Articles | Volume 21, issue 5
https://doi.org/10.5194/os-21-1873-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-21-1873-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Decoding pelagic ciliate (Ciliophora) community divergences in size spectrum, biodiversity and driving factors globally spanning five temperature zones
Chaofeng Wang
CORRESPONDING AUTHOR
CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
Zhiqiang Xu
CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
Jiaozhou Bay Marine Ecosystem Research Station, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
Guangfu Luo
Polar Research Institute of China, Shanghai, 200136, China
Xiaoyu Wang
Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Physical Oceanography, Ocean University of China, Qingdao, 266100, China
Yan He
First Institute of Oceanography and Key Laboratory of Marine Science and Numerical Modeling, Ministry of Natural Resources, Qingdao, 266061, China
Musheng Lan
Polar Research Institute of China, Shanghai, 200136, China
Tiancheng Zhang
State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
Wuchang Zhang
CORRESPONDING AUTHOR
CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
Related authors
Chaofeng Wang, Yi Dong, Michel Denis, Li Zhao, Haibo Li, Shan Zheng, Wuchang Zhang, and Tian Xiao
Biogeosciences Discuss., https://doi.org/10.5194/bg-2022-151, https://doi.org/10.5194/bg-2022-151, 2022
Revised manuscript not accepted
Short summary
Short summary
The present study reported on diel variations of planktonic ciliate community structure in the nSCS and tWP, and ciliate do preformed diel vertical migrations. In both the nSCS and tWP, abundance proportions of large size-fraction aloricate ciliates in night were higher than in day. While for tintinnids, abundance proportion of large lorica oral diameter in night were lower than in day.
Jialiang Zhu, Tao Li, Peng Lu, Yilin Liu, and Xiaoyu Wang
EGUsphere, https://doi.org/10.5194/egusphere-2025-2011, https://doi.org/10.5194/egusphere-2025-2011, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
The albedo of refreezing melt pond is observed and effect of multiple factors on it is studied. The refreezing melt ponds are categorized into 5 types according to surface state that dominates albedo. Based on it, we found that ratio between albedo in certain bands can be used to distinguish snow-covered pond from unponded ice. Besides, properties such as pond depth and ice lid have various effect on different types of ponds, which is also examined using in-situ data and modelling.
Qi Shu, Qiang Wang, Chuncheng Guo, Zhenya Song, Shizhu Wang, Yan He, and Fangli Qiao
Geosci. Model Dev., 16, 2539–2563, https://doi.org/10.5194/gmd-16-2539-2023, https://doi.org/10.5194/gmd-16-2539-2023, 2023
Short summary
Short summary
Ocean models are often used for scientific studies on the Arctic Ocean. Here the Arctic Ocean simulations by state-of-the-art global ocean–sea-ice models participating in the Ocean Model Intercomparison Project (OMIP) were evaluated. The simulations on Arctic Ocean hydrography, freshwater content, stratification, sea surface height, and gateway transports were assessed and the common biases were detected. The simulations forced by different atmospheric forcing were also evaluated.
Chaofeng Wang, Yi Dong, Michel Denis, Li Zhao, Haibo Li, Shan Zheng, Wuchang Zhang, and Tian Xiao
Biogeosciences Discuss., https://doi.org/10.5194/bg-2022-151, https://doi.org/10.5194/bg-2022-151, 2022
Revised manuscript not accepted
Short summary
Short summary
The present study reported on diel variations of planktonic ciliate community structure in the nSCS and tWP, and ciliate do preformed diel vertical migrations. In both the nSCS and tWP, abundance proportions of large size-fraction aloricate ciliates in night were higher than in day. While for tintinnids, abundance proportion of large lorica oral diameter in night were lower than in day.
Guorong Zhong, Xuegang Li, Jinming Song, Baoxiao Qu, Fan Wang, Yanjun Wang, Bin Zhang, Xiaoxia Sun, Wuchang Zhang, Zhenyan Wang, Jun Ma, Huamao Yuan, and Liqin Duan
Biogeosciences, 19, 845–859, https://doi.org/10.5194/bg-19-845-2022, https://doi.org/10.5194/bg-19-845-2022, 2022
Short summary
Short summary
A predictor selection algorithm was constructed to decrease the predicting error in the surface ocean partial pressure of CO2 (pCO2) mapping by finding better combinations of pCO2 predictors in different regions. Compared with previous research using the same combination of predictors in all regions, using different predictors selected by the algorithm in different regions can effectively decrease pCO2 predicting errors.
Cited articles
Amargant-Arumí, M., Müller, O., Bodur, Y., Ntinou, I., Vonnahme, T., Assmy, P., Kohlbach, D., Chierici, M., Jones, E., Olsen, L., Tsagaraki, T., Reigstad, M., Bratbak, G., and Gradinger, R.: Interannual differences in sea ice regime in the north-western Barents Sea cause major changes in summer pelagic production and export mechanisms, Prog. Oceanogr., 220, 103178, https://doi.org/10.1016/j.pocean.2023.103178, 2024.
Andersen, K. H.: Chapter 2: Size spectrum theory, in: Fish Ecology, Evolution, and Exploitation. A New Theoretical Synthesis, edited by: Andersen, K. H., Princeton University Press, 15–37, ISBN 9780691192956, 2019.
Anderson, S. I., Barton, A., Clayton, S., Dutkiewicz, S., and Rynearson, T.: Marine phytoplankton functional types exhibit diverse responses to thermal change, Nat. Commun., 12, 6413, https://doi.org/10.1038/s41467-021-26651-8, 2021.
Antoni, J., Almandoz, G., Goldsmit, J., Garcia, M., FloresMelo, X., Hernando, M., and Schloss, I.: Long-term studies on West Antarctic Peninsula phytoplankton blooms suggest range shifts between temperate and polar species, Global Change Biol., 30, e17238, https://doi.org/10.1111/gcb.17238, 2024.
