Articles | Volume 21, issue 1
https://doi.org/10.5194/os-21-113-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/os-21-113-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Convolutional neural networks for sea surface data assimilation in operational ocean models: test case in the Gulf of Mexico
Department of Scientific Computing, Florida State University, Tallahassee, FL 32306, USA
Center for Ocean–Atmospheric Prediction Studies, Florida State University, Tallahassee, FL 32306, USA
Alexandra Bozec
Center for Ocean–Atmospheric Prediction Studies, Florida State University, Tallahassee, FL 32306, USA
Eric P. Chassignet
Center for Ocean–Atmospheric Prediction Studies, Florida State University, Tallahassee, FL 32306, USA
Jose R. Miranda
Department of Scientific Computing, Florida State University, Tallahassee, FL 32306, USA
Center for Ocean–Atmospheric Prediction Studies, Florida State University, Tallahassee, FL 32306, USA
Related authors
No articles found.
Marco Larrañaga, Julien Jouanno, Eric P. Chassignet, Giovanni Durante, Ilkyeong Ma, Julio Sheinbaum, and Lionel Renault
EGUsphere, https://doi.org/10.5194/egusphere-2025-5574, https://doi.org/10.5194/egusphere-2025-5574, 2025
This preprint is open for discussion and under review for Ocean Science (OS).
Short summary
Short summary
We analyze 29 years of satellite altimetry to investigate the detachment of Loop Current Eddies in the Gulf of Mexico. Over half of the Loop Current eddies reattach within a month, while 42 % separate and drift westward. Detachment requires the Loop Current to reach the Mississippi Fan and is strongly influenced by cyclonic eddies, whose configuration determines whether an eddy separates or reattaches to the Loop Current.
Gokhan Danabasoglu, Frederic S. Castruccio, Burcu Boza, Alice M. Barthel, Arne Biastoch, Adam Blaker, Alexandra Bozec, Diego Bruciaferri, Frank O. Bryan, Eric P. Chassignet, Yao Fu, Ian Grooms, Catherine Guiavarc'h, Hakase Hayashida, Andrew McC. Hogg, Ryan M. Holmes, Doroteaciro Iovino, Andrew E. Kiss, M. Susan Lozier, Gustavo Marques, Alex Megann, Franziska U. Schwarzkopf, Dave Storkey, Luke van Roekel, Jon Wolfe, Xiaobiao Xu, and Rong Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-5406, https://doi.org/10.5194/egusphere-2025-5406, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
A comparison of simulated and observed overturning transports across the Overturning in the Subpolar North Atlantic Program sections for the 2014–2022 period is presented. Eighteen ocean simulations participate in the study. The simulated transports are in general agreement with observations. Analyzing overturning circulations in both depth and density space together provides a more complete picture of the overturning properties. The study serves as a benchmark for evaluation of ocean models.
Ibrahim Hoteit, Eric Chassignet, and Mike Bell
State Planet, 5-opsr, 21, https://doi.org/10.5194/sp-5-opsr-21-2025, https://doi.org/10.5194/sp-5-opsr-21-2025, 2025
Short summary
Short summary
This paper explores how using multiple predictions instead of just one can improve ocean forecasts and help prepare for changes in ocean conditions. By combining different forecasts, scientists can better understand the uncertainty in predictions, leading to more reliable forecasts and better decision-making. This method is useful for responding to hazards like oil spills, improving climate forecasts, and supporting decision-making in fields like marine safety and resource management.
Marina Tonani, Eric Chassignet, Mauro Cirano, Yasumasa Miyazawa, and Begoña Pérez Gómez
State Planet, 5-opsr, 3, https://doi.org/10.5194/sp-5-opsr-3-2025, https://doi.org/10.5194/sp-5-opsr-3-2025, 2025
Short summary
Short summary
This article provides an overview of the main characteristics of ocean forecast systems covering a limited region of the ocean. Their main components are described, as well as the spatial and temporal scales they resolve. The oceanic variables that these systems are able to predict are also explained. An overview of the main forecasting systems currently in operation is also provided.
