Articles | Volume 21, issue 4
https://doi.org/10.5194/os-21-1627-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-21-1627-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Biogeochemical layering and transformation of particulate organic carbon in the Tropical Northwestern Pacific Ocean inferred from δ13C
Detong Tian
CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266000, China
Institute of Oceanology, University of Chinese Academy of Sciences, Beijing 100049, China
CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266000, China
Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China
Institute of Oceanology, University of Chinese Academy of Sciences, Beijing 100049, China
Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266000, China
Jinming Song
CORRESPONDING AUTHOR
CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266000, China
Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China
Institute of Oceanology, University of Chinese Academy of Sciences, Beijing 100049, China
Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266000, China
Jun Ma
CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266000, China
Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China
Huamao Yuan
CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266000, China
Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China
Institute of Oceanology, University of Chinese Academy of Sciences, Beijing 100049, China
Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266000, China
Liqin Duan
CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266000, China
Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China
Institute of Oceanology, University of Chinese Academy of Sciences, Beijing 100049, China
Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266000, China
Related authors
No articles found.
Guorong Zhong, Xuegang Li, Jinming Song, Baoxiao Qu, Fan Wang, Yanjun Wang, Bin Zhang, Lijing Cheng, Jun Ma, Huamao Yuan, Liqin Duan, Ning Li, Qidong Wang, Jianwei Xing, and Jiajia Dai
Earth Syst. Sci. Data, 17, 719–740, https://doi.org/10.5194/essd-17-719-2025, https://doi.org/10.5194/essd-17-719-2025, 2025
Short summary
Short summary
The continuous uptake of atmospheric CO2 by the ocean leads to decreasing seawater pH, which is an ongoing threat to the marine ecosystem. This pH change has been globally documented in the surface ocean, but information is limited below the surface. Here, we present a monthly 1° gridded product of global seawater pH based on a machine learning method and real pH observations. The pH product covers the years from 1992 to 2020 and depths from 0 to 2000 m.
Shan-Shan Liu, Jie Ni, Jin-Ming Song, Xu-Xu Gao, Zhen He, and Gui-Peng Yang
EGUsphere, https://doi.org/10.5194/egusphere-2025-251, https://doi.org/10.5194/egusphere-2025-251, 2025
Short summary
Short summary
Volatile chlorinated hydrocarbons (VCHCs) harm the ozone layer and climate, but the role of the Western Pacific in their atmospheric budget is unclear. This study showed ocean ventilation and terrestrial transport shape VCHCs levels. The Western Pacific emits some VCHCs while absorbing CCl4, helping reduce its levels in Eastern Asia. These findings highlight the ocean’s key role in regulating atmospheric VCHCs and provide essential data to refine global estimates of VCHCs atmospheric budgets.
Christian Lønborg, Cátia Carreira, Gwenaël Abril, Susana Agustí, Valentina Amaral, Agneta Andersson, Javier Arístegui, Punyasloke Bhadury, Mariana B. Bif, Alberto V. Borges, Steven Bouillon, Maria Ll. Calleja, Luiz C. Cotovicz Jr., Stefano Cozzi, Maryló Doval, Carlos M. Duarte, Bradley Eyre, Cédric G. Fichot, E. Elena García-Martín, Alexandra Garzon-Garcia, Michele Giani, Rafael Gonçalves-Araujo, Renee Gruber, Dennis A. Hansell, Fuminori Hashihama, Ding He, Johnna M. Holding, William R. Hunter, J. Severino P. Ibánhez, Valeria Ibello, Shan Jiang, Guebuem Kim, Katja Klun, Piotr Kowalczuk, Atsushi Kubo, Choon-Weng Lee, Cláudia B. Lopes, Federica Maggioni, Paolo Magni, Celia Marrase, Patrick Martin, S. Leigh McCallister, Roisin McCallum, Patricia M. Medeiros, Xosé Anxelu G. Morán, Frank E. Muller-Karger, Allison Myers-Pigg, Marit Norli, Joanne M. Oakes, Helena Osterholz, Hyekyung Park, Maria Lund Paulsen, Judith A. Rosentreter, Jeff D. Ross, Digna Rueda-Roa, Chiara Santinelli, Yuan Shen, Eva Teira, Tinkara Tinta, Guenther Uher, Masahide Wakita, Nicholas Ward, Kenta Watanabe, Yu Xin, Youhei Yamashita, Liyang Yang, Jacob Yeo, Huamao Yuan, Qiang Zheng, and Xosé Antón Álvarez-Salgado
Earth Syst. Sci. Data, 16, 1107–1119, https://doi.org/10.5194/essd-16-1107-2024, https://doi.org/10.5194/essd-16-1107-2024, 2024
Short summary
Short summary
In this paper, we present the first edition of a global database compiling previously published and unpublished measurements of dissolved organic matter (DOM) collected in coastal waters (CoastDOM v1). Overall, the CoastDOM v1 dataset will be useful to identify global spatial and temporal patterns and to facilitate reuse in studies aimed at better characterizing local biogeochemical processes and identifying a baseline for modelling future changes in coastal waters.