Archibald, K. M., Dutkiewicz, S., Laufkötter, C., and Moeller, H. V.: Thermal responses in global marine planktonic food webs are mediated by temperature effects on metabolism, J. Geophys. Res.-Oceans, 127, e2022JC018932, https://doi.org/10.1029/2022JC018932, 2022.
Atkinson, A., Harmer, R., Widdicombe, C., McEvoy, A., Smyth, T., Cummings, D., Somerfield, P., Maud, J., and Mcconville, K.: Questioning the role of phenology shifts and trophic mismatching in a planktonic food web, Prog. Oceanogr., 137, 498–512, https://doi.org/10.1016/j.pocean.2015.04.023, 2015.
Atkinson, A., Rossberg, A. G., Gaedke, U., Sprules, G., Heneghan, R., Batziakas, S., Grigoratou, M., Fileman, E., Schmidt, K., and Frangoulis, C.: Steeper size spectra with decreasing phytoplankton biomass indicate strong trophic amplification and future fish declines, Nat. Commun., 15, 381, https://doi.org/10.1038/s41467-023-44406-5, 2024.
Benedetti, F., Vogt, M., Elizondo, U., Righetti, D., Zimmermann, N. E., and Gruber, N.: Major restructuring of marine plankton assemblages under global warming, Nat. Commun., 12, 5226, https://doi.org/10.1038/s41467-021-25385-x, 2021.
Blanchard, J. L., Heneghan, R. F., Everett, J. D., Trebilco, R., and Richardson, A. J.: From bacteria to whales: Using functional size spectra to model marine ecosystems, Trends Ecol. Evol., 32, 174–186, https://doi.org/10.1016/j.tree.2016.12.003, 2017.
Boutin, K., Gaudron, S. M., Denis, J., and Lasram, F. B. R.: Potential marine benthic colonisers of offshore wind farms in the English Channel: a functional trait-based approach, Mar. Environ. Res., 190, 106061, https://doi.org/10.1016/j.marenvres.2023.106061, 2023.
Calbet, A. and Saiz, E.: The ciliate-copepod link in marine ecosystems, Aquat. Microb. Ecol., 38, 157–167, https://doi.org/10.3354/ame038157, 2005.
Calbet, A., Landry, M., and Nunnery, S.: Bacteria-flagellate interactions in the microbial food web of the oligotrophic subtropical North Pacific, Aquat. Microb. Ecol., 23, 283–292, https://doi.org/10.3354/ame023283, 2001.
Carvalho, K. S., Smith, T. E., and Wang, S.: Bering Sea marine heatwaves: Patterns, trends and connections with the Arctic, J. Hydrol., 600, 126462, https://doi.org/10.1016/j.jhydrol.2021.126462, 2021.
Casoli, E., Mancini, G., Ventura, D., Pace, D. S., Belluscio, A., and Ardizzone, G. D.: Reteporella spp. success in the re-colonization of bare coralligenous reefs impacted by Costa Concordia shipwreck: the pioneer species you did not expect, Mar. Pollut. Bull., 161, 111808, https://doi.org/10.1016/j.marpolbul.2020.111808, 2020.
Chapin III, F. S., Walker, B. H., Hobbs, R. J., Hooper, D. U., Lawton, J. H., Sala, O. E., and Tilman, D.: Biotic control over the functioning of ecosystems, Science, 277, 500–503, https://doi.org/10.1126/science.277.5325.500, 1997.
Chen, B., Landry, M. R., Huang, B., and Liu, H.: Does warming enhance the effect of microzooplankton grazing on marine phytoplankton in the ocean?, Limnol. Oceanogr., 57, 519–526, https://doi.org/10.4319/lo.2012.57.2.0519, 2012.
Chust, G., Villarino, E., McLean, M., Mieszkowska, N., Benedetti-Cecchi, L., Bulleri, F., Ravaglioli, C., Borja, A., Muxika, I., Fernandes-Salvador, J., and Lindegren, M.: Cross-basin and cross-taxa patterns of marine community tropicalization and deborealization in warming European seas, Nat. Commun., 15, 2126, https://doi.org/10.1038/s41467-024-46526-y, 2024.
Clark, M. S., Hoffman, J., Peck, L. S., Bargelloni, L., Gande, D., Havermans, C., Meyer, B., Patarnello, T., Phillips, T., Stoof-Leichsenring, K., Vendrami, D. L., Beck, A., Collins, G., Friedrich, M. W., Halanych, K. M., Masello, J. F., Nagel, R., Noren, K., Printzen, C., Ruiz, M. B., Wohlrab, S., Becker, B., Dumack, K., Ghaderiardakani, F., Glaser, K., Heesch, S., Held, C., John, U., Karsten, U., Kempf, S., Lucassen, M., Paijmans, A., Schimani, K., Wallberg, A., Wunder, L. C., and Mock, T.: Multi-omics for studying and understanding polar life, Nat. Commun., 14, 7451, https://doi.org/10.1038/s41467-023-43209-y, 2023.
Darnis, G., Geoffroy, M., Dezutter, T., Aubry, C., Massicotte, P., Brown, T., Babin, M., Cote, D., and Fortier, L.: Zooplankton assemblages along the North American Arctic: Ecological connectivity shaped by ocean circulation and bathymetry from the Chukchi Sea to Labrador Sea, Elementa-Sci. Anthrop., 10, 1, https://doi.org/10.1525/elementa.2022.00053, 2022.
Daufresne, M., Lengfellner, K., and Sommer, U.: Global warming benefits the small in aquatic ecosystems, P. Natl. Acad. Sci. USA, 106, 12788–12793, https://doi.org/10.1073/pnas.0902080106, 2009.
