Articles | Volume 21, issue 3
https://doi.org/10.5194/os-21-1033-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-21-1033-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Advances in surface water and ocean topography for fine-scale eddy identification from altimeter sea surface height merging maps in the South China Sea
Xiaoya Zhang
College of Meteorology and Oceanology, National University of Defense Technology, Changsha 410073, China
Key Laboratory of High Impact Weather (special), China Meteorological Administration, Changsha 410073, China
Lei Liu
CORRESPONDING AUTHOR
College of Meteorology and Oceanology, National University of Defense Technology, Changsha 410073, China
Key Laboratory of High Impact Weather (special), China Meteorological Administration, Changsha 410073, China
Jianfang Fei
College of Meteorology and Oceanology, National University of Defense Technology, Changsha 410073, China
Zhijin Li
Department of Atmosphere and Ocean Sciences, Institute of Atmospheric Sciences, Fudan University, Shanghai 200433, China
Zexun Wei
First Institute of Oceanography, and Key Laboratory of Marine Science and Numerical Modeling, Ministry of Natural Resources, Qingdao 266061, China
Zhiwei Zhang
Frontier Science Center for Deep Ocean Multispheres and Earth System (FDOMES) and Physical Oceanography Laboratory/Key Laboratory of Ocean Observation and Information of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya, China
Xingliang Jiang
Department of Atmosphere and Ocean Sciences, Institute of Atmospheric Sciences, Fudan University, Shanghai 200433, China
Zexin Dong
College of Meteorology and Oceanology, National University of Defense Technology, Changsha 410073, China
Feng Xu
College of Meteorology and Oceanology, National University of Defense Technology, Changsha 410073, China
Related authors
No articles found.
Noir Primadona Purba, Ghelby Muhammad Faid, Wang Zheng, Mohd. Fadzil Akhir, Weidong Yu, Rangga Adithya Mulya, Fadli Syamsudin, Ibnu Faizal, Buntora Pasaribu, Teguh Agustiadi, Bayu Priyono, Muhammad Fadli, Priyadi Dwi Santoso, Wahyu Widodo Pandoe, Huiwu Wang, Shujiang Li, Zexun Wei, R. Dwi Susanto, Dwiyoga Nugroho, and Adi Purwandana
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-196, https://doi.org/10.5194/essd-2025-196, 2025
Revised manuscript under review for ESSD
Short summary
Short summary
This research examines ocean conditions in the Indonesian seas, a key area linking the Pacific and Indian Oceans. We analyzed two centuries of direct ocean measurements and found large gaps in deep-sea and coastal data that limit climate and marine studies. We suggest better monitoring, technology, and collaboration to improve understanding of ocean changes. These efforts will help predict climate impacts and support marine conservation and sustainable resource use.
Faisal Hamzah, Iis Triyulianti, Agus Setiawan, Intan Suci Nurhati, Bayu Priyono, Dessy Berlianty, Muhammad Fadli, Rafidha D. Ahmad Opier, Teguh Agustiadi, Marsya J. Rugebregt, Weidong Yu, Zexun Wei, Huiwu Wang, R. Dwi Susanto, and Priyadi D. Santoso
EGUsphere, https://doi.org/10.5194/egusphere-2024-451, https://doi.org/10.5194/egusphere-2024-451, 2024
Preprint archived
Short summary
Short summary
We provide new insights on the presence of oxygen-depleted waters along the Indonesian coasts of Sumatra and Java attributed to the eastward advection of the northern Indian Ocean waters and monsoon-driven upwelling. Combined in situ and reanalysis data elucidate the complex interplay of oceanographic processes responsible for the observed oxygen in the region. The knowledge is crucial for research and management strategies to mitigate deoxygenation impacts on marine ecosystems in Indonesia.
Jiangyu Li, Shaoqing Zhang, Qingxiang Liu, Xiaolin Yu, and Zhiwei Zhang
Geosci. Model Dev., 16, 6393–6412, https://doi.org/10.5194/gmd-16-6393-2023, https://doi.org/10.5194/gmd-16-6393-2023, 2023
Short summary
Short summary
Ocean surface waves play an important role in the air–sea interface but are rarely activated in high-resolution Earth system simulations due to their expensive computational costs. To alleviate this situation, this paper designs a new wave modeling framework with a multiscale grid system. Evaluations of a series of numerical experiments show that it has good feasibility and applicability in the WAVEWATCH III model, WW3, and can achieve the goals of efficient and high-precision wave simulation.