Guorong Zhong, Xuegang Li, Jinming Song, Baoxiao Qu, Fan Wang, Yanjun Wang, Bin Zhang, Xiaoxia Sun, Wuchang Zhang, Zhenyan Wang, Jun Ma, Huamao Yuan, and Liqin Duan
Biogeosciences, 19, 845–859, https://doi.org/10.5194/bg-19-845-2022, https://doi.org/10.5194/bg-19-845-2022, 2022
Short summary
Short summary
A predictor selection algorithm was constructed to decrease the predicting error in the surface ocean partial pressure of CO2 (pCO2) mapping by finding better combinations of pCO2 predictors in different regions. Compared with previous research using the same combination of predictors in all regions, using different predictors selected by the algorithm in different regions can effectively decrease pCO2 predicting errors.
Related subject area
Approach: In situ Observations | Properties and processes: Biogeochemistry and nutrient cycles
Ventilation of the Bay of Bengal oxygen minimum zone by the Southwest Monsoon Current
The Southern Ocean Time Series: a climatological view of hydrography, biogeochemistry, phytoplankton community composition, and carbon export in the Subantarctic Zone
Drivers of the spatiotemporal distribution of dissolved nitrous oxide and air–sea exchange in a coastal Mediterranean area
Critical uncoupling between biogeochemical stocks and rates in Ross Sea springtime production–export dynamics
Control of spatio-temporal variability of ocean nutrients in the East Australian Current
Alkalinity sources in the Dutch Wadden Sea
Anthropogenic CO2, air–sea CO2 fluxes, and acidification in the Southern Ocean: results from a time-series analysis at station OISO-KERFIX (51° S–68° E)
Peter M. F. Sheehan, Benjamin G. M. Webber, Alejandra Sanchez-Franks, and Bastien Y. Queste
Ocean Sci., 21, 1575–1588, https://doi.org/10.5194/os-21-1575-2025, https://doi.org/10.5194/os-21-1575-2025, 2025
Short summary
Short summary
Using measurements and computer models, we identify a large flux of oxygen within the Southwest Monsoon Current, which flows north into the Bay of Bengal between June and September each year. Oxygen levels in the bay are very low, but they are not quite low enough for key nutrient cycles to be as dramatically altered as in other low-oxygen regions. We suggest that the flux which we identify contributes to keeping oxygen levels in the bay above the threshold below which dramatic changes would occur.
Elizabeth H. Shadwick, Cathryn A. Wynn-Edwards, Ruth S. Eriksen, Peter Jansen, Xiang Yang, Gemma Woodward, and Diana Davies
Ocean Sci., 21, 1549–1573, https://doi.org/10.5194/os-21-1549-2025, https://doi.org/10.5194/os-21-1549-2025, 2025
Short summary
Short summary
The Southern Ocean Time Series acquires observations in subantarctic waters south of Australia. We present the seasonality in hydrography, biogeochemistry, phytoplankton community composition, and particulate organic and inorganic carbon export to the deep sea using observations collected between 1997 and 2022. We also review recent research underpinned by these observations and emphasize the value of long time series for understanding ocean processes and responses to a changing climate.