Dolan, J. R. and Pierce, R. W.: Diversity and distributions of tintinnid ciliates, in: The Biology and Ecology of Tintinnid Ciliates: Models for Marine Plankton, edited by: Dolan, J. R., Agatha, S., and Coats, D. W., Wiley-Blackwell, Oxford, 214–243, https://doi.org/10.1002/9781118358092, 2013.
Dolan, J. R., Vidussi, F., and Claustre, H.: Planktonic ciliates in the Mediterranean Sea: longitudinal trends, Deep-Sea Res. Pt. I, 46, 2025–2039, https://doi.org/10.1016/S0967-0637(99)00043-6, 1999.
Dolan, J. R., Yang, E. J., Kim, T. W., and Kang, S. H.: Microzooplankton in warming Arctic: a comparison of tintinnids and radiolarians from summer 2011 and 2012 in the Chukchi Sea, Acta Protozool., 52, 101–113, https://doi.org/10.4467/16890027AP.14.010.1447, 2014.
Dolan, J. R., Yang, E. J., Kang, S. H., and Rhee, T. S.: Declines in both redundant and trace species characterize the latitudinal diversity gradient in tintinnid ciliates, ISME J., 10, 2174–2183, https://doi.org/10.1038/ismej.2016.19, 2016.
du Pontavice, H., Gascuel, D., Reygondeau, G., Stock, C., and Cheung, W.: Climate–induced decrease in biomass flow in marine food webs may severely affect predators and ecosystem production, Global Change Biol., 11, 2608–2622, https://doi.org/10.1111/gcb.15576, 2021.
Elton, C.: Animal ecology, Macmillan, New York, https://doi.org/10.5962/bhl.title.7435, 1927.
Ershova, E. A., Hopcroft, R., Kosobokova, K., Matsuno, K., Nelson, R., Yamaguchi, A., and Eisner, L.: Long-term changes in summer zooplankton communities of the western Chukchi Sea, 1945–2012, Oceanography, 28, 100–115, https://doi.org/10.5670/oceanog.2015.60, 2015.
García-Comas, C., Sastri, A. R., Ye, L., Chang, C. Y., Lin, F., Su, M., Gong, G., and Hsieh, C. H.: Prey size diversity hinders biomass trophic transfer and predator size diversity promotes it in planktonic communities, P. Roy. Soc. B-Biol. Sci., 283, 20152129, https://doi.org/10.1098/rspb.2015.2129, 2016.
Gómez, F.: Trends on the distribution of ciliates in the open Pacific Ocean, Acta Oecol., 32, 188–202, https://doi.org/10.1016/j.actao.2007.04.002, 2007.
Hastings, R. A., Rutterford, L. A., Freer, J. J., Collins, R. A., Simpson, S. D., and Genner, M. J.: Climate change drives poleward increases and equatorward declines in marine species, Curr. Biol., 30, 1572–1577, https://doi.org/10.1016/j.cub.2020.02.043, 2020.
Heneghan, R. F., Everett, J. D., Blanchard, J. L., Sykes, P., and Richardson, A. J.: Climate-driven zooplankton shifts cause large-scale declines in food quality for fish, Nat. Clim. Change, 13, 470–477, https://doi.org/10.1038/s41558-023-01630-7, 2023.
Hillman, J. R., Lundquist, C. J., and Thrush, S. F.: The challenges associated with connectivity in ecosystem processes, Front. Mar. Sci., 5, 364, https://doi.org/10.3389/fmars.2018.00364, 2018.
Holm, H. C., Fredricks, H. F., Bent, S. M., Lowenstein, D. P., Ossolinski, J. E., Becker, K. W., Johnson, W. M., Schrage, K., and Van Mooy, B.: Global Ocean lipidomes show a universal relationship between temperature and lipid unsaturation, Science, 376, 1487–1491, https://doi.org/10.1126/science.abn7455, 2022.
Hunt, G. L., Drinkwater, K. F., Arrigo, K., Berge, J., Daly, K. L., Danielson, S., Daase, M., Hop, H., Isla, E., Karnovsky, N., Wolf-Gladrow, D., Laidre, K., Mueter, F. J., Murphy, E. J., Renaud, P. E., Smith, W., Trathan, P., Turner, J., and Wolf-Gladrow, D.: Advection in polar and sub-polar environments: Impacts on high latitude marine ecosystems, Prog. Oceanogr., 149, 40–81, https://doi.org/10.1016/j.pocean.2016.10.004, 2016.
Ibarbalz, F., Henry, N., Brandao, M., Martini, S., Busseni, G., Byrne, H., Coelho, L. P., Endo, H., Gasol, J., Gregory, A., Mahe F., Rigonato, J., Royo-Llonch, M., Salazar, G., Sanz-Saez, I., Scalco, E., Soviadan, D., Zayed, A., Zingone, A., Labadie, K., Ferland, J., Marec, C., Kandels, S., Pichera., M., Dimier, C., Poulain, J., Pisarev, S., Carmichae, M., Pesant, S., Babin, M., Boss, E., Iudicone, D., Jaillon, O., Acinas, S. G., Ogata, H., Pelletier, E., Stemmann, L., Sullivan, M., Sunagawa, S., Bopp, L., de Vargas, C., Karp-Boss, L., Wincker, P., Lombard, F., Bowler, C., Zinger, L., Bork, P., Cochrane, G., Follows, M., Gorsky, G., Grimsley, N., Guidi, L., Hingamp, P., Karsenti, E., Not, F., Poulton, N., Raes, J., Sardet, C., and Sabrina, S.: Global trends in marine plankton diversity across kingdoms of life, Cell, 179, 1084–1097, https://doi.org/10.1016/j.cell.2019.10.008, 2019.
IPCC: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, IPCC, Geneva, Switzerland, 1–169, https://doi.org/10.59327/IPCC/AR6-9789291691647, 2023.
