Articles | Volume 21, issue 4
https://doi.org/10.5194/os-21-1833-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-21-1833-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Cross-canyon variability in zooplankton backscattering strength in a river-influenced upwelling area
Macarena Díaz-Astudillo
CORRESPONDING AUTHOR
Departamento de Física, Facultad de Ciencias, Universidad del Bío-Bío, Concepción, Chile
Centro de Investigación Oceanográfica COPAS Coastal, Universidad de Concepción, Concepción, Chile
Millennium Nucleus for the Study of Deoxygenation in the Eastern South Pacific Ocean (DEOXS), Concepción, Chile
Manuel I. Castillo
Centro de Observación y Análisis del Océano Costero (COSTAR-UV), Universidad de Valparaíso, Valparaíso, Chile
Centro de Instrumentación Oceanográfica (CIO), Universidad de Concepción, Concepción, Chile
Pedro A. Figueroa
Department of Earth and Environment, Boston University, Boston, MA, USA
Leonardo R. Castro
Centro de Investigación Oceanográfica COPAS Coastal, Universidad de Concepción, Concepción, Chile
Ramiro Riquelme-Bugueño
Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
Millennium Nucleus for the Study of Deoxygenation in the Eastern South Pacific Ocean (DEOXS), Concepción, Chile
Iván Pérez-Santos
Centro de Investigación Oceanográfica COPAS Coastal, Universidad de Concepción, Concepción, Chile
Centro i-mar, Universidad de los Lagos, Puerto Montt, Chile
Centro de Investigaciones en Ecosistemas de la Patagonia (CIEP), Coyhaique, Chile
Oscar Pizarro
Departamento de Geofísica, Universidad de Concepción, Concepción, Chile
Instituto Milenio de Oceanografía, Concepción, Chile
Centro de Instrumentación Oceanográfica (CIO), Universidad de Concepción, Concepción, Chile
Gonzalo S. Saldías
Departamento de Física, Facultad de Ciencias, Universidad del Bío-Bío, Concepción, Chile
Centro de Investigación Oceanográfica COPAS Coastal, Universidad de Concepción, Concepción, Chile
Related authors
No articles found.
Lenna Ortiz-Castillo, Oscar Pizarro, Marcela Cornejo-D'Ottone, and Boris Dewitte
Biogeosciences, 22, 4261–4289, https://doi.org/10.5194/bg-22-4261-2025, https://doi.org/10.5194/bg-22-4261-2025, 2025
Short summary
Short summary
Poleward undercurrent eddies (Puddies) transport the source water mass with low oxygen hundreds of kilometers away from the coast. A simulation based on a physical–biogeochemical model was used to characterize the average biogeochemical conditions inside the Puddies during their lifetime while modifying the conditions in the open sea. Our findings show that the biological activity extends the low-oxygen core conditions counteracted by advection processes that tend to ventilate the core.
Cécile Pujol, Alexander Barth, Iván Pérez-Santos, Pamela Muñoz-Linford, and Aida Alvera-Azcárate
EGUsphere, https://doi.org/10.5194/egusphere-2025-1421, https://doi.org/10.5194/egusphere-2025-1421, 2025
Short summary
Short summary
Marine heatwaves and cold spells are periods of extreme sea temperatures. This study focuses on Chilean Northern Patagonia, a fjord region vulnerable due to its aquaculture. It aims to understand these events' distribution and identify the most affected basins. Results show higher intensity in enclosed areas like Reloncaví Sound and Puyuhuapi Fjord. Marine heatwaves are becoming more frequent over time, while cold spells are decreasing.
Manuel Torres-Godoy, Oscar Pizarro, Boris Dewitte, and Vera Oerder
EGUsphere, https://doi.org/10.5194/egusphere-2025-1311, https://doi.org/10.5194/egusphere-2025-1311, 2025
Short summary
Short summary
The Southeast Pacific plays a key role in transporting deep ocean water toward the Southern Ocean through a deep southward flow along the Chilean coast. This study explores its variations and links to El Niño–Southern Oscillation. We found that the deep flow strengthens during El Niño and weakens during La Niña. These changes are tied to large-scale ocean shifts and energy transfers from surface to deep waters. Smaller-scale ocean processes also influence the flow, especially near the coast.