Susana Flecha, Mercedes de la Paz, Fiz Fernández Pérez, Núria Marbà, Carlos Morell, Eva Alou-Font, Joaquín Tintoré, and Iris E. Hendriks
Ocean Sci., 21, 1515–1532, https://doi.org/10.5194/os-21-1515-2025, https://doi.org/10.5194/os-21-1515-2025, 2025
Short summary
Short summary
Nitrous oxide (N2O), a potent greenhouse gas, is understudied in coastal zones. We present N2O concentrations and air–sea fluxes from the Balearic coast (2018–2023). Concentrations varied slightly across sites, with areas acting as weak sources or being near equilibrium. Temperature was the main driver of seasonal changes. These findings improve our understanding of coastal N2O emissions.
Meredith G. Meyer, Esther Portela, Walker O. Smith Jr., and Karen J. Heywood
Ocean Sci., 21, 1223–1236, https://doi.org/10.5194/os-21-1223-2025, https://doi.org/10.5194/os-21-1223-2025, 2025
Short summary
Short summary
During the annual phytoplankton bloom, rates of primary production and carbon export in the Ross Sea, Antarctica, are uncoupled from each other and from oxygen and carbon stocks. These biogeochemical rates support the high-productivity, low-export classification of the region and suggest that environmental factors influence these stocks and rates differently and make projections under future climate change scenarios difficult.
Megan Jeffers, Christopher C. Chapman, Bernadette M. Sloyan, and Helen Bostock
Ocean Sci., 21, 537–554, https://doi.org/10.5194/os-21-537-2025, https://doi.org/10.5194/os-21-537-2025, 2025
Short summary
Short summary
This study analyses physical and biogeochemical data collected in the East Australian Current (EAC) to understand variability in the nutrient-poor surface waters. The distribution of nutrients in the water column is influenced by seasonal flow and the EAC's position. An inshore EAC has a deeper nutricline and lower nutrient concentrations compared to an offshore EAC position. This has implications for the marine ecosystems along the coastline.
Mona Norbisrath, Justus E. E. van Beusekom, and Helmuth Thomas
Ocean Sci., 20, 1423–1440, https://doi.org/10.5194/os-20-1423-2024, https://doi.org/10.5194/os-20-1423-2024, 2024
Short summary
Short summary
We present an observational study investigating total alkalinity (TA) in the Dutch Wadden Sea. Discrete water samples were used to identify the TA spatial distribution patterns and locate and shed light on TA sources. By observing a tidal cycle, the sediments and pore water exchange were identified as local TA sources. We assumed metabolically driven CaCO3 dissolution as the TA source in the upper, oxic sediments and anaerobic metabolic processes as TA sources in the deeper, anoxic ones.
Nicolas Metzl, Claire Lo Monaco, Coraline Leseurre, Céline Ridame, Gilles Reverdin, Thi Tuyet Trang Chau, Frédéric Chevallier, and Marion Gehlen
Ocean Sci., 20, 725–758, https://doi.org/10.5194/os-20-725-2024, https://doi.org/10.5194/os-20-725-2024, 2024
Short summary
Short summary
In the southern Indian Ocean, south of the polar front, an observed increase of sea surface fCO2 and a decrease of pH over 1985–2021 are mainly driven by anthropogenic CO2 uptake, but in the last decade (2010–2020) fCO2 and pH were stable in summer, highlighting the competitive balance between anthropogenic CO2 and primary production. In the water column the increase of anthropogenic CO2 concentrations leads to migration of the aragonite saturation state from 600 m in 1985 up to 400 m in 2021.