Jiang, Y., Yang, E., Min, J., Kang, S., and Lee, S.: Using pelagic ciliated microzooplankton communities as an indicator for monitoring environmental condition under impact of summer sea-ice reduction in western Arctic Ocean, Ecol. Indic., 34, 380–390, https://doi.org/10.1016/j.ecolind.2013.05.026, 2013.
Jiao, N., Luo, T., Chen, Q., Zhao, Z., Xiao, X., Liu, J., Jian, Z., Xie, S., Thomas, H., Herndl, G., Benner, R., Gonsior, M., Chen, F., Cai, W., and Robinson, C.: The microbial carbon pump and climate change, Nat. Rev. Microbiol., 1–12, https://doi.org/10.1038/s41579-024-01018-0, 2024.
Kato, S. and Taniguchi, A.: Tintinnid ciliates as indicator species of different water masses in the western North Pacific Polar Front, Fish. Oceanogr., 2, 166–174, https://doi.org/10.1111/j.1365-2419.1993.tb00132.x, 1993.
Kim, J. H., Cho, K. H., La, H. S., Choy, E. J., and Yang, E. J.: Mass occurrence of Pacific copepods in the southern Chukchi Sea during summer: implications of the high-temperature Bering Summer Water, Front. Mar. Sci., 7, 612, https://doi.org/10.3389/fmars.2020.00612, 2020.
Knies, J., Kingsolver, J., and Burch, C. Hotter is better and broader: Thermal sensitivity of fitness in a population of bacteriophages, Am. Nat., 173, 419–430, https://doi.org/10.1086/597224, 2009.
Kohlbach, D., Goraguer, L., Bodur, Y. V., Müller, O., Amargant-Arum? M., Blix, K., Bratbak, G., Chierici, M., Dabrowska, A. M., Dietrich, U., Edvardsen, B., Garcia, L. M., Gradinger, R., Hop. H., Jones, E., Lundesgaard, O., Olsen, L. M., Reigstad, M., Saubrekka, K., Tatarek, A., Wiktor, J. M., Wold, A., and Assmy, P.: Earlier sea-ice melt extends the oligotrophic summer period in the Barents Sea with low algal biomass and associated low vertical flux, Prog. Oceanogr., 213, 103018, https://doi.org/10.1016/j.pocean.2023.103018, 2023.
Köppen, W. P.: The geographical system of climates (Das geographische system der Klimate), in: Handbook of climatology (Handbuch der Klimatologie), edited by: Köppen, W. P. and Geiger, R., Gebrüder Borntraeger, Berlin, 1–44, 1, 936.
Kršinić, F.: On vertical distribution of tintinnines (Ciliata, Oligotrichida, Tintinnina) in the open waters of the South Adriatic, Mar. Biol., 68, 83–90, https://doi.org/10.1007/BF00393145, 1982.
Kutschera, U. and Niklas, K. J.: Endosymbiosis, cell evolution, and speciation, Theor. Biosci., 124, 1–24, https://doi.org/10.1016/j.thbio.2005.04.001, 2005.
Kwiatkowski, L., Aumont, O., and Bopp, L.: Consistent trophic amplification of marine biomass declines under climate change, Global Change Biol., 25, 218–229, https://doi.org/10.1111/gcb.14468, 2019.
Lennartz, S. T., Keller, D. P., Oschlies, A., Blasius, B., and Dittmar, T.: Mechanisms underpinning the net removal rates of dissolved organic carbon in the global ocean, Global Biogeochem. Cy., 38, e2023GB007912, https://doi.org/10.1029/2023GB007912, 2024.
Lewis, K. M., Van Dijken, G. L., and Arrigo, K. R.: Changes in phytoplankton concentration now drive increased Arctic Ocean primary production, Science, 369, 198–202, https://doi.org/10.1126/science.aay8380, 2020.
Li, C., Chen, K., Sun, X., Liu, L., Ming, X., Liu, X., and Wang, B.: Summer sea ice melting enhances phytoplankton and dimethyl sulfide production, Limnol. Oceanogr., 69, 2453–2472, https://doi.org/10.1002/lno.12681, 2024.
Li, H., Xu, Z., Zhang, W., Wang, S., Zhang, G., and Xiao, T.: Boreal tintinnid assemblage in the Northwest Pacific and its connection with the Japan Sea in summer 2014, PLoS One, 11, e0153379, https://doi.org/10.1371/journal.pone.0153379, 2016.
Li, H., Zhang, W., Zhao, Y., Zhao, L., Dong, Y., Wang, C., Liang, C., and Xiao, T.: Tintinnid diversity in the tropical West Pacific Ocean, Acta Oceanol. Sin., 37, 218–228, https://doi.org/10.1007/s13131-018-1148-x, 2018.
Li, H., Xu, Z., Mou, W., Gao, L., Zu, Y., Wang, C., Zhao, Y., Zhang, W., and Xiao, T.: Planktonic ciliates in different water masses of Cosmonaut and Cooperation Seas (Indian sector of the Southern Ocean) during austral summer, Polar Biol., 45, 1059–1076, https://doi.org/10.1007/s00300-022-03057-w, 2022.
Li, W., Mclaughlin, F. A., Lovejoy, C., and Carmack, E. C.: Smallest algae thrive as the Arctic Ocean freshens, Science, 326, 539–539, https://doi.org/10.1126/science.1179798, 2009.
Longhurst, A. R.: Ecological Geography of the Sea, 2nd Edn., Academic Press, Amsterdam, 2, https://doi.org/10.1016/B978-0-12-455521-1.X5000-1, 007.