Pedro A. Figueroa, Gonzalo S. Saldías, and Susan E. Allen
Ocean Sci., 21, 643–659, https://doi.org/10.5194/os-21-643-2025, https://doi.org/10.5194/os-21-643-2025, 2025
Short summary
Short summary
Submarine canyons are topographic features found along the continental slope worldwide. Here we use numerical simulations to study how a submarine canyon influences the circulation near the coast when winds moving poleward influence the region. Our results show that submarine canyons modify the circulation near the coast, causing strong velocities perpendicular to the coast. These changes can trap particles inside the canyon, an important mechanism to explain its role as a biological hotspot.
Pilar Aparicio-Rizzo, Dagoberto Poblete-Cballero, Cristian Vera-Bastidas, Iván Pérez-Santos, and Daniel Varela
EGUsphere, https://doi.org/10.5194/egusphere-2024-3951, https://doi.org/10.5194/egusphere-2024-3951, 2025
Short summary
Short summary
This work combines hyperspectral sensors and unmanned aerial vehicles to detect and differentiate microalgal species from optical data on Patagonia fjords at local scale. The results show differences between in situ hyperspectral signals, especially at blue, green, and red to near-infrared spectra, distinguishing between diatoms and dinoflagellates species. These tools are mainly useful in coastal areas where the cloudiness and geographic heterogeneity make satellite data acquisition difficult.
Pamela Linford, Iván Pérez-Santos, Paulina Montero, Patricio A. Díaz, Claudia Aracena, Elías Pinilla, Facundo Barrera, Manuel Castillo, Aida Alvera-Azcárate, Mónica Alvarado, Gabriel Soto, Cécile Pujol, Camila Schwerter, Sara Arenas-Uribe, Pilar Navarro, Guido Mancilla-Gutiérrez, Robinson Altamirano, Javiera San Martín, and Camila Soto-Riquelme
Biogeosciences, 21, 1433–1459, https://doi.org/10.5194/bg-21-1433-2024, https://doi.org/10.5194/bg-21-1433-2024, 2024
Short summary
Short summary
The Patagonian fjords comprise a world region where low-oxygen water and hypoxia conditions are observed. An in situ dataset was used to quantify the mechanism involved in the presence of these conditions in northern Patagonian fjords. Water mass analysis confirmed the contribution of Equatorial Subsurface Water in the advection of the low-oxygen water, and hypoxic conditions occurred when the community respiration rate exceeded the gross primary production.
Julio Salcedo-Castro, Antonio Olita, Freddy Saavedra, Gonzalo S. Saldías, Raúl C. Cruz-Gómez, and Cristian D. De la Torre Martínez
Ocean Sci., 19, 1687–1703, https://doi.org/10.5194/os-19-1687-2023, https://doi.org/10.5194/os-19-1687-2023, 2023
Short summary
Short summary
Considering the relevance and impact of river discharges on the coastal environment, it is necessary to understand the processes associated with river plume dynamics in different regions and at different scales. Modeling studies focused on the eastern Pacific coast under the influence of the Humboldt Current are scarce. Here, we conduct for the first time an interannual modeling study of two river plumes off central Chile and discuss their characteristics.