Cited articles
Brandt, P., Hahn, J., Schmidtko, S., Tuchen, F. P., Kopte, R., Kiko, R., Bourlès, B., Czeschel, R., and Dengler, M.: Atlantic Equatorial Undercurrent intensification counteracts warming-induced deoxygenation, Nat. Geosci., 14, 278–282, https://doi.org/10.1038/s41561-021-00716-1, 2021.
Bryan, J. R., Rlley, J. P., and Williams, P. J. L.: A winkler procedure for making precise measurements of oxygen concentration for productivity and related studies, J. Exp. Mar. Biol. Ecol., 21, 191–197, https://doi.org/10.1016/0022-0981(76)90114-3, 1976.
Buesseler, K. O., Boyd, P. W., Black, E. E., and Siegel, D. A.: Metrics that matter for assessing the ocean biological carbon pump, P. Natl. Acad. Sci. USA, 117, 9679–9687, https://doi.org/10.1073/pnas.1918114117, 2020.
Calbet, A. and Landry, M. R.: Phytoplankton growth, microzooplankton grazing, and carbon cycling in marine systems, Limnol. Oceanogr., 49, 51–57, https://doi.org/10.4319/lo.2004.49.1.0051, 2004.
Close, H. G. and Henderson, L. C.: Open-Ocean Minima in δ13C Values of Particulate Organic Carbon in the Lower Euphotic Zone, Front. Mar. Sci., 7, 540165, https://doi.org/10.3389/fmars.2020.540165, 2020.
Close, H. G., Wakeham, S. G., and Pearson, A.: Lipid and 13C signatures of submicron and suspended particulate organic matter in the Eastern Tropical North Pacific: Implications for the contribution of Bacteria, Deep-Sea Res. Pt. I, 85, 15–34, https://doi.org/10.1016/j.dsr.2013.11.005, 2014.
Ding, L., Qi, Y., Shan, S., Ge, T., Luo, C., and Wang, X.: Radiocarbon in Dissolved Organic and Inorganic Carbon of the South China Sea, J. Geophys. Res.-Oceans, 125, e2020JC016073, https://doi.org/10.1029/2020jc016073, 2020.
Druffel, E. R. M., Bauer, J. E., Griffin, S., and Hwang, J.: Penetration of anthropogenic carbon into organic particles of the deep ocean, Geophys. Res. Lett., 30, 1744, https://doi.org/10.1029/2003gl017423, 2003.
Eadie, B. J. and Jeffrey, L. M.: δ13C analyses of oceanic particulate organic matter, Mar. Chem., 1, 199–209, https://doi.org/10.1016/0304-4203(73)90004-2, 1973.
Gao, W., Wang, Z., Li, X., and Huang, H.: The increased storage of suspended particulate matter in the upper water of the tropical Western Pacific during the 2015/2016 super El Niño event, J. Oceanol. Limnol., 39, 1675–1689, https://doi.org/10.1007/s00343-021-0362-0, 2021.
Ge, T., Luo, C., Ren, P., Zhang, H., Fan, D., Chen, H., Chen, Z., Zhang, J., and Wang, X.: Stable carbon isotopes of dissolved inorganic carbon in the Western North Pacific Ocean: Proxy for water mixing and dynamics, Front. Mar. Sci., 9, 998437, https://doi.org/10.3389/fmars.2022.998437, 2022.
Guo, J., Zhou, B., Achterberg, E. P., Yuan, H., Song, J., Duan, L., and Li, X.: Rapid Cycling of Bacterial Particulate Organic Matter in the Upper Layer of the Western Pacific Warm Pool, Geophys. Res. Lett., 50, e2023GL102896, https://doi.org/10.1029/2023gl102896, 2023a.
Guo, J., Achterberg, E. P., Shen, Y., Yuan, H., Song, J., Liu, J., Li, X., and Duan, L.: Stable carbon isotopic composition of amino sugars in heterotrophic bacteria and phytoplankton: Implications for assessment of marine organic matter degradation, Limnol. Oceanogr., 68, 2814–2825, https://doi.org/10.1002/lno.12468, 2023b.