Lotze, H. K., Tittensor, D. P., Bryndum-Buchholz, A., Eddy, T. D., Cheung, W., Galbraith, E. D., Barange, M., Barrier, N., Bianchi, D., Blanchard, J. L., Bopp, L., Buchner, M., Bulman, C. M., Carozza, D. A., Christensen, V., Coll, M., Dunne, J., Fulton, E., Jennings, S., Jones, M., Mackinson, S., Maury, O., Niiranen, S., Oliveros-Ramos, R., Roy, T., Fernandes, J., Schewe, J., Shin, Y., Silva, T., Steenbeek, J., Stock, C., Verley, P., Volkholz, J., Walker, N., and Worm, B.: Global ensemble projections reveal trophic amplification of ocean biomass declines with climate change, P. Natl. Acad. Sci. USA, 116, 12907–12912, https://doi.org/10.1073/pnas.1900194116, 2019.
Lu, X. and Weisse, T.: Top-down control of planktonic ciliates by microcrustacean predators is stronger in lakes than in the ocean, Sci. Rep.-UK, 12, 10501, https://doi.org/10.1038/s41598-022-14301-y, 2022.
Lukić, D., Limberger, R., Agatha, S., Montagnes, D. J., and Weisse. T.: Thermal performance of planktonic ciliates differs between marine and freshwaters: A case study providing guidance for climate change studies, Limnol. Oceanogr. Lett., 7, 520–526, https://doi.org/10.1002/lol2.10264, 2022.
Lynn, D. H.: Ciliated Protozoa: Characterization, Classification, and Guide to the Literature, 3rd edn., Springer, Berlin, 1–455, https://doi.org/10.1007/978-1-4020-8239-9, 2008.
Margalef, R.: Information theory in ecology, Gen. Syst., 3, 36–71, 1958.
Margulis, L. and Sagan, D.: Acquiring Genomes, A theory of the origin of species, Basic Books, New York, 2002.
Møller, E. F. and Nielsen, T. G.: Borealization of Arctic zooplankton–smaller and less fat zooplankton species in Disko Bay, Western Greenland, Limnol. Oceanogr., 65, 1175–1188, https://doi.org/10.1002/lno.11380, 2020.
Mueter, F. J., Iken, K., Cooper, L., Grebmeier, J. M., Kuletz, K. J., Hopcroft, R. R., Danielson, S., Collins, R., and Cushing, D.: Changes in diversity and species composition across multiple assemblages in the eastern Chukchi Sea during two contrasting years are consistent with borealization, Oceanography, 34, 38–51, https://doi.org/10.5670/oceanog.2021.213, 2021.
Neukermans, G., Oziel, L., and Babin, M.: Increased intrusion of warming Atlantic water leads to rapid expansion of temperate phytoplankton in the Arctic, Global Change Biol., 24, 2545–2553, https://doi.org/10.1111/gcb.14075, 2018.
Noh, K. M., Oh, J. H., Lim, H. G., Song, H., and Kug, J. S.: Role of Atlantification in enhanced primary productivity in the Barents Sea, Earths Future, 12, e2023EF003709, https://doi.org/10.1029/2023EF003709, 2024.
Oziel, L., Baudena, A., Ardyna, M., Massicotte, P., Randelhoff, A., Sallée, J. B., Ingvaldsen, R. B., Devred, E., and Babin, M.: Faster Atlantic currents drive poleward expansion of temperate phytoplankton in the Arctic Ocean, Nat. Commun., 11, 1–8, https://doi.org/10.1038/s41467-020-15485-5, 2020.
Pedrós-Alió, C., Calderón-Paz, J. I., MacLean, M. H., Medina, G., Marrasé, C., Gasol, J. M., and Guixa-Boixereu, N.: The microbial food web along salinity gradients, FEMS Microbiol. Ecol., 32, 143–155, https://doi.org/10.1111/j.1574-6941.2000.tb00708.x, 2000.
Pierce, R. W. and Turner, J. T.: Global biogeography of marine tintinnids, Mar. Ecol. Prog. Ser., 94, 11–26, https://doi.org/10.3354/meps094011, 1993.
Poloczanska, E., Brown, C., Sydeman, W., Kiessling, W., Schoeman, D., Moore, P., Brander, K., Bruno, J., Buckley, L., Burrows, M., Duarte, C., Halpern, B., Holding, J., Kappel, C., O'Connor, M., Pandolfi, J., Parmesan, C., Schwing, F., Thompson, S., and Richardson, A.: Global imprint of climate change on marine life, Nat. Clim. Change, 3, 919–925, https://doi.org/10.1038/NCLIMATE1958, 2013.
Power, M. E.: Top-down and bottom-up forces in food webs: do plants have primacy, Ecology, 73, 733–746, https://doi.org/10.2307/1940153, 1992.
Putt, M. and Stoecker, D. K.: An experimentally determined carbon: volume ratio for marine “oligotrichous” ciliates from estuarine and coastal waters, Limnol. Oceanogr., 34, 1097–1103, https://doi.org/10.4319/lo.1989.34.6.1097, 1989.
Qian, C., Liu, K., Pang, M., Xu, Z., Deng, L., and Liu, H.: Hypoxia and warming take sides with small marine protists: An integrated laboratory and field study, Sci. Total Environ., 882, 163568, https://doi.org/10.1016/j.scitotenv.2023.163568, 2023.
Righetti, D., Vogt, M., Gruber, N., Psomas, A., and Zimmermann, N. E.: Global pattern of phytoplankton diversity driven by temperature and environmental variability, Sci. Adv., 5, eaau6253, https://doi.org/10.1126/sciadv.aau6253, 2019.
Screen, J. A. and Simmonds, I.: The central role of diminishing sea ice in recent Arctic temperature amplification, Nature, 464, 1334–1337, https://doi.org/10.1038/nature09051, 2010.
Segaran, T. C., Azra, M., Lananan, F., and Wang, Y.: Microbe, climate change and marine environment: Linking trends and research hotspots, Mar. Environ. Res., 189, 106015, https://doi.org/10.1016/j.marenvres.2023.106015, 2023.