Cited articles
Aarflot, J. M., Aksnes, D. L., Opdal, A. F., Skjoldal, H. R., and Fiksen, Ø.: Caught in broad daylight: Topographic constraints of zooplankton depth distributions, Limnol. Oceanogr., 64, 849–859, https://doi.org/10.1002/lno.11079, 2019. a
Allen, S. E. and Durrieu de Madron, X.: A review of the role of submarine canyons in deep-ocean exchange with the shelf, Ocean Sci., 5, 607–620, https://doi.org/10.5194/os-5-607-2009, 2009. a, b, c, d
Amano, M., Aoki, K., Kobayashi, H., Minamikawa, S., Sato, K., and Kubodera, T.: Stereotypical diel movement and dive pattern of male sperm whales in a submarine canyon revealed by land-based and bio-logging surveys, Front. Mar. Sci., 10, 1150308, https://doi.org/10.3389/fmars.2023.1150308, 2023. a
Ancapichún, S. and Garcés-Vargas, J.: Variability of the Southeast Pacific Subtropical Anticyclone and its impact on sea surface temperature off north-central Chile, Cienc. Mar., 41, 1–20, https://doi.org/10.7773/cm.v41i1.2338, 2015. a
Aronés, K., Ayón, P., Hirche, H.-J., and Schwamborn, R.: Hydrographic structure and zooplankton abundance and diversity off Paita, northern Peru (1994 to 2004) — ENSO effects, trends and changes, J. Marine Syst., 78, 582–598, https://doi.org/10.1016/j.jmarsys.2009.01.002, 2009. a
Bandara, K., Varpe, Ø., Wijewardene, L., Tverberg, V., and Eiane, K.: Two hundred years of zooplankton vertical migration research, Biol. Rev., 96, 1547–1589, https://doi.org/10.1111/brv.12715, 2021. a, b
Barnes, S. L.: Applications of the Barnes objective analysis scheme. Part I: Effects of undersampling, wave position, and station randomness, J. Atmos. Ocean. Tech., 11, 1433–1448, 1994. a
Bozzano, R., Fanelli, E., Pensieri, S., Picco, P., and Schiano, M. E.: Temporal variations of zooplankton biomass in the Ligurian Sea inferred from long time series of ADCP data, Ocean Sci., 10, 93–105, https://doi.org/10.5194/os-10-93-2014, 2014. a
Brink, K. H.: The near-surface dynamics of coastal upwelling, Prog. Oceanogr., 12, 223–257, https://doi.org/10.1016/0079-6611(83)90009-5, 1983. a
Buchan, S. J., Ramos, M., Oyanadel, J., Santos-Carvallo, M., Bedriñana-Romano, L., Valladares, M., Maldonado, M., Astudillo, O., Sepúlveda, M., Pearce, S., and Olavarría, C.: Understanding the oceanographic dynamics of the Isla Chañaral baleen whale feeding ground, (Humboldt Archipelago, Northern Chile) to extend habitat protection, Front. Mar. Sci., 10, 1208262, https://doi.org/10.3389/fmars.2023.1208262, 2023. a, b
Cáceres, M., Valle-Levinson, A., Molinet, C., Castillo, M., Bello, M., and Moreno, C.: Lateral variability of flow over a sill in a channel of southern Chile, Ocean Dynam., 56, 352–359, https://doi.org/10.1007/s10236-006-0077-y, 2006. a
Castillo, M. I., Pizarro, O., Cifuentes, U., Ramirez, N., and Djurfeldt, L.: Subtidal dynamics in a deep fjord of southern Chile, Cont. Shelf Res., 49, 73–89, https://doi.org/10.1016/j.csr.2012.09.007, 2012. a
Castro, L. R., Bernal, P. A., and Troncoso, V. A.: Coastal intrusion of copepods: mechanisms and consequences on the population biology of Rhincalanus nasutus, J. Plankton Res., 15, 501–515, https://doi.org/10.1093/plankt/15.5.501, 1993. a, b
Cisewski, B., Hátún, H., Kristiansen, I., Hansen, B., Larsen, K. M. H., Eliasen, S. K., and Jacobsen, J. A.: Vertical Migration of Pelagic and Mesopelagic Scatterers From ADCP Backscatter Data in the Southern Norwegian Sea, Front. Mar. Sci., 7, 542386, https://doi.org/10.3389/fmars.2020.542386, 2021. a
Cisterna-Concha, A., Calderón-Quirgas, C., Silva-Andrades, F., Muñoz, R., and Norambuena, H. V.: Reencounter with the past: occurrence of sei whale (Balaenoptera borealis) in an old hunting area in the south-eastern Pacific Ocean, Nat. Conserv., 51, 1–12, https://doi.org/10.3897/natureconservation.51.95690, 2023. a