Yann Drillet, Matthew Martin, Yosuke Fujii, Eric Chassignet, and Stefania Ciliberti
State Planet, 5-opsr, 2, https://doi.org/10.5194/sp-5-opsr-2-2025, https://doi.org/10.5194/sp-5-opsr-2-2025, 2025
Short summary
Short summary
This article describes the various stages of research and development that have been carried out over the last few decades to produce an operational reference service for global ocean monitoring and forecasting.
Qiang Wang, Qi Shu, Alexandra Bozec, Eric P. Chassignet, Pier Giuseppe Fogli, Baylor Fox-Kemper, Andy McC. Hogg, Doroteaciro Iovino, Andrew E. Kiss, Nikolay Koldunov, Julien Le Sommer, Yiwen Li, Pengfei Lin, Hailong Liu, Igor Polyakov, Patrick Scholz, Dmitry Sidorenko, Shizhu Wang, and Xiaobiao Xu
Geosci. Model Dev., 17, 347–379, https://doi.org/10.5194/gmd-17-347-2024, https://doi.org/10.5194/gmd-17-347-2024, 2024
Short summary
Short summary
Increasing resolution improves model skills in simulating the Arctic Ocean, but other factors such as parameterizations and numerics are at least of the same importance for obtaining reliable simulations.
Stefania A. Ciliberti, Enrique Alvarez Fanjul, Jay Pearlman, Kirsten Wilmer-Becker, Pierre Bahurel, Fabrice Ardhuin, Alain Arnaud, Mike Bell, Segolene Berthou, Laurent Bertino, Arthur Capet, Eric Chassignet, Stefano Ciavatta, Mauro Cirano, Emanuela Clementi, Gianpiero Cossarini, Gianpaolo Coro, Stuart Corney, Fraser Davidson, Marie Drevillon, Yann Drillet, Renaud Dussurget, Ghada El Serafy, Katja Fennel, Marcos Garcia Sotillo, Patrick Heimbach, Fabrice Hernandez, Patrick Hogan, Ibrahim Hoteit, Sudheer Joseph, Simon Josey, Pierre-Yves Le Traon, Simone Libralato, Marco Mancini, Pascal Matte, Angelique Melet, Yasumasa Miyazawa, Andrew M. Moore, Antonio Novellino, Andrew Porter, Heather Regan, Laia Romero, Andreas Schiller, John Siddorn, Joanna Staneva, Cecile Thomas-Courcoux, Marina Tonani, Jose Maria Garcia-Valdecasas, Jennifer Veitch, Karina von Schuckmann, Liying Wan, John Wilkin, and Romane Zufic
State Planet, 1-osr7, 2, https://doi.org/10.5194/sp-1-osr7-2-2023, https://doi.org/10.5194/sp-1-osr7-2-2023, 2023
Anne Marie Treguier, Clement de Boyer Montégut, Alexandra Bozec, Eric P. Chassignet, Baylor Fox-Kemper, Andy McC. Hogg, Doroteaciro Iovino, Andrew E. Kiss, Julien Le Sommer, Yiwen Li, Pengfei Lin, Camille Lique, Hailong Liu, Guillaume Serazin, Dmitry Sidorenko, Qiang Wang, Xiaobio Xu, and Steve Yeager
Geosci. Model Dev., 16, 3849–3872, https://doi.org/10.5194/gmd-16-3849-2023, https://doi.org/10.5194/gmd-16-3849-2023, 2023
Short summary
Short summary
The ocean mixed layer is the interface between the ocean interior and the atmosphere and plays a key role in climate variability. We evaluate the performance of the new generation of ocean models for climate studies, designed to resolve
ocean eddies, which are the largest source of ocean variability and modulate the mixed-layer properties. We find that the mixed-layer depth is better represented in eddy-rich models but, unfortunately, not uniformly across the globe and not in all models.