Serra-Pompei, C., Ward, B., Pinti, J., Visser, A., Kiorboe, T., and Andersen, K.: Linking plankton size spectra and community composition to carbon export and its efficiency, Global Biogeochem. Cy., 36, e2021GB007275, https://doi.org/10.1029/2021GB007275, 2022.
Serreze, M. C., Barrett, A. P., Stroeve, J. C., Kindig, D. N., and Holland, M. M.: The emergence of surface-based Arctic amplification, The Cryosphere, 3, 11–19, https://doi.org/10.5194/tc-3-11-2009, 2009.
Shannon, C. E.: A mathematical theory of communication, Bell Syst. Tech. J., 27, 379–423, https://doi.org/10.1002/j.1538-7305.1948.tb01338.x, 1948.
Sheldon, R. W., Prakash, A., and Sutcliffe, W.: The size distribution of particles in the ocean, Limnol. Oceanogr., 17, 327–340, https://doi.org/10.4319/lo.1972.17.3.0327, 1972.
Sherr, E. B., Sherr, B. F., and Fessenden, L.: Heterotrophic protists in the central Arctic Ocean, Deep-Sea Res. Pt. II, 44, 1665–1673, https://doi.org/10.1016/S0967-0645(97)00050-7, 1997.
Sohrin, R., Imazawa, M., Fukuda, H., and Suzuki, Y.: Full-depth profiles of prokaryotes, heterotrophic nanoflagellates, and ciliates along a transect from the equatorial to the subarctic central Pacific Ocean, Deep-Sea Res. Pt. II, 57, 1537–1550, https://doi.org/10.1016/j.dsr2.2010.02.020, 2010.
Šolić, M., Krstulović, N., Kuspilić, G., Gladan, N., Bojanić, N., Sestanovic, S., Šantić, D., and Ordulj, M.: Changes in microbial food web structure in response to changed environmental trophic status: A case study of the Vranjic Basin (Adriatic Sea), Mar. Environ. Res., 70, 239–249, https://doi.org/10.1016/j.marenvres.2010.05.007, 2010.
Spalding, M., Agostini, V., Rice, J., and Grant, S.: Pelagic provinces of the world: A biogeographic classification of the world's surface pelagic waters, Ocean Coast. Manage., 60, 19–30, https://doi.org/10.1016/j.ocecoaman.2011.12.016, 2012.
Sprules, W. G., Barth, L. E., and Giacomini, H.: Surfing the biomass size spectrum: some remarks on history, theory, and application, Can. J. Fish. Aquat. Sci., 73, 477–495, https://doi.org/10.1139/cjfas-2015-0115, 2016.
Stabeno, P. J., Farley Jr., E., Kachel, N., Moore, S., Mordy, C., Napp, J., Overland, J., Pinchuk, A., and Sigler, M.: A comparison of the physics of the northern and southern shelves of the eastern Bering Sea and some implications for the ecosystem, Deep-Sea Res. Pt. II, 65–70, 14–30, https://doi.org/10.1016/j.dsr2.2012.02.019, 2012.
Stoecker, D. K., Michaels, A., and Davis, L.: Grazing by the jellyfish, Aurelia aurita, on microzooplankton, J. Plankton Res., 9, 901–915, https://doi.org/10.1093/plankt/9.5.901, 1987.
Strom, S. L. and Fredrickson, K. A.: Intense stratification leads to phytoplankton nutrient limitation and reduced microzooplankton grazing in the southeastern Bering Sea, Deep-Sea Res. Pt. II, 55, 1761–1774, https://doi.org/10.1016/j.dsr2.2008.04.008, 2008.
Stuart-Smith, R. D., Edgar, G., Barrett, N., Kininmonth, S., and Bates, A.: Thermal biases and vulnerability to warming in the world's marine fauna, Nature, 528, 88–92, https://doi.org/10.1038/nature16144, 2015.
Stukel, M., Décima, M., Kelly, T., Landry, M., Nodder, S., Ohman, M., Selph, K., and Yingling, N.: Relationships between plankton size spectra, net primary production, and the biological carbon pump, Global Biogeochem. Cy., 38, e2023GB007994, https://doi.org/10.1029/2023GB007994, 2024.
Tagliabue, A., Twining, B., Barrier, N., Maury, O., Berger, M., and Bopp, L.: Ocean iron fertilization may amplify climate change pressures on marine animal biomass for limited climate benefit, Global Change Biol., 29, 5250–5260, https://doi.org/10.1111/gcb.16854, 2023.
Taniguchi, A.: Microzooplankton biomass in Arctic and subarctic Pacific Ocean in summer, Mem. Natl. Inst. Polar Res. Spec. Issue, 32, 63–80, 1984.
Tanioka, T., Garcia, C., Larkin, A., Garcia, N., Fagan, A., and Martiny, A.: Global patterns and predictors of C:N:P in marine ecosystems, Commun. Earth Environ. 3, 271, https://doi.org/10.1038/s43247-022-00603-6, 2022.
Tian, S. Y., Yasuhara, M., Condamine, F. L., Huang, H. M., Fernando, A. S., Aguilar, Y. M., Pandita, H., Irizuki, T., Iwatani, T., Shin, C. P., Renema, W., and Kase, T.: Cenozoic history of the tropical marine biodiversity hotspot, Nature, 632, 343–349, https://doi.org/10.1038/s41586-024-07617-4, 2024.
Tittensor, D. P., Novaglio, C., Harrison, C., Heneghan, R., Barrier, N., Bianchi, D., Bopp, L., Bryndum-Buchholz, A., Britten, G., Büchner, M., Cheung, W., Christensen, V., Coll, M., Dunne, J., Eddy, T., Everett, J., Fernandes-Salvador, J., Fulton, E., Galbraith, E., Gascuel, D., Guiet, J., John, J., Link, J., Lotze, H., Maury, O., Ortega-Cisneros, K., Palacios-Abrantes, J., Petrik, C., du Pontavice, H., Rault, J., Richardson, A., Shannon, L., Shin, Y., Steenbeek, J., Stock, C., and Blanchard, J.: Next-generation ensemble projections reveal higher climate risks for marine ecosystems, Nat. Clim. Change, 11, 973–981, https://doi.org/10.1038/s41558-021-01173-9, 2021.
Trebilco, R., Baum, J. K., Salomon, A. K., and Dulvy, N. K.: Ecosystem ecology: size-based constraints on the pyramids of life, Trends Ecol. Evol., 28, 423–431, https://doi.org/ 10.1016/j.tree.2013.03.008, 2013.
Trewartha, G. T., Robinson, A. H., and Hammond, E. H.: The Physical Elements of Geography, in: The Elements of Weather and Climate, 24, McGraw-Hill Book Company, New York, 1967.
Trombetta, T., Vidussi, F., Roques, C., Scotti, M., and Mostajir, B.: Marine microbial food web networks during phytoplankton bloom and non-bloom periods: Warming favors smaller organism interactions and intensifies trophic cascade, Front. Microbiol., 11, 502336, https://doi.org/10.3389/fmicb.2020.502336, 2020.
Utermöhl, H.: Zur vervollkommnung der quantitativen phytoplankton Methodik, Mit. Int. Ver. Theor. Angew. Limnol., 9, 1–38, 1958.
Våge, S. and Thingstad, T. F.: Fractal hypothesis of the pelagic microbial ecosystem – can simple ecological principles lead to self-similar complexity in the pelagic microbial food web?, Front. Microbiol., 6, 1357, https://doi.org/10.3389/fmicb.2015.01357, 2015.
Vandromme, P., Stemmann, L., Garcìa-Comas, C., Berline, L., Sun, X., and Gorsky, G.: Assessing biases in computing size spectra of automatically classified zooplankton from imaging systems: A case study with the ZooScan integrated system, Methods in Oceanography, 1, 3–21, https://doi.org/10.1016/j.mio.2012.06.001, 2012.
van Haren, H., Uchida, H., and Yanagimoto, D.: Further correcting pressure effects on SBE911 CTD-conductivity data from hadal depths, J. Oceanogr., 77, 137–144, https://doi.org/10.1007/s10872-020-00565-3, 2021.
Verberk, W., Atkinson, D., Hoefnagel, K., Hirst, A., Horne, C., and Siepel, H.: Shrinking body sizes in response to warming: explanations for the temperature–size rule with special emphasis on the role of oxygen, Biol. Rev., 96, 247–268, https://doi.org/10.1111/brv.12653, 2021.
Verity, P. and Lagdon, C.: Relationships between lorica volume, carbon, nitrogen, and ATP content of tintinnids in Narragansett Bay, J. Plankton Res., 6, 859–868, https://doi.org/10.1093/plankt/6.5.859, 1984.
Wang, C., Li, H., Zhao, L., Zhao, Y., Dong, Y., Zhang, W., and Xiao, T.: Vertical distribution of planktonic ciliates in the oceanic and slope areas of the western Pacific Ocean, Deep-Sea Res. Pt. II, 167, 70–78, https://doi.org/10.1016/j.dsr2.2018.08.002, 2019a.
Wang, C., Xu, Z., Liu, C., Li, H., Liang, C., Zhao, Y., Zhang, G., Zhang, W., and Xiao, T.: Vertical distribution of oceanic tintinnid (Ciliophora: tintinnida) assemblages from the Bering sea to Arctic Ocean through Bering Strait, Polar Biol., 42, 2105–2117, https://doi.org/10.1007/s00300-019-02585-2, 2019b.
Wang, C., Li, H., Xu, Z., Zheng, S., Hao, Q., Dong, Y., Zhao, L., Zhang, W., Zhao, Y., and Xiao, T.: Difference of planktonic ciliate communities of the tropical West Pacific, the Bering Sea and the Arctic Ocean, Acta Oceanol. Sin., 39, 9–17, https://doi.org/10.1007/s13131-020-1541-0, 2020.
Wang, C., Xu, M., Xuan, J., Li, H., Zheng, S., Zhao, Y., Zhang, W., and Xiao, T.: Impact of the warm eddy on planktonic ciliate, with an emphasis on tintinnids as bioindicator species, Ecol. Indic., 133, 108441, https://doi.org/10.1016/j.ecolind.2021.108441, 2021.
Wang, C., Wang, X., Xu, Z., Hao, Q., Zhao, Y., Zhang, W., and Xiao, T.: Planktonic tintinnid community structure variations in different water masses of the Arctic Basin, Front. Mar. Sci., 8, 775653, https://doi.org/10.3389/fmars.2021.775653, 2022a.
Wang, C., Yang, M., He, Y., Xu, Z., Zhao, Y., Zhang, W., and Xiao, T.: Hydrographic feature variation caused pronounced differences of planktonic ciliate community in the Pacific Arctic Region in summer 2016 and 2019, Front. Microbiol., 13, 881048, https://doi.org/10.3389/fmicb.2022.881048, 2022b.
Wang, C., Zhao, Y., Du, P., Ma, X., Li, S., Li, H., Zhang, W., and Xiao, T.: Planktonic ciliate community structure and its distribution in the oxygen minimum zones in the Bay of Bengal (eastern Indian Ocean), J. Sea Res., 190, 102311, https://doi.org/10.1016/j.seares.2022.102311, 2022c.
Wang, C., Wang, X., Wei, Y., Guo, G., Li, H., Wan, A., and Zhang, W.: Pelagic ciliate (Ciliophora) communities in the Southern Ocean: bioindicator to water mass, habitat suitability classification and potential response to global warming, Prog. Oceanogr., 216, 103081, https://doi.org/10.1016/j.pocean.2023.103081, 2023a.
Wang, C., Wang, X., Xu, Z., Luo, G., Chen, C., Li, H., Liu, Y., Li, J., He, J., Chen, H., and Zhang, W.: Full-depth vertical distribution of planktonic ciliates (Ciliophora) and a novel bio-index for indicating habitat suitability of tintinnid in the Arctic Ocean, Mar. Environ. Res., 186, 105924, https://doi.org/10.1016/j.marenvres.2023.105924, 2023b.
Wang, C., Zhao, L., Wei, Y., Xu, Z., Zhao, Y., Zhao, Y., Zhang, W., and Xiao, T.: Insights into the structure of the pelagic microbial food web in the oligotrophic tropical Western Pacific: Examining trophic interactions and relationship with abiotic variables, Mar. Pollut. Bull., 197, 115772, https://doi.org/10.1016/j.marpolbul.2023.115772, 2023c.
Wang, C., Xu, Z., Wan, A., Wang, X., Luo, G., Bian, W., Chen, Q., Chen, X., and Zhang, W.: Diatom bloom trigger notable variations in microzooplanktonic ciliate composition, body-size spectrum and biotic-abiotic interaction in the Arctic Ocean, Environ. Res., 252, 118821, https://doi.org/10.1016/j.envres.2024.118821, 2024a.
Wang, C., Xu, Z., Wang, X., He, Y., Xu, Z., Luo, G., Li, H., Chen, X., and Zhang, W.: Insights into the pelagic ciliate community in the Bering Sea: Carbon stock, driving factors and indicator function for climate change, J. Marine Syst., 244, 103975, https://doi.org/10.1016/j.jmarsys.2024.103975, 2024b.
Wang, C., Zhao, C., Zhou, B., Xu, Z., Ma, J., Li, H., Wang, W., Chen, X., and Zhang, W.: Latitudinal pronounced variations in tintinnid (Ciliophora) community at surface waters from the South China Sea to the Yellow Sea: Oceanic-to-neritic species shift, biotic-abiotic interaction and future prediction, Sci. Total Environ., 912, 169354, https://doi.org/10.1016/j.scitotenv.2023.169354, 2024c.
Wang, Y. and Wu, C.: Rapid surface warming of the Pacific Asian Marginal Seas since the late 1990s, J. Geophys. Res.-Oceans, 127, c2022JC018744, https://doi.org/10.1029/2022JC018744, 2022.
Wassmann, P., Kosobokova, K., Slagstad, D., Drinkvvater, K., Hoperoft, R., Moore, S., Ellingsen, I., Nelson, R., Carmack, E., Popova, E., and Berge, J.: The contiguous domains of Arctic Ocean advection: Trails of life and death, Prog. Oceanogr., 139, 42–65, https://doi.org/10.1016/j.pocean.2015.06.011, 2015.
Weisse, T.: Physiological mortality of planktonic ciliates: Estimates, causes, and consequences, Limnol. Oceanogr., 69, 524–532, https://doi.org/10.1002/lno.12503, 2024.
Weisse, T. and Sonntag, B.: Ciliates in Planktonic Food Webs: Communication and Adaptive Response, in: Biocommunication of Ciliates, edited by: Witzany, G. and Nowacki, M., Springer, Cham, https://doi.org/10.1007/978-3-319-32211-7_19, 2016.
Worm, B. and Myers, R.: Meta-analysis of cod-shrimp interactions reveals top-down control in oceanic food webs, Ecology, 84, 162–173, https://doi.org/10.1890/0012-9658(2003)084[0162:MAOCSI]2.0.CO;2, 2003.
Yang, E. J., Lee, Y., and Lee, S.: Trophic interactions of micro- and mesozooplankton in the Amundsen Sea polynya and adjacent sea ice zone during austral late summer, Prog. Oceanogr., 174, 117–130, https://doi.org/10.1016/j.pocean.2018.12.003, 2019.
Yang, H., Lohmann, G., Krebs-Kanzow, U., Ionita, M., Shi, X., Sidorenko, D., Gong, X., Chen, X., and Gowan E. J.: Poleward shift of the major ocean gyres detected in a warming climate, Geophys. Res. Lett., 47, e2019GL085868, https://doi.org/10.1029/2019GL085868, 2020.
Yasumiishi, E. M., Cieciel, K., Andrews, A., Murphy, J., and Dimond, J.: Climate-related changes in the biomass and distribution of small pelagic fishes in the eastern Bering Sea during late summer, 2002–2018, Deep-Sea Res. Pt. II, 181–182, 104907, https://doi.org/10.1016/j.dsr2.2020.104907, 2020.
Yu, X., Li, X., Liu, Q., Yang, M., Wang, X., Guan, Z., Yang, J., Liu, M., Yang, E., and Jiang, Y.: Community assembly and co-occurrence network complexity of pelagic ciliates in response to environmental heterogeneity affected by sea ice melting in the Ross Sea, Antarctica, Sci. Total Environ., 836, 155695, https://doi.org/10.1016/j.scitotenv.2022.155695, 2022.
Zang, L., Liu, Y., Jiao, N., Zhong, K., Song, X., Yang, Y., Cai, L., Liu, K., Mao, G., Ji, M., and Zhang, R.: Salinity as a key factor affecting viral activity and life strategies in alpine lakes, Limnol. Oceanogr., 69, 961–975, https://doi.org/10.1002/lno.12540, 2024.
Zhang, W., Feng, M., Yu, Y., Zhang, C., and Xiao, T.: An illustrated guide to contemporary tintinnids in the world, Science Press, Beijing, 1–499, ISBN 9787030343758, 2012.
Short summary
Our study provides a comprehensive assessment of microzooplankton ciliate trait structure, focusing on size spectrum, biodiversity and biotic–abiotic interplay based on 175 stations (1117 samples) across five temperature zones, which offered an ideal paradigm to study the plankton response to future climate change.
Our study provides a comprehensive assessment of microzooplankton ciliate trait structure,...