Clarke, J., Emmerson, L. M., and Otahal, P.: Envirnmental conditions and life history constraints determine foraging range in breeding Adélie penguins, Mar. Ecol.-Prog. Ser., 301, 247–261, 2006. a
Connolly, T. P. and Hickey, B. M.: Regional impact of submarine canyons during seasonal upwelling, J. Geophys. Res.-Oceans, 119, 953–975, https://doi.org/10.1002/2013JC009452.Received, 2014. a, b, c
Croll, D. A., Marinovic, B., Benson, S., Chavez, F. P., Black, N., Ternullo, R., and Tershy, B. R.: From wind to whales: Trophic links in a coastal upwelling system, Mar. Ecol.-Prog. Ser., 289, 117–130, https://doi.org/10.3354/meps289117, 2005. a
De Leo, F. C., Drazen, J. C., Vetter, E. W., Rowden, A. A., and Smith, C. R.: The effects of submarine canyons and the oxygen minimum zone on deep-sea fish assemblages off Hawai'i, Deep-Sea Res. Pt. I, 64, 54–70, https://doi.org/10.1016/j.dsr.2012.01.014, 2012. a
Deines, K. L.: Backscatter estimation using Broadband acoustic Doppler current profilers, Proceedings of the IEEE Sixth Working Conference on Current Measurement (Cat. No.99CH36331), 249–253, https://doi.org/10.1109/CCM.1999.755249, 1999. a
Díaz-Astudillo, M., Riquelme-Bugueño, R., Bernard, K. S., Saldías, G. S., Rivera, R., and Letelier, J.: Disentangling species-specific krill responses to local oceanography and predator's biomass: The case of the Humboldt krill and the Peruvian anchovy, Front. Mar. Sci., 9, 1–19, https://doi.org/10.3389/fmars.2022.979984, 2022. a
Díaz-Astudillo, M., Riquelme-Bugueño, R., Saldías, G. S., and Letelier, J.: Mesoscale and climate environmental variability drive krill community changes in the Humboldt Current System, J. Marine Syst., 245, 103998, https://doi.org/10.1016/j.jmarsys.2024.103998, 2024. a
dos Santos, A., Santos, A., Conway, D., Bartilotti, C., Lourenço, P., and Queiroga, H.: Diel vertical migration of decapod larvae in the Portuguese coastal upwelling ecosystem: implications for offshore transport, Mar. Ecol.-Prog. Ser., 359, 171–183, https://doi.org/10.3354/meps07341, 2008. a
Dwinovantyo, A., Manik, H. M., Prartono, T., Susilohadi, S., and Mukai, T.: Variation of Zooplankton mean volume backscattering strength from Moored and Mobile ADCP instruments for diel vertical migration observation, Appl. Sci., 9, 1851, https://doi.org/10.3390/app9091851, 2019. a
Emsley, S. M., Tarling, G. A., and Burrows, M. T.: The effect of vertical migration strategy on retention and dispersion in the Irish Sea during spring–summer, Fish. Oceanogr., 14, 161–174, https://doi.org/10.1111/j.1365-2419.2005.00327.x, 2005. a
Escribano, R., Hidalgo, P., and Krautz, C.: Zooplankton associated with the oxygen minimum zone system in the northern upwelling region of Chile during March 2000, Deep-Sea Res. Pt. II, 56, 1083–1094, https://doi.org/10.1016/j.dsr2.2008.09.009, 2009. a
Escribano, R., Hidalgo, P., Fuentes, M., and Donoso, K.: Zooplankton time series in the coastal zone off Chile: Variation in upwelling and responses of the copepod community, Prog. Oceanogr., 97-100, 174–186, https://doi.org/10.1016/j.pocean.2011.11.006, 2012. a
Fernandez-Arcaya, U., Ramirez-Llodra, E., Aguzzi, J., Allcock, A. L., Davies, J. S., Dissanayake, A., Harris, P., Howell, K., Huvenne, V. A., Macmillan-Lawler, M., Martín, J., Menot, L., Nizinski, M., Puig, P., Rowden, A. A., Sanchez, F., and Van den Beld, I. M.: Ecological role of submarine canyonsand need for canyon conservation: A review, Front. Mar. Sci., 4, 1–26, https://doi.org/10.3389/fmars.2017.00005, 2017. a
Fielding, S., Griffiths, G., and Roe, H.: The biological validation of ADCP acoustic backscatter through direct comparison with net samples and model predictions based on acoustic-scattering models, ICES J. Mar. Sci., 61, 184–200, https://doi.org/10.1016/j.icesjms.2003.10.011, 2004. a