Häggi, C., Pätzold, J., Bouillon, S., and Schefuß, E.: Impact of selective degradation on molecular isotope compositions in oxic and anoxic marine sediments, Org. Geochem., 153, 104192, https://doi.org/10.1016/j.orggeochem.2021.104192, 2021.
Hayes, J. M.: Factors controlling 13C contents of sedimentary organic compounds: Principles and evidence, Mar. Geol., 113, 111–125, https://doi.org/10.1016/0025-3227 (93)90153-m, 1993.
Henderson, L. C., Wittmers, F., Carlson, C. A., Worden, A. Z., and Close, H. G.: Variable carbon isotope fractionation of photosynthetic communities over depth in an open-ocean euphotic zone, P. Natl. Acad. Sci. USA, 121, e2304613121, https://doi.org/10.1073/pnas.2304613121, 2024.
Herndl, G. J., Bayer, B., Baltar, F., and Reinthaler, T.: Prokaryotic Life in the Deep Ocean's Water Column, Ann. Rev. Mar. Sci., 15, 461–483, https://doi.org/10.1146/annurev-marine-032122-115655, 2023.
Hernes, P. J. and Benner, R.: Transport and diagenesis of dissolved and particulate terrigenous organic matter in the North Pacific Ocean, Deep-Sea Res. Pt. I, 49, 2119–2132, https://doi.org/10.1016/s0967-0637(02)00128-0, 2002.
Hu, D., Wu, L., Cai, W., Gupta, A. S., Ganachaud, A., Qiu, B., Gordon, A. L., Lin, X., Chen, Z., Hu, S., Wang, G., Wang, Q., Sprintall, J., Qu, T., Kashino, Y., Wang, F., and Kessler, W. S.: Pacific western boundary currents and their roles in climate, Nature, 522, 299–308, https://doi.org/10.1038/nature14504, 2015.
Hugler, M. and Sievert, S. M.: Beyond the Calvin cycle: autotrophic carbon fixation in the ocean, Ann. Rev. Mar. Sci., 3, 261–289, https://doi.org/10.1146/annurev-marine-120709-142712, 2011.
Hwang, J. and Druffel, E. R.: Lipid-like material as the source of the uncharacterized organic carbon in the ocean?, Science, 299, 881–884, https://doi.org/10.1126/science.1078508, 2003.
Hwang, J., Druffel, E. R. M., Eglinton, T. I., and Repeta, D. J.: Source (s) and cycling of the nonhydrolyzable organic fraction of oceanic particles, Geochim. Cosmochim. Ac., 70, 5162–5168, https://doi.org/10.1016/j.gca.2006.07.020, 2006.
Iversen, M. H. and Ploug, H.: Temperature effects on carbon-specific respiration rate and sinking velocity of diatom aggregates – potential implications for deep ocean export processes, Biogeosciences, 10, 4073–4085, https://doi.org/10.5194/bg-10-4073-2013, 2013.
Jeffrey, A. W. A., Pflaum, R. C., Brooks, J. M., and Sackett, W. M.: Vertical trends in particulate organic carbon 13C: 12C ratios in the upper water column, Deep-Sea Res. Pt. I, 30, 971–983, https://doi.org/10.1016/0198-0149(83)90052-3, 1983.
Jia, Q., Li, T., Xiong, Z., Steinke, S., Jiang, F., Chang, F., and Qin, B.: Hydrological variability in the western tropical Pacific over the past 700 kyr and its linkage to Northern Hemisphere climatic change, Palaeogeogr. Palaeoclim., 493, 44–54, https://doi.org/10.1016/j.palaeo.2017.12.039, 2018.
Kharbush, J. J., Close, H. G., Van Mooy, B. A. S., Arnosti, C., Smittenberg, R. H., Le Moigne, F. A. C., Mollenhauer, G., Scholz-Böttcher, B., Obreht, I., Koch, B. P., Becker, K. W., Iversen, M. H., and Mohr, W.: Particulate Organic Carbon Deconstructed: Molecular and Chemical Composition of Particulate Organic Carbon in the Ocean, Front. Mar. Sci., 7, 00518, https://doi.org/10.3389/fmars.2020.00518, 2020.
Lee, C., Wakeham, S. G., and I. Hedges, J.: Composition and flux of particulate amino acids and chloropigments in equatorial Pacific seawater and sediments, Deep-Sea Res. Pt. I, 47, 1535–1568, https://doi.org/10.1016/s0967-0637 (99)00116-8, 2000.
Longhurst, A. R. and Glen Harrison, W.: The biological pump: Profiles of plankton production and consumption in the upper ocean, Prog. Oceanogr., 22, 47–123, https://doi.org/10.1016/0079-6611(89)90010-4, 1989.
Ma, J., Song, J., Li, X., Yuan, H., Li, N., Duan, L., and Wang, Q.: Control factors of DIC in the Y3 seamount waters of the Western Pacific Ocean, J. Oceanol. Limnol., 38, 1215–1224, https://doi.org/10.1007/s00343-020-9314-3, 2020.
Ma, J., Song, J., Li, X., Wang, Q., Zhong, G., Yuan, H., Li, N., and Duan, L.: The OMZ and Its Influence on POC in the Tropical Western Pacific Ocean: Based on the Survey in March 2018, Front. Earth Sci., 9, 632229, https://doi.org/10.3389/feart.2021.632229, 2021.
Ma, J., Wen, L., Li, X., Dai, J., Song, J., Wang, Q., Xu, K., Yuan, H., and Duan, L.: Different fates of particulate matters driven by marine hypoxia: A case study of oxygen minimum zone in the Western Pacific, Mar. Environ. Res., 200, 106648, https://doi.org/10.1016/j.marenvres.2024.106648, 2024.
McCollom, T. M. and Amend, J. P.: A thermodynamic assessment of energy requirements for biomass synthesis by chemolithoautotrophic micro-organisms in oxic and anoxic environments, Geobiology, 3, 135–144, https://doi.org/10.1111/j.1472-4669.2005.00045.x, 2005.
Meyer, K. M., Ridgwell, A., and Payne, J. L.: The influence of the biological pump on ocean chemistry: implications for long-term trends in marine redox chemistry, the global carbon cycle, and marine animal ecosystems, Geobiology, 14, 207–219, https://doi.org/10.1111/gbi.12176, 2016.
Meyers, P. A.: Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes, Org. Geochem., 27, 213–250, https://doi.org/10.1016/s0146-6380(97)00049-1, 1997.
Morales, M., Aflalo, C., and Bernard, O.: Microalgal lipids: A review of lipids potential and quantification for 95 phytoplankton species, Biomass Bioenerg., 150, 106108, https://doi.org/10.1016/j.biombioe.2021.106108, 2021.
Owens, S. A., Pike, S., and Buesseler, K. O.: Thorium-234 as a tracer of particle dynamics and upper ocean export in the Atlantic Ocean, Deep-Sea Res. Pt. II, 116, 42–59, https://doi.org/10.1016/j.dsr2.2014.11.010, 2015.
Passos, J. G., Soares, L. F., Sumida, P. Y. G., Bendia, A. G., Nakamura, F. M., Pellizari, V. H., and Signori, C. N.: Contribution of chemoautotrophy and heterotrophy to the microbial carbon cycle in the Southwestern Atlantic Ocean, Ocean Coast. Res., 70, e22044, https://doi.org/10.1590/2675-2824070.22137jgp, 2022.
Quay, P. and Stutsman, J.: Surface layer carbon budget for the subtropical N. Pacific: constraints at station ALOHA, Deep-Sea Res. Pt. I, 50, 1045–1061, https://doi.org/10.1016/s0967-0637(03)00116-x, 2003.
Quay, P., Sonnerup, R., Westby, T., Stutsman, J., and McNichol, A.: Changes in the 13C/12C of dissolved inorganic carbon in the ocean as a tracer of anthropogenic CO2 uptake, Global Biogeochem. Cy., 17, 1004, https://doi.org/10.1029/2001gb001817, 2003.
Quay, P., Sonnerup, R., Munro, D., and Sweeney, C.: Anthropogenic CO2 accumulation and uptake rates in the Pacific Ocean based on changes in the 13C/12C of dissolved inorganic carbon, Global Biogeochem. Cy., 31, 59–80, https://doi.org/10.1002/2016gb005460, 2017.
Radenac, M.-H., Messié, M., Léger, F., and Bosc, C.: A very oligotrophic zone observed from space in the equatorial Pacific warm pool, Remote Sens. Environ., 134, 224–233, https://doi.org/10.1016/j.rse.2013.03.007, 2013.
Reinthaler, T., van Aken, H. M., and Herndl, G. J.: Major contribution of autotrophy to microbial carbon cycling in the deep North Atlantic's interior, Deep-Sea Res. Pt. II, 57, 1572–1580, https://doi.org/10.1016/j.dsr2.2010.02.023, 2010.
Sannigrahi, P., Ingall, E. D., and Benner, R.: Cycling of dissolved and particulate organic matter at station Aloha: Insights from 13C NMR spectroscopy coupled with elemental, isotopic and molecular analyses, Deep-Sea Res. Pt. I, 52, 1429–1444, https://doi.org/10.1016/j.dsr.2005.04.001, 2005.
Schmittner, A., Gruber, N., Mix, A. C., Key, R. M., Tagliabue, A., and Westberry, T. K.: Biology and air–sea gas exchange controls on the distribution of carbon isotope ratios (δ13C) in the ocean, Biogeosciences, 10, 5793–5816, https://doi.org/10.5194/bg-10-5793-2013, 2013.
Schönau, M. C., Rudnick, D. L., Gopalakrishnan, G., Cornuelle, B. D., and Qiu, B.: Mean, Annual, and Interannual Circulation and Volume Transport in the Western Tropical North Pacific From the Western Pacific Ocean State Estimates (WPOSE), J. Geophys. Res.-Oceans, 127, e2021JC018213, https://doi.org/10.1029/2021jc018213, 2022.
Schouten, S., Klein Breteler, W. C. M., Blokker, P., Schogt, N., Rijpstra, W. I. C., Grice, K., Baas, M., and Sinninghe Damsté, J. S.: Biosynthetic effects on the stable carbon isotopic compositions of algal lipids: implications for deciphering the carbon isotopic biomarker record, Geochim. Cosmochim. Ac., 62, 1397–1406, https://doi.org/10.1016/s0016-7037(98)00076-3, 1998.
Smith, C. R., De Leo, F. C., Bernardino, A. F., Sweetman, A. K., and Arbizu, P. M.: Abyssal food limitation, ecosystem structure and climate change, Trends Ecol. Evol., 23, 518–528, https://doi.org/10.1016/j.tree.2008.05.002, 2008.
Song, J.: Biogeochemical Processes of Biogenic Elements in China Marginal Seas, Advanced Topics in Science and Technology in China, Springer Berlin, Heidelberg, 662 pp., https://doi.org/10.1007/978-3-642-04060-3, 2010.
Sun, C., Xu, J., Liu, Z., Tong, M., and Zhu, B.: Application of Argo Data in the Analysis of Water Masses in the Northwest Pacific Ocean, Mar. Sci. Bull., 10, 2008.
Sun, Q., Song, J., Li, X., Yuan, H., and Wang, Q.: The bacterial diversity and community composition altered in the oxygen minimum zone of the Tropical Western Pacific Ocean, J. Oceanol. Limnol., 39, 1690–1704, https://doi.org/10.1007/s00343-021-0370-0, 2021.
Takahashi, T., Sutherland, S. C., Wanninkhof, R., Sweeney, C., Feely, R. A., Chipman, D. W., Hales, B., Friederich, G., Chavez, F., Sabine, C., Watson, A., Bakker, D. C. E., Schuster, U., Metzl, N., Yoshikawa-Inoue, H., Ishii, M., Midorikawa, T., Nojiri, Y., Körtzinger, A., Steinhoff, T., Hoppema, M., Olafsson, J., Arnarson, T. S., Tilbrook, B., Johannessen, T., Olsen, A., Bellerby, R., Wong, C. S., Delille, B., Bates, N. R., and de Baar, H. J. W.: Climatological mean and decadal change in surface ocean pCO2, and net sea–air CO2 flux over the global oceans, Deep-Sea Res. Pt. II, 56, 554–577, https://doi.org/10.1016/j.dsr2.2008.12.009, 2009.
Thompson, R. O. R. Y.: Climatological Numerical Models of the Surface Mixed Layer of the Ocean, J. Phys. Oceanogr., 6, 496–503, 1976.
Tian, D., Li, X., Song, J., Ma, J., Yuan, H., and Duan, L.: Vertical layering and transformation of Particulate organic carbon in the tropical Northwestern Pacific Ocean waters based on δ13C, Figshare [data set], https://doi.org/10.6084/m9.figshare.26197808, 2024.
Tuchen, F. P., Perez, R. C., Foltz, G. R., McPhaden, M. J., and Lumpkin, R.: Strengthening of the Equatorial Pacific Upper-Ocean Circulation Over the Past Three Decades, J. Geophys. Res.-Oceans, 129, e2024JC021343, https://doi.org/10.1029/2024jc021343, 2024.
Turner, J. T.: Zooplankton fecal pellets, marine snow, phytodetritus and the ocean's biological pump, Prog. Oceanogr., 130, 205–248, https://doi.org/10.1016/j.pocean.2014.08.005, 2015.
Walsh, D. A., Zaikova, E., Howes, C. G., Song, Y. C., Wright, J. J., Tringe, S. G., Tortell, P. D., and Hallam, S. J.: Metagenome of a versatile chemolithoautotroph from expanding oceanic dead zones, Science, 326, 578–582, https://doi.org/10.1126/science.1175309, 2009.
Wu, L., Liu, Z., Liu, Y., Liu, Q., and Liu, X.: Potential global climatic impacts of the North Pacific Ocean, Geophys. Res. Lett., 32, L24710, https://doi.org/10.1029/2005gl024812, 2005.
Zeebe, R. E. and Wolf-Gladrow, D.: CO2 in Seawater: Equilibrium, Kinetics, Isotopes, Elsevier Science, ISBN 0444509461, 2001.
Zhong, G., Li, X., Song, J., Qu, B., Wang, F., Wang, Y., Zhang, B., Tian, D., Ma, J., Yuan, H., Duan, L., Li, N., Wang, Q., and Xing, J.: The increasing big gap of carbon sink between the western and eastern Pacific in the last three decades, Front. Mar. Sci., 9, 1088181, https://doi.org/10.3389/fmars.2022.1088181, 2022.
Zuo, J., Song, J., Yuan, H., Li, X., Li, N., and Duan, L.: Impact of Kuroshio on the dissolved oxygen in the East China Sea region, J. Oceanol. Limnol., 37, 513–524, https://doi.org/10.1007/s00343-019-7389-5, 2018.
Short summary
Particulate organic carbon plays a vital role in the ocean's carbon cycle, yet its transformation involves complex processes that are not fully understood. This study examines the vertical distribution of stable carbon isotopes in the Tropical Northwestern Pacific, identifying three distinct biogeochemical layers of POC transformation, and contributes to a deeper understanding of the ocean's carbon cycle.
Particulate organic carbon plays a vital role in the ocean's carbon cycle, yet its...