Cited articles
Agrawal, S., Barrington, L., Bromberg, C., Burge, J., Gazen, C., and Hickey, J.: Machine learning for precipitation nowcasting from radar images, arXiv [preprint], https://doi.org/10.48550/arXiv.1912.12132, 11 December 2019. a
Beauchamp, M., Bocquet, M., and Fablet, R.: Multimodal 4DVarNets for the reconstruction of sea surface dynamics from SST-SSH synergies, arXiv [preprint], https://doi.org/10.48550/arXiv.2203.06003, 11 March 2022. a
Boukabara, S.-A., Krasnopolsky, V., Stewart, J. Q., Maddy, E. S., Shahroudi, N., and Hoffman, R. N.: Leveraging modern artificial intelligence for remote sensing and NWP: Benefits and challenges, B. Am. Meteor. Soc., 100, ES473–ES491, 2019. a
Bozec, A., Chassignet, E. P., and Srinivasan, A.: GOMb0.04 Reanalysis for the Gulf of Mexico, https://www.hycom.org/data/gomb0pt04/gom-reanalysis (last access: 21 January 2025), 2025. a
Chassignet, E. P., Hurlburt, H. E., Smedstad, O. M., Halliwell, G. R., Hogan, P. J., Wallcraft, A. J., Baraille, R., and Bleck, R.: The HYCOM (hybrid coordinate ocean model) data assimilative system, J. Mar. Syst., 65, 60–83, 2007. a
Chassignet, E. P., Hurlburt, H. E., Metzger, E. J., Smedstad, O. M., Cummings, J. A., Halliwell, G. R., Bleck, R., Baraille, R., Wallcraft, A. J., Lozano, C., et al.: US GODAE: global ocean prediction with the HYbrid Coordinate Ocean Model (HYCOM), Oceanography, 22, 64–75, 2009. a
Cooper, M. and Haines, K.: Altimetric assimilation with water property conservation, J. Geophys. Res.-Oceans, 101, 1059–1077, 1996. a
Daudt, R. C., Le Saux, B., Boulch, A., and Gousseau, Y.: Fully Convolutional Siamese Networks for Change Detection, in: IEEE International Conference on Image Processing (ICIP), Athens, Greece, 6 September 2018, 4063–4067, https://doi.org/10.1109/ICIP.2018.8451652, 2018. a
Davis, M.: Stochastic modelling and control, Springer Science & Business Media, https://doi.org/10.1007/978-94-009-4828-0, 2013. a
Demir, I., Koperski, K., Lindenbaum, D., Pang, G., Huang, J., Basu, S., Hughes, F., Tuia, D., and Raskar, R.: DeepGlobe 2018: A Challenge to Parse the Earth through Satellite Images, in: CVPR Workshops, Salt Lake City, June 2018, 172–181, 2018. a
Dong, R., Leng, H., Zhao, J., Song, J., and Liang, S.: A Framework for Four-Dimensional Variational Data Assimilation Based on Machine Learning, Entropy, 24, 264, https://doi.org/10.3390/e24020264, 2022. a
Evensen, G.: The ensemble Kalman filter: Theoretical formulation and practical implementation, Ocean Dynam., 53, 343–367, 2003. a
Geer, A. J.: Learning Earth System Models from Observations: Machine Learning or Data Assimilation?, Philos. T. Roy. Soc. A, 379, 20200089, https://doi.org/10.1098/rsta.2020.0089, 2021. a
Guinehut, S., Le Traon, P. Y., Larnicol, G., and Philipps, S.: Combining Argo and remote-sensing data to estimate the ocean three-dimensional temperature fields–a first approach based on simulated observations, J. Mar. Syst., 46, 85–98, https://doi.org/10.1016/j.jmarsys.2003.11.022, 2004. a
Kingma, D. P. and Ba, J.: Adam: A method for stochastic optimization, arXiv [preprint], https://doi.org/10.48550/arXiv.1412.6980, 22 December 2014. a
Krasnopolsky, V.: The Application of Neural Networks in the Earth System Sciences: Neural Network Emulations for Complex Multidimensional Mappings, vol. 46 of Atmospheric and Oceanic Science Library, Springer, Dordrecht, Heidelberg, New York, London, https://doi.org/10.1007/978-94-007-6073-8, 2013. a
LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P.: Gradient-based learning applied to document recognition, P. IEEE, 86, 2278–2324, 1998. a
Lguensat, R., Sun, M., Fablet, R., Tandeo, P., Mason, E., and Chen, G.: EddyNet: A Deep Neural Network For Pixel-Wise Classification of Oceanic Eddies, in: IGARSS 2018–2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, November 2018, 1764–1767, https://doi.org/10.1109/IGARSS.2018.8518411, 2018. a
Maggiori, E., Tarabalka, Y., Charpiat, G., and Alliez, P.: Can Semantic Labeling Methods Generalize to Any City? The Inria Aerial Image Labeling Benchmark, in: IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Forth Worth, TX, USA, 23–28 July 2017, 3226–3229, https://doi.org/10.1109/IGARSS.2017.8127684, 2017. a
Nicolas, K. M., Drumetz, L., Lefèvre, S., Tiede, D., Bajjouk, T., and Burnel, J.-C.: Deep Learning–Based Bathymetry Mapping from Multispectral Satellite Data Around Europa Island, in: European Spatial Data for Coastal and Marine Remote Sensing, edited by: Niculescu, S., Chapter 6, Springer, Cham, https://doi.org/10.1007/978-3-031-16213-8_6, 2023. a
Oke, P. R., Allen, J. S., Miller, R. N., Egbert, G. D., and Kosro, P. M.: Assimilation of surface velocity data into a primitive equation coastal ocean model, J. Geophys. Res.-Oceans, 107, 5-1–5-25, https://doi.org/10.1029/2000JC000511, 2002. a
Oktay, O., Schlemper, J., Folgoc, L. L., Lee, M., Heinrich, M., Misawa, K., Mori, K., McDonagh, S., Hammerla, N. Y., Kainz, B., Glocker, B., and Rueckert, D.: Attention u-net: Learning where to look for the pancreas, arXiv [preprint], https://doi.org/10.48550/arXiv.1804.03999, 11 April 2018. a
Panagiotis, V.: Gulf of Mexico high-resolution (0.01°× 0.01°) bathymetric grid-version 2.0, February 2013, Distributed by: Gulf of Mexico Research Initiative Information and Data Cooperative (GRIIDC), Harte Research Institute, Texas A&M UniversityCorpus Christi, https://doi.org/10.7266/N7X63JZ5, 2014. a
Pech-May, F., Aquino-Santos, R., Álvarez Cárdenas, O., Arandia, J. L., and Rios-Toledo, G.: Segmentation and Visualization of Flooded Areas Through Sentinel-1 Images and U-Net, IEEE J. Sel. Top. Appl., 17, 8996–9008, https://doi.org/10.1109/JSTARS.2024.3387452, 2024. a
Ronneberger, O., Fischer, P., and Brox, T.: U-net: Convolutional networks for biomedical image segmentation, in: International Conference on Medical image computing and computer-assisted intervention, 234–241, Springer, https://doi.org/10.1007/978-3-319-24574-4_28, 2015. a, b, c
Roy, A. G., Navab, N., and Wachinger, C.: Concurrent spatial and channel “squeeze & excitation” in fully convolutional networks, in: Medical Image Computing and Computer Assisted Intervention–MICCAI 2018: 21st International Conference, Granada, Spain, 16–20 September 2018, Proceedings, Part I, 421–429, Springer, https://doi.org/10.1007/978-3-030-00928-1_48, 2018. a
Rue, H. and Held, L.: Gaussian Markov random fields: theory and applications, Chapman and Hall/CRC, https://doi.org/10.1201/9780203492024, 2005. a
Russwurm, M. and Korner, M.: Multi-temporal land cover classification with sequential recurrent encoders, ISPRS Int. J. Geo-Inf., 7, 129, 2018. a
Tian, S., Dong, Y., Feng, R., Liang, D., and Wang, L.: Mapping mountain glaciers using an improved U-Net model with cSE, Int. J. Digit. Earth, 15, 463–477, https://doi.org/10.1080/17538947.2022.2036834, 2022. a
Zavala-Romero, O., Bozec, A., Chassignet, E. P., and Miranda, J. R.: CNN-based data assimilation for operational ocean models (Gulf of Mexico case study), Version 1.0, Zenodo [software], https://doi.org/10.5281/zenodo.14714803, 2025. a
Short summary
This study shows AI can speed up data assimilation in ocean models. Researchers used convolutional neural networks (CNNs) to assimilate sea surface temperature and height observations in the Gulf of Mexico, learning to replicate corrections made by traditional, computationally expensive methods. CNN design and training window size significantly impacted accuracy, but the percentage of ocean pixels did not. These findings suggest CNNs may accelerate data assimilation in realistic settings.
This study shows AI can speed up data assimilation in ocean models. Researchers used...