Zhijin Li, Matthew R. Archer, Jinbo Wang, and Lee-Lueng Fu
EGUsphere, https://doi.org/10.5194/egusphere-2022-1399, https://doi.org/10.5194/egusphere-2022-1399, 2022
Preprint archived
Short summary
Short summary
The Surface Water and Ocean Topography (SWOT) satellite mission will carry a new-generation altimeter to measure sea surface height in two-dimensions at unprecedented spatial resolution. An integration of SWOT measurements into an oceanic numerical model will improve our oceanic prediction in spatial resolution and accuracy. It has been demonstrated that the methodology used is ready to integrate SWOT measurements into the model, and the result may be used to interpret SWOT measurements.
Yiwen Hu, Zengliang Zang, Xiaoyan Ma, Yi Li, Yanfei Liang, Wei You, Xiaobin Pan, and Zhijin Li
Atmos. Chem. Phys., 22, 13183–13200, https://doi.org/10.5194/acp-22-13183-2022, https://doi.org/10.5194/acp-22-13183-2022, 2022
Short summary
Short summary
This study developed a four-dimensional variational assimilation (4DVAR) system based on WRF–Chem to optimise SO2 emissions. The 4DVAR system was applied to obtain the SO2 emissions during the early period of the COVID-19 pandemic over China. The results showed that the 4DVAR system effectively optimised emissions to describe the actual changes in SO2 emissions related to the COVID lockdown, and it can thus be used to improve the accuracy of forecasts.
Dingqi Wang, Guohong Fang, Shuming Jiang, Qinzeng Xu, Guanlin Wang, Zexun Wei, Yonggang Wang, and Tengfei Xu
EGUsphere, https://doi.org/10.5194/egusphere-2022-547, https://doi.org/10.5194/egusphere-2022-547, 2022
Preprint archived
Short summary
Short summary
The JES is a mid-latitude “Miniature Ocean” featured by multiscale oceanic dynamical processes and sea ice, which strongly influence the JES SSC. However, the dominant factors that favor and/or restrict SSC and how they influence JES SSC on different time scales are not clear. In this study, these issues are investigated using EOF and PCA methods based on high-resolution satellite-derived SSC data provided by the Copernicus Marine Environment Monitoring Service (CMEMS).
Zhijin Li, Matthew Archer, Jinbo Wang, and Lee-Lueng Fu
Ocean Sci. Discuss., https://doi.org/10.5194/os-2021-89, https://doi.org/10.5194/os-2021-89, 2021
Preprint withdrawn
Short summary
Short summary
We developed a data assimilation (DA) system coupled to a high-resolution model of the California Current region. This three-dimensional variational DA system has been extended to effectively assimilate a longer window of high-density ocean observations, in anticipation of the upcoming SWOT (surface water and ocean topography) satellite mission. The new era of swath-altimetry ushered in by SWOT will challenge existing DA systems, and this study presents a first approach to this challenge.
Di Wu, Guohong Fang, Zexun Wei, and Xinmei Cui
Ocean Sci., 17, 579–591, https://doi.org/10.5194/os-17-579-2021, https://doi.org/10.5194/os-17-579-2021, 2021
Short summary
Short summary
The Korea Strait is a major navigation passage linking the Japan Sea to the East China Sea and Yellow Sea. This paper establishes a theoretical model for the tides in the Korea Strait and Japan Sea using the extended Taylor method. The model solution explains the formation mechanism of the tidal amphidromic systems in the Korea Strait, and why the K1 amphidromic point is located farther away from the shelf break separating the Korea Strait and Japan Sea in comparison to the M2 amphidromic point.
Cited articles
Abdalla, S., Abdeh Kolahchi, A., Ablain, M., et al.: Altimetry for the future: Building on 25 years of progress, Adv. Space Res., 68, 319–363, https://doi.org/10.1016/j.asr.2021.01.022, 2021.
Archer, M. R., Li, Z., and Fu, L.: Increasing the Space–Time Resolution of Mapped Sea Surface Height From Altimetry, J. Geophys. Res.-Oceans, 125, e2019JC015878, https://doi.org/10.1029/2019JC015878, 2020.
AVISO/DUACS: SWOT Level-3 KaRIn Low Rate SSH Basic (1.0), Aviso [data set], https://doi.org/10.24400/527896/A01-2023.017, 2024.
Ballarotta, M., Ubelmann, C., Pujol, M.-I., Taburet, G., Fournier, F., Legeais, J.-F., Faugère, Y., Delepoulle, A., Chelton, D., Dibarboure, G., and Picot, N.: On the resolutions of ocean altimetry maps, Ocean Sci., 15, 1091–1109, https://doi.org/10.5194/os-15-1091-2019, 2019.
Ballarotta, M., Ubelmann, C., Rogé, M., Fournier, F., Faugère, Y., Dibarboure, G., Morrow, R., and Picot, N.: Dynamic Mapping of Along-Track Ocean Altimetry: Performance from Real Observations, J. Atmos. Ocean. Tech., 37, 1593–1601, https://doi.org/10.1175/JTECH-D-20-0030.1, 2020.
Ballarotta, M., Ubelmann, C., Veillard, P., Prandi, P., Etienne, H., Mulet, S., Faugère, Y., Dibarboure, G., Morrow, R., and Picot, N.: Improved global sea surface height and current maps from remote sensing and in situ observations, Earth Syst. Sci. Data, 15, 295–315, https://doi.org/10.5194/essd-15-295-2023, 2023.
Cai, S., Long, X., Wu, R., and Wang, S.: Geographical and monthly variability of the first baroclinic Rossby radius of deformation in the South China Sea, J. Marine Syst., 74, 711–720, https://doi.org/10.1016/j.jmarsys.2007.12.008, 2008.
Chelton, D. B., Schlax, M. G., Samelson, R. M., and De Szoeke, R. A.: Global observations of large oceanic eddies, Geophys. Res. Lett., 34, 2007GL030812, https://doi.org/10.1029/2007GL030812, 2007.
Chelton, D. B., Schlax, M. G., and Samelson, R. M.: Global observations of nonlinear mesoscale eddies, Prog. Oceanogr., 91, 167–216, https://doi.org/10.1016/j.pocean.2011.01.002, 2011.
Chen, G., Yang, J., Tian, F., Chen, S., Zhao, C., Tang, J., Liu, Y., Wang, Y., Yuan, Z., He, Q., and Cao, C.: Remote sensing of oceanic eddies: Progresses and challenges, National Remote Sensing Bulletin, 25, 302–322, https://doi.org/10.11834/jrs.20210400, 2021.
Chen, J., Zhu, X.-H., Zheng, H., and Wang, M.: Submesoscale dynamics accompanying the Kuroshio in the East China Sea, Front. Mar. Sci., 9, 1124457, https://doi.org/10.3389/fmars.2022.1124457, 2023.
Chen, Y. and Yu, L.: Mesoscale Meridional Heat Transport Inferred From Sea Surface Observations, Geophys. Res. Lett., 51, e2023GL106376, https://doi.org/10.1029/2023GL106376, 2024.
Cohn, S. E.: Estimation theory for data assimilation problems: Basic conceptual framework and some open questions, J. Meteorol. Soc. Jpn., 75, 257–288, 1997.
Copernicus Marine Service repository: Gridded Level-4 Sea Surface Heights Nrt, Copernicus Marine Service [data set], https://doi.org/10.48670/moi-00149, 2023a.
Copernicus Marine Service repository: Gridded Level-4 Sea Surface Heights Reprocessed, Copernicus Marine Service [data set], https://doi.org/10.48670/moi-00148, 2023b.
Dufau, C., Orsztynowicz, M., Dibarboure, G., Morrow, R., and Le Traon, P.: Mesoscale resolution capability of altimetry: Present and future, J. Geophys. Res.-Oceans, 121, 4910–4927, https://doi.org/10.1002/2015JC010904, 2016.
Elipot, S., Lumpkin, R., Perez, R. C., Lilly, J. M., Early, J. J., and Sykulski, A. M.: A global surface drifter data set at hourly resolution, J. Geophys. Res.-Oceans, 121, 2937–2966, https://doi.org/10.1002/2016JC011716, 2016.
Fu, L., Pavelsky, T., Cretaux, J., Morrow, R., Farrar, J. T., Vaze, P., Sengenes, P., Vinogradova-Shiffer, N., Sylvestre-Baron, A., Picot, N., and Dibarboure, G.: The Surface Water and Ocean Topography Mission: A Breakthrough in Radar Remote Sensing of the Ocean and Land Surface Water, Geophys. Res. Lett., 51, e2023GL107652, https://doi.org/10.1029/2023GL107652, 2024.
Huang, Z., Liu, H., Lin, P., and Hu, J.: Influence of island chains on the Kuroshio intrusion in the Luzon Strait, Adv. Atmos. Sci., 34, 397–410, https://doi.org/10.1007/s00376-016-6159-y, 2017.
Jia, Y. and Chassignet, E. P.: Seasonal variation of eddy shedding from the Kuroshio intrusion in the Luzon Strait, J. Oceanogr., 67, 601–611, https://doi.org/10.1007/s10872-011-0060-1, 2011.
Jiang, X., Liu, L., Li, Z., Liu, L., Lim Kam Sian, K. T. C., and Dong, C.: A Two-Dimensional Variational Scheme for Merging Multiple Satellite Altimetry Data and Eddy Analysis, Remote Sensing, 14, 3026, https://doi.org/10.3390/rs14133026, 2022.
Laxenaire, R., Speich, S., Blanke, B., Chaigneau, A., