, P. L., Senior, C. A., Bellucci, A., Bao, Q., Chang, P., Corti, S., Fučkar, N. S., Guemas, V., von Hardenberg, J., Hazeleger, W., Kodama, C., Koenigk, T., Leung, L. R., Lu, J., Luo, J.-J., Mao, J., Mizielinski, M. S., Mizuta, R., Nobre, P., Satoh, M., Scoccimarro, E., Semmler, T., Small, J., and von Storch, J.-S.: High Resolution Model Intercomparison Project (HighResMIP v1.0) for CMIP6, Geosci. Model Dev., 9, 4185–4208, https://doi.org/10.5194/gmd-9-4185-2016, 2016. a, b, c, d
Harker, A. A., Schindelegger, M., Ponte, R. M., and Salstein, D. A.: Modeling ocean-induced rapid Earth rotation variations: An update, J. Geodesy, 95, 110, https://doi.org/10.1007/s00190-021-01555-z, 2021. a, b
Hart-Davis, M. G., Piccioni, G., Dettmering, D., Schwatke, C., Passaro, M., and Seitz, F.: EOT20: a global ocean tide model from multi-mission satellite altimetry, Earth Syst. Sci. Data, 13, 3869–3884, https://doi.org/10.5194/essd-13-3869-2021, 2021. a
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 global reanalysis, Q. J. Roy. Astron. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020. a
Hughes, C. W., Stepanov, V. N., Fu, L. L., Barnier, B., and Hargreaves, G. W.: Three forms of variability in Argentine Basin ocean bottom pressure, J. Geophys. Res.-Oceans, 112, C01011, https://doi.org/10.1029/2006JC003679, 2007. a
Hughes, C. W., Williams, J., Blaker, A., Coward, A., and Stepanov, V.: A window on the deep ocean: The special value of ocean bottom pressure for monitoring the large-scale, deep-ocean circulation, Prog. Oceanogr., 161, 19–46, https://doi.org/10.1016/j.pocean.2018.01.011, 2018. a, b, c, d, e, f, g, h
Jensen, L., Eicker, A., Dobslaw, H., and Pail, R.: Emerging changes in terrestrial water storage variability as a target for future satellite gravity missions, Remote Sens., 12, 3898, https://doi.org/10.3390/rs12233898, 2020. a
Johnson, G. C. and Chambers, D. P.: Ocean bottom pressure seasonal cycles and decadal trends from GRACE Release-05: Ocean circulation implications, J. Geophys. Res.-Oceans, 118, 4228–4240, https://doi.org/10.1002/jgrc.20307, 2013. a, b
Kemp, J., Newhall, K., Ostrom, W., Krishfield, R., and Proshutinsky, A.: The Beaufort Gyre observing system 2004: Mooring recovery and deployment operations in pack ice, Woods Hole Oceanographic Institution, Woods Hole Oceanographic Institution, https://www2.whoi.edu/site/beaufortgyre/methods/deployment-procedures/ (last accss: 15 July 2024), 2005. a
Kvas, A., Behzadpour, S., Ellmer, M., Klinger, B., Strasser, S., Zehentner, N., and Mayer-Gürr, T.: ITSG-Grace2018: Overview and evaluation of a new GRACE-only gravity field time series, J. Geophys. Res.-Sol. Ea., 124, 9332–9344, https://doi.org/10.1029/2019JB017415, 2019. a
Landerer, F. W., Jungclaus, J. H., and Marotzke, J.: Ocean bottom pressure changes lead to a decreasing length-of-day in a warming climate, Geophys. Res. Lett., 34, L06307, https://doi.org/10.1029/2006GL029106, 2007. a
Lellouche, J.-M., Le Galloudec, O., Drévillon, M., Régnier, C., Greiner, E., Garric, G., Ferry, N., Desportes, C., Testut, C.-E., Bricaud, C., Bourdallé-Badie, R., Tranchant, B., Benkiran, M., Drillet, Y., Daudin, A., and De Nicola, C.: Evaluation of global monitoring and forecasting systems at Mercator Océan, Ocean Sci., 9, 57–81, https://doi.org/10.5194/os-9-57-2013, 2013. a
Liu, L., Schindelegger, M., and Börger, L.: Monthly ocean bottom pressure anomalies 1980–2014 and 2030–2049 from CMIP6 HighResMIP models, Zenodo [data set], https://doi.org/10.5281/zenodo.14886818, 2025. a
Ludwigsen, C. B., Andersen, O. B., Marzeion, B., Malles, J.-H., Müller Schmied, H., Döll, P., Watson, C., and King, M. A.: Global and regional ocean mass budget closure since 2003, Nat. Commun., 15, 1416, https://doi.org/10.1038/s41467-024-45726-w, 2024. a
Madec, G.: NEMO reference manual 3.6_STABLE: NEMO ocean engine, Institut Pierre-Simon Laplace (IPSL), France, http://hdl.handle.net/10013/epic.46840.d001 (last access: 10 July 2024), 2016. a
Makowski, J. K., Chambers, D. P., and Bonin, J. A.: Using ocean bottom pressure from the gravity recovery and climate experiment (GRACE) to estimate transport variability in the southern Indian Ocean, J. Geophys. Res.-Oceans, 120, 4245–4259, https://doi.org/10.1002/2014JC010575, 2015. a
McDougall, T. J. and Barker, P. M.: Getting started with TEOS-10 and the Gibbs Seawater (GSW) oceanographic toolbox, Scor/Iapso WG, 127, 1–28, ISBN 978-0-646-55621-5, https://www.teos-10.org/pubs/gsw/v3_04/pdf/Getting_Started.pdf (last access: 12 June 2024), 2011. a
National Oceanic and Atmospheric Administration (NOAA): DART Bottom Pressure Recorder (BPR) Historical Data, NOAA National Data Buoy Center (NDBC), https://www.ndbc.noaa.gov/historical_data.shtml (last access: 11 September 2025), 2023. a
Ni, Q., Zhai, X., LaCasce, J. H., Chen, D., and Marshall, D. P.: Full-depth eddy kinetic energy in the global ocean estimated from altimeter and Argo observations, Geophys. Res. Lett., 50, e2023GL103114, https://doi.org/10.1029/2023GL103114, 2023. a
Oliver, E. C. J. and Thompson, K. R.: Sea level and circulation variability of the Gulf of Carpentaria: Influence of the Madden-Julian Oscillation and the adjacent deep ocean, J. Geophys. Res.-Oceans, 116, C02019, https://doi.org/10.1029/2010JC006596, 2011. a
O'Neill, B. C., Tebaldi, C., van Vuuren, D. P., Eyring, V., Friedlingstein, P., Hurtt, G., Knutti, R., Kriegler, E., Lamarque, J.-F., Lowe, J., Meehl, G. A., Moss, R., Riahi, K., and Sanderson, B. M.: The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6, Geosci. Model Dev., 9, 3461–3482, https://doi.org/10.5194/gmd-9-3461-2016, 2016. a
Petrick, C., Dobslaw, H., Bergmann-Wolf, I., Schön, N., Matthes, K., and Thomas, M.: Low-frequency ocean bottom pressure variations in the North Pacific in response to time-variable surface winds, J. Geophys. Res.-Oceans, 119, 5190–5202, https://doi.org/10.1002/2013JC009635, 2014. a, b
Piecuch, C. G.: Bottom-pressure signature of annual baroclinic Rossby waves in the northeast tropical Pacific Ocean, J. Geophys. Res.-Oceans, 120, 2449–2459, https://doi.org/10.1002/2014JC010667, 2015. a
Piecuch, C. G., Fukumori, I., Ponte, R. M., and Wang, O.: Vertical structure of ocean pressure variations with application to satellite-gravimetric observations, J. Atmos. Ocean. Tech., 32, 603–613, https://doi.org/10.1175/JTECH-D-14-00156.1, 2015. a, b, c, d
Piecuch, C. G., Fukumori, I., Ponte, R. M., Schindelegger, M., Wang, O., and Zhao, M.: Low-frequency dynamic ocean response to barometric-pressure loading, J. Phys. Oceanogr., 52, 2627–2641, https://doi.org/10.1175/JPO-D-22-0090.1, 2022. a
Ponte, R. M.: Variability in a homogeneous global ocean forced by barometric pressure, Dynam. Atmos. Oceans, 18, 209–234, https://doi.org/10.1016/0377-0265(93)90010-5, 1993. a
Ponte, R. M.: A preliminary model study of the large-scale seasonal cycle in bottom pressure over the global ocean, J. Geophys. Res.-Oceans, 104, 1289–1300, https://doi.org/10.1029/1998JC900028, 1999. a, b
Ponte, R. M. and Piecuch, C. G.: Interannual bottom pressure signals in the Australian–Antarctic and Bellingshausen basins, J. Phys. Oceanogr., 44, 1456–1465, https://doi.org/10.1175/JPO-D-13-0223.1, 2014. a
Ponte, R. M., Rajamony, J., and Gregory, J. M.: Ocean angular momentum signals in a climate model and implications for Earth rotation, Clim. Dynam., 19, 181–190, https://doi.org/10.1007/s00382-001-0216-6, 2002. a
Ponte, R. M., Zhao, M., and Schindelegger, M.: How well do we know the seasonal cycle in ocean bottom pressure?, Earth Space Sci., 11, e2024EA003661, https://doi.org/10.1029/2024EA003661, 2024. a, b, c, d
Poropat, L., Dobslaw, H., Zhang, L., Macrander, A., Boebel, O., and Thomas, M.: Time variations in ocean bottom pressure from a few hours to many years: In situ data, numerical models, and GRACE satellite gravimetry, J. Geophys. Res.-Oceans, 123, 5612–5623, https://doi.org/10.1029/2018JC014108, 2018. a, b, c
Qu, T., Gan, J., Ishida, A., Kashino, Y., and Tozuka, T.: Semiannual variation in the western tropical Pacific Ocean, Geophys. Res. Lett., 35, L16602, https://doi.org/10.1029/2008GL035058, 2008. a
Ray, R. D., Loomis, B. D., and Zlotnicki, V.: The mean seasonal cycle in relative sea level from satellite altimetry and gravimetry, J. Geodesy, 95, 80, https://doi.org/10.1007/s00190-021-01529-1, 2021. a
Roberts, C. D., Senan, R., Molteni, F., Boussetta, S., Keeley, S.: ECMWF ECMWF-IFS-LR model output prepared for CMIP6 HighResMIP, Earth System Grid Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.2463, 2017. a
Roberts, C. D., Senan, R., Molteni, F., Boussetta, S., Mayer, M., and Keeley, S. P. E.: Climate model configurations of the ECMWF Integrated Forecasting System (ECMWF-IFS cycle 43r1) for HighResMIP, Geosci. Model Dev., 11, 3681–3712, https://doi.org/10.5194/gmd-11-3681-2018, 2018. a
Roberts, M.: MOHC HadGEM3-GC31-MM model output prepared for CMIP6 HighResMIP highres-future, Earth System Grid Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.5989, 2019. a
Roberts, M. J., Baker, A., Blockley, E. W., Calvert, D., Coward, A., Hewitt, H. T., Jackson, L. C., Kuhlbrodt, T., Mathiot, P., Roberts, C. D., Schiemann, R., Seddon, J., Vannière, B., and Vidale, P. L.: Description of the resolution hierarchy of the global coupled HadGEM3-GC3.1 model as used in CMIP6 HighResMIP experiments, Geosci. Model Dev., 12, 4999–5028, https://doi.org/10.5194/gmd-12-4999-2019, 2019. a, b
Roberts, M. J., Jackson, L. C., Roberts, C. D., Meccia, V., Docquier, D., Koenigk, T., Ortega, P., Moreno-Chamarro, E., Bellucci, A., Coward, A., Drijfhout, S., Exarchou, E., Gutjahr, O., Hewitt, H., Iovino, D., Lohmann, K., Putrasahan, D., Schiemann, R., Seddon, J., Terray, L., Xu, X., Zhang, Q., Chang, P., Yeager, S. G., Castruccio, F. S., Zhang, S., and Wu, L.: Sensitivity of the Atlantic Meridional Overturning Circulation to model resolution in CMIP6 HighResMIP simulations and implications for future changes, J. Adv. Model. Earth Sy., 12, e2019MS002014, https://doi.org/10.1029/2019MS002014, 2020. a, b, c, d
Save, H.: CSR GRACE and GRACE-FO RL06 Mascon Solutions v02, Center for Space Research [data set], https://doi.org/10.15781/cgq9-nh24, 2020. a
Save, H., Bettadpur, S., and Tapley, B. D.: High-resolution CSR GRACE RL05 mascons, J. Geophys. Res.-Sol. Ea., 121, 7547–7569, https://doi.org/10.1002/2016JB013007, 2016. a, b
Schindelegger, M., Harker, A. A., Ponte, R. M., Dobslaw, H., and Salstein, D. A.: Convergence of daily GRACE solutions and models of submonthly ocean bottom pressure variability, J. Geophys. Res.-Oceans, 126, e2020JC017031, https://doi.org/10.1029/2020JC017031, 2021. a, b
Scoccimarro, E., Bellucci, A., Peano, D.: CMCC CMCC-CM2-VHR4 model output prepared for CMIP6 HighResMIP, Earth System Grid Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.1367, 2017. a
Sen Gupta, A., Jourdain, N. C., Brown, J. N., and Monselesan, D.: Climate drift in the CMIP5 models, J. Climate, 26, 8597–8615, https://doi.org/10.1175/JCLI-D-12-00521.1, 2013. a, b
Shi, J. R., Talley, L. D., Xie, S. P., Peng, Q. H., and Liu, W.: Ocean warming and accelerating Southern Ocean zonal flow, Nat. Clim. Change, 11, 1090–1097, https://doi.org/10.1038/s41558-021-01212-5, 2021. a
Shihora, L., Balidakis, K., Dill, R., Dahle, C., Ghobadi-Far, K., Bonin, J., and Dobslaw, H.: Non-tidal background modeling for satellite gravimetry based on operational ECWMF and ERA5 reanalysis data: AOD1B RL07, J. Geophys. Res.-Sol. Ea., 127, e2022JB024360, https://doi.org/10.1029/2022JB024360, 2022. a, b
Storkey, D., Blaker, A. T., Mathiot, P., Megann, A., Aksenov, Y., Blockley, E. W., Calvert, D., Graham, T., Hewitt, H. T., Hyder, P., Kuhlbrodt, T., Rae, J. G. L., and Sinha, B.: UK Global Ocean GO6 and GO7: a traceable hierarchy of model resolutions, Geosci. Model Dev., 11, 3187–3213, https://doi.org/10.5194/gmd-11-3187-2018, 2018. a
Tapley, B. D., Watkins, M. M., Flechtner, F., Reigber, C., Bettadpur, S., Rodell, M., Sasgen, I., Famiglietti, J. S., Landerer, F. W., Chambers, D. P., Reager, J. T., Gardner, A. S., Himanshu, S., Ivins, E. R., Swenson, S. C., Boening, C., Dahle, C., Wiese, D. N., Dobslaw, H., Tamisiea, M. E., and Velicogna, I.: Contributions of GRACE to understanding climate change, Nat. Clim. Change, 9, 358–369, https://doi.org/10.1038/s41558-019-0456-2, 2019. a
van Dam, T., Collilieux, X., Wuite, J., Altamimi, Z., and Ray, J.: Nontidal ocean loading: amplitudes and potential effects in GPS height time series, J. Geodesy, 86, 1043–1057, https://doi.org/10.1007/s00190-012-0564-5, 2012. a
van Sebille, E., Biastoch, A., Van Leeuwen, P., and De Ruijter, W.: A weaker Agulhas Current leads to more Agulhas leakage, Geophys. Res. Lett., 36, L03601, https://doi.org/10.1029/2008GL036614, 2009. a
Vinogradova, N. T., Ponte, R, M., and Stammer, D.: Relation between sea level and bottom pressure and the vertical dependence of oceanic variability, Geophys. Res. Lett., 34, L03608, https://doi.org/10.1029/2006GL028588, 2007. a
Vinogradova, N. T., Ponte, R. M., Tamisiea, M. E., Quinn, K. J., Hill, E. M., and Davis, J. L.: Self-attraction and loading effects on ocean mass redistribution at monthly and longer time scales, J. Geophys. Res.-Oceans, 116, C08041, https://doi.org/10.1029/2011JC007037, 2011. a
Voldoire, A.: CNRM-CERFACS CNRM-CM6-1 model output prepared for CMIP6 CMIP, Earth System Grid Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.1375, 2018. a
Voldoire, A., Saint-Martin, D., Sénési, S., Decharme, B., Alias, A., Chevallier, M., Colin, J., Guérémy, J.-F., Michou, M., Moine, M.-P., Nabat, P., Roehrig, R., Salas y Mélia, D., Séférian, R., Valcke, S., Beau, I., Belamari, S., Berthet, S., Cassou, C., Cattiaux, J., Deshayes, J., Douville, H., Ethé, C., Franchistéguy, L., Geoffroy, O., Lévy, C., Madec, G., Meurdesoif, Y., Msadek, R., Ribes, A., Sanchez-Gomez, E., Terray, L., and Waldman, R.: Evaluation of CMIP6 DECK experiments with CNRM-CM6-1, J. Adv. Model. Earth Sy., 11, 2177–2213, https://doi.org/10.1029/2019MS001683, 2019. a
Wang, S., Jing, Z., Wu, L., Sun, S., Chen, Z., Ma, X., and Gan, B.: A more quiescent deep ocean under global warming, Nat. Clim. Change, 14, 961–967, https://doi.org/10.1038/s41558-024-02075-2, 2024. a
Watkins, M. M., Wiese, D. N., Yuan, D.-N., Boening, C., and Landerer, F. W.: Improved methods for observing Earth's time variable mass distribution with GRACE using spherical cap mascons, J. Geophys. Res.-Sol. Ea., 120, 2648–2671, https://doi.org/10.1002/2014JB011547, 2015. a
Weijer, W.: Modal variability in the Southeast Pacific Basin: Energetics of the 2009 event, Deep-Sea Res. Pt. II, 114, 3–11, https://doi.org/10.1016/j.dsr2.2012.10.002, 2015. a
Weijer, W. and Gille, S. T.: Adjustment of the Southern Ocean to wind forcing on synoptic time scales, J. Phys. Oceanogr., 35, 2076–2089, https://doi.org/10.1175/JPO2801.1, 2005. a, b
Wiese, D. N., Yuan, D.-N., Boening, C., Landerer, F. W., and Watkins, M. M.: JPL GRACE and GRACE-FO Mascon Ocean, Ice, and Hydrology Equivalent Water Height CRI Filtered RL06.3Mv04, Ver. RL06.3Mv04, PO.DAAC [data set], CA, USA, https://doi.org/10.5067/TEMSC-3JC634, 2023. a, b
Zhang, L., Tang, H., Chang, L., and Sun, W.: Performance of GRACE mascon solutions in studying seismic deformations, J. Geophys. Res.-Sol. Ea., 125, e2020JB019510, https://doi.org/10.1029/2020JB019510, 2020. a
Zhao, M. N., Ponte, R. M., and Penduff, T.: Global-scale random bottom pressure fluctuations from oceanic intrinsic variability, Sci. Adv., 9, eadg0278, https://doi.org/10.1126/sciadv.adg0278, 2023. a
Zuo, H., Balmaseda, M. A., and Mogensen, K.: The new eddy-permitting ORAP5 ocean reanalysis: description, evaluation and uncertainties in climate signals, Clim. Dynam., 49, 791–811, https://doi.org/10.1007/s00382-015-2675-1, 2017. a, b
Short summary
As seawater is moved about by the different types of ocean flow, the pressure at the ocean bottom changes with time and location. We show that such bottom pressure variations are represented reasonably well by high-resolution climate models and that in some regions, like the Arctic Ocean, the intensity of the pressure fluctuations will likely increase under global warming. These insights are useful for the design of future satellite missions that will track mass variations in the Earth system.
As seawater is moved about by the different types of ocean flow, the pressure at the ocean...