Figueroa, P. A., Saldías, G. S., and Allen, S. E.: The influence of a submarine canyon on the wind-driven downwelling circulation over the continental shelf, Ocean Sci., 21, 643–659, https://doi.org/10.5194/os-21-643-2025, 2025. a, b, c
Forward, R. B. J.: Diel vertical migration: zooplankton photobiology and behaviour, Oceanogr. Mar. Biol., 26, 361–393, 1988. a
Harris, P. T. and Whiteway, T.: Global distribution of large submarine canyons: Geomorphic differences between active and passive continental margins, Mar. Geol., 285, 69–86, https://doi.org/10.1016/j.margeo.2011.05.008, 2011. a
Hays, G. C.: A review of the adaptive significance and ecosystem consequences of zooplankton diel vertical migrations, Hydrobiologia, 503, 163–170, https://doi.org/10.1023/B:HYDR.0000008476.23617.b0, 2003. a
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz‐Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020. a
Hill, a. E.: Diel vertical migration in stratified tidal flows: Implications for plankton dispersal, J. Marine Res., 56, 1069–1096, https://doi.org/10.1357/002224098765173464, 1998. a
Hudson, K., Oliver, M. J., Kohut, J., Cohen, J. H., Dinniman, M. S., Klinck, J. M., Reiss, C. S., Cutter, G. R., Statscewich, H., Bernard, K. S., and Fraser, W.: Subsurface Eddy Facilitates Retention of Simulated Diel Vertical Migrators in a Biological Hotspot, J. Geophys. Res.-Oceans, 127, 1–15, https://doi.org/10.1029/2021JC017482, 2022a. a
Hudson, K., Oliver, M. J., Kohut, J., Dinniman, M. S., Klinck, J. M., Cimino, M. A., Bernard, K. S., Statscewich, H., and Fraser, W.: A subsurface eddy associated with a submarine canyon increases availability and delivery of simulated Antarctic krill to penguin foraging regions, Mar. Ecol.-Prog. Ser., 702, 105–122, https://doi.org/10.3354/meps14211, 2022b. a, b, c
Isaacs, J. D. and Schwartzlose, R. A.: Migrant Sound Scatterers: Interaction with the Sea Floor, Science, 150, 1810–1813, https://doi.org/10.1126/science.150.3705.1810, 1965. a
Jiang, S., Dickey, T. D., Steinberg, D. K., and Madin, L. P.: Temporal variability of zooplankton biomass from ADCP backscatter time series data at the Bermuda Testbed Mooring site, Deep-Sea Res. Pt. I, 54, 608–636, https://doi.org/10.1016/j.dsr.2006.12.011, 2007. a
Joyce, T. M.: On In Situ “Calibration” of Shipboard ADCPs, J. Atmos. Ocean. Tech., 6, 169–172, https://doi.org/10.1175/1520-0426(1989)006<0169:OISOSA>2.0.CO;2, 1989. a
Kimmerer, W. J., Gross, E. S., and MacWilliams, M. L.: Tidal migration and retention of estuarine zooplankton investigated using a particle‐tracking model, Limnol. Oceanogr., 59, 901–916, https://doi.org/10.4319/lo.2014.59.3.0901, 2014. a
Klinck, J. M.: Circulation near submarine canyons: A modeling study, J. Geophys. Res.-Oceans, 101, 1211–1223, 1996. a
Landaeta, M. F. and Castro, L. R.: Spring spawning and early nursery zone of the mesopelagic fish Maurolicus parvipinnis at the coastal upwelling zone off Talcahuano, central Chile , Mar. Ecol.-Prog. Ser., 226, 179–191, 2002. a
Landaeta, M. F., Veas, R., Letelier, J., and Castro, L. R.: Larval fish assemblages off central Chile upwelling ecosystem, Rev. Biol. Mar. Oceanog., 43, 569–584, https://doi.org/10.4067/s0718-19572008000300016, 2008. a
Lee, K., Mukai, T., Kang, D., and Iida, K.: Application of acoustic Doppler current profiler combined with a scientific echo sounder for krill Euphausia pacifica density estimation, Fish. Sci., 70, 1051–1060, https://doi.org/10.1111/j.1444-2906.2004.00905.x, 2004. a
Lwiza, K., Bowers, D., and Simpson, J.: Residual and tidal flow at a tidal mixing front in the North Sea, Cont. Shelf Res., 11, 1379–1395, https://doi.org/10.1016/0278-4343(91)90041-4, 1991. a, b
Mackas, D., Tsurumi, M., Galbraith, M., and Yelland, D.: Zooplankton distribution and dynamics in a North Pacific Eddy of coastal origin: II. Mechanisms of eddy colonization by and retention of offshore species, Deep-Sea Res. Pt. II, 52, 1011–1035, https://doi.org/10.1016/j.dsr2.2005.02.008, 2005. a
Mackas, D. L., Kieser, R., Saunders, M., Yelland, D. R., Brown, R. M., and Moore, D. F.: Aggregation of euphausiids and Pacific hake (Merluccius productus) along the outer continental shelf off Vancouver Island, Can. J. Fish. Aquat. Sci., 54, 2080–2096, https://doi.org/10.1139/f97-113, 1997. a
Masotti, I., Aparicio-Rizzo, P., Yevenes, M. A., Garreaud, R., Belmar, L., and Farías, L.: The Influence of River Discharge on Nutrient Export and Phytoplankton Biomass Off the Central Chile Coast (33°–37° S): Seasonal Cycle and Interannual Variability, Front. Mar. Sci., 5, 423, https://doi.org/10.3389/fmars.2018.00423, 2018. a
Medellín-Mora, J., Escribano, R., and Schneider, W.: Community response of zooplankton to oceanographic changes (2002–2012) in the central/southern upwelling system of Chile, Prog. Oceanogr., 142, 17–29, https://doi.org/10.1016/j.pocean.2016.01.005, 2016. a
Meerhoff, E., Tapia, F. J., Sobarzo, M., and Castro, L.: Influence of estuarine and secondary circulation on crustacean larval fluxes: a case study from a Patagonian fjord, J. Plankton Res., 37, 168–182, https://doi.org/10.1093/plankt/fbu106, 2015. a
Miller, J. A. and Shanks, A. L.: Ocean-estuary coupling in the Oregon upwelling region: abundance and transport of juvenile fish and of crab megalopae, Mar. Ecol.-Prog. Ser., 271, 267–279, 2004. a
Mohn, C., White, M., Denda, A., Erofeeva, S., Springer, B., Turnewitsch, R., and Christiansen, B.: Dynamics of currents and biological scattering layers around Senghor Seamount, a shallow seamount inside a tropical Northeast Atlantic eddy corridor, Deep-Sea Res. Pt. I, 171, 103497, https://doi.org/10.1016/j.dsr.2021.103497, 2021. a
Moors-Murphy, H. B.: Submarine canyons as important habitat for cetaceans, with special reference to the Gully: A review, Deep-Sea Res. Pt. II, 104, 6–19, https://doi.org/10.1016/j.dsr2.2013.12.016, 2014. a
Morales, C. E., González, H. E., Hormazabal, S. E., Yuras, G., Letelier, J., and Castro, L. R.: The distribution of chlorophyll-a and dominant planktonic components in the coastal transition zone off Concepción, central Chile, during different oceanographic conditions, Prog. Oceanogr., 75, 452–469, https://doi.org/10.1016/j.pocean.2007.08.026, 2007. a
Morales, C. E., Loreto Torreblanca, M., Hormazabal, S., Correa-Ramírez, M., Nuñez, S., and Hidalgo, P.: Mesoscale structure of copepod assemblages in the coastal transition zone and oceanic waters off central-southern Chile, Prog. Oceanogr., 84, 158–173, https://doi.org/10.1016/j.pocean.2009.12.001, 2010. a
Mullison, J.: Backscatter Estimation Using Broadband Acoustic Dopplet Current Profilers – Updated, Tech. rep., Teledyne RD Instruments, 2017. a
Pavez, M. A., Landaeta, M. F., Castro, L. R., and Schneider, W.: Distribution of carnivorous gelatinous zooplankton in the upwelling zone off central Chile (austral spring 2001), J. Plankton Res., 32, 1051–1065, https://doi.org/10.1093/plankt/fbq029, 2010. a
Pollard, R. and Read, J.: A Method for Calibrating Shipmounted Acoustic Doppler Profilers and the Limitations of Gyro Compasses, J. Atmos. Ocean. Tech., 6, 859–865, https://doi.org/10.1175/1520-0426(1989)006<0859:AMFCSA>2.0.CO;2, 1989. a
Poulin, E., Palma, A. T., Leiva, G., Narvaez, D., Pacheco, R., Navarrete, S. A., and Castilla, J. C.: Avoiding offshore transport of competent larvae during upwelling events: The case of the gastropod Concholepas concholepas in Central Chile, Limnol. Oceanogr., 47, 1248–1255, https://doi.org/10.4319/lo.2002.47.4.1248, 2002. a
Prairie, J. C., Sutherland, K. R., Nickols, K. J., and Kaltenberg, A. M.: Biophysical interactions in the plankton: A cross-scale review, Limnol. Oceanogr., 2, 121–145, https://doi.org/10.1215/21573689-1964713, 2012. a
Riquelme-Bugueño, R., Núñez, S., Jorquera, E., Valenzuela, L., Escribano, R., and Hormazabal, S. E.: The influence of upwelling variation on the spatially-structured euphausiid community off central-southern Chile in 2007-2008, Prog. Oceanogr., 92–95, 146–165, https://doi.org/10.1016/j.pocean.2011.07.003, 2012. a
Riquelme‐Bugueño, R., Correa‐Ramírez, M., Escribano, R., Núñez, S., and Hormazábal, S.: Mesoscale variability in the habitat of the Humboldt Current krill, spring 2007, J. Geophys. Res.-Oceans, 120, 2769–2783, https://doi.org/10.1002/2014JC010460, 2015. a
Rodrigo, C.: Cañones submarinos en el margen continental chileno, in: Geología Marina de Chile, edited by: Díaz, J. and Frutos, J., 32–35, Comité Oceanográfico Nacional CONA, Valparaíso, Chile, ISBN 978-956-235-026-6, 2010. a
Rojas, C. M., Saldías, G. S., Flores, R. P., Vásquez, S. I., Salas, C., and Vargas, C. A.: A modeling study of hydrographic and flow variability along the river-influenced coastal ocean off central Chile, Ocean Model., 181, 102155, https://doi.org/10.1016/j.ocemod.2022.102155, 2023. a
Saldías, G. S. and Allen, S. E.: The influence of a submarine canyon on the circulation and cross-shore exchanges around an upwelling front, J. Phys. Oceanogr., 50, 1677–1698, https://doi.org/10.1175/JPO-D-19-0130.1, 2020. a, b
Saldías, G. S., Sobarzo, M., Largier, J., Moffat, C., and Letelier, R.: Seasonal variability of turbid river plumes off central Chile based on high-resolution MODIS imagery, Remote Sens. Environ., 123, 220–233, https://doi.org/10.1016/j.rse.2012.03.010, 2012. a
Saldías, G. S., Largier, J. L., Mendes, R., Pérez-Santos, I., Vargas, C. A., and Sobarzo, M.: Satellite-measured interannual variability of turbid river plumes off central-southern Chile: Spatial patterns and the influence of climate variability, Prog. Oceanogr., 146, 212–222, https://doi.org/10.1016/j.pocean.2016.07.007, 2016. a
Saldías, G. S., Ramos-Musalem, K., and Allen, S. E.: Circulation and Upwelling Induced by Coastal Trapped Waves Over a Submarine Canyon in an Idealized Eastern Boundary Margin, Geophys. Res. Lett., 48, 1–10, https://doi.org/10.1029/2021GL093548, 2021. a
Salgado Kent, C., Bouchet, P., Wellard, R., Parnum, I., Fouda, L., and Erbe, C.: Seasonal productivity drives aggregations of killer whales and other cetaceans over submarine canyons of the Bremer Sub-Basin, south-western Australia, Aust. Mammal., 43, 168–178, https://doi.org/10.1071/AM19058, 2021. a
Santora, J. A. and Reiss, C. S.: Geospatial variability of krill and top predators within an Antarctic submarine canyon system, Mar. Biol., 158, 2527–2540, https://doi.org/10.1007/s00227-011-1753-0, 2011. a
Santora, J. A., Zeno, R., Dorman, J. G., and Sydeman, W. J.: Submarine canyons represent an essential habitat network for krill hotspots in a Large Marine Ecosystem, Sci. Rep., 8, 1–9, https://doi.org/10.1038/s41598-018-25742-9, 2018. a, b
Saunders, B. J., Galaiduk, R., Inostroza, K., Myers, E. M. V., Goetze, J. S., Westera, M., Twomey, L., McCorry, D., and Harvey, E. S.: Quantifying Patterns in Fish Assemblages and Habitat Use Along a Deep Submarine Canyon-Valley Feature Using a Remotely Operated Vehicle, Front. Mar. Sci., 8, 608665, https://doi.org/10.3389/fmars.2021.608665, 2021. a
Schoenherr, J. R.: Blue whales feeding on high concentrations of euphausiids around Monterey Submarine Canyon, Can. J. Zool., 69, 583–594, https://doi.org/10.1139/z91-088, 1991. a, b
Schofield, O., Ducklow, H., Bernard, K., Doney, S., Patterson-Fraser, D., Gorman, K., Martinson, D., Meredith, M., Saba, G., John, S. S., Steinberg, D. K., and Fraser, W.: Penguin biogeography along the West Antarctic Peninsula: Testing the canyon hypothesis with palmer LTER observations, Oceanography, 26, 204–206, https://doi.org/10.5670/oceanog.2013.63, 2013. a
Shanks, A., Morgan, S., Macmahan, J., Reniers, A., Jarvis, M., Brown, J., Fujimura, A., and Griesemer, C.: Onshore transport of plankton by internal tides and upwelling-relaxation events, Mar. Ecol.-Prog. Ser., 502, 39–51, 2014. a
Silva, M. V. B. and Araújo, T. C. M.: The South American Advances in Submarine Canyons Studies and Their Link to the Ocean Decade, Front. Mar. Sci., 8, 764029, https://doi.org/10.3389/fmars.2021.764029, 2021. a
Sobarzo, M., Bravo, L., Donoso, D., Garcés-Vargas, J., and Schneider, W.: Coastal upwelling and seasonal cycles that influence the water column over the continental shelf off central Chile, Prog. Oceanogr., 75, 363–382, https://doi.org/10.1016/j.pocean.2007.08.022, 2007. a, b, c
Sobarzo, M., Saldías, G. S., Tapia, F. J., Bravo, L., and Moffat, C.: On subsurface cooling associated with the Biobio River Canyon (Chile), J. Geophys. Res., 121, 4568–4584, https://doi.org/10.1002/2016JC011796, 2016. a, b, c, d
Soto, L., Saldías, G. S., Pavez, R., González, M., Camaño, C., Valenzuela, C., Núñez, S., González, C., San Martín, R., Zúñiga, A., Vásquez, S., and Arteaga, M.: Informe Final Proyecto FIPA No. 2019-22, Abundancia y distribución de moluscos, crustáceos y peces costeros de importancia comercial y su relación con la variabilidad de precipitaciones y caudal de ríos en Chile, Tech. rep., Fondo de Investigación Pesquera, 2022. a
Spurgin, J. M. and Allen, S. E.: Flow dynamics around downwelling submarine canyons, Ocean Sci., 10, 799–819, https://doi.org/10.5194/os-10-799-2014, 2014. a
Trump, C. L. and Marmorino, G. O.: Calibrating a Gyrocompass Using ADCP and DGPS Data, J. Atmos. Ocean. Tech., 14, 211–214, https://doi.org/10.1175/1520-0426(1997)014<0211:CAGUAA>2.0.CO;2, 1997. a
Vindeirinho, C.: Water properties, currents and zooplankton distribution over a submarine canyon under upwelling-favorable conditions, Master's thesis, The University of British Columbia, https://doi.org/10.14288/1.0053340, 1998. a
Wang, H., Gong, D., Friedrichs, M. A., Harris, C. K., Miles, T., Yu, H. C., and Zhang, Y.: A Cycle of Wind-Driven Canyon Upwelling and Downwelling at Wilmington Canyon and the Evolution of Canyon-Upwelled Dense Water on the MAB Shelf, Front. Mar. Sci., 9, 1–16, https://doi.org/10.3389/fmars.2022.866075, 2022. a
Yannicelli, B., Castro, L., Schneider, W., and Sobarzo, M.: Crustacean larvae distribution in the coastal upwelling zone off Central Chile, Mar. Ecol.-Prog. Ser., 319, 175–189, https://doi.org/10.3354/meps319175, 2006a. a, b
Yannicelli, B., Castro, L. R., Valle-Levinson, A., Atkinson, L., and Figueroa, D.: Vertical distribution of decapod larvae in the entrance of an equatorward facing bay of central Chile: implications for transport, J. Plankton Res., 28, 19–37, https://doi.org/10.1093/plankt/fbi098, 2006b. a, b
Short summary
Submarine canyons are known hotspots of marine productivity and biodiversity, but we do not fully understand why. We studied a submarine canyon located in central Chile and found that it is a highly dynamic environment in both space and time. We think that the alternating currents and the contrasting distribution of zooplankton within the canyon might interact to promote zooplankton retention. Our results help to explain why submarine canyons host such high zooplankton diversity and abundance.
Submarine canyons are known hotspots of marine productivity and biodiversity, but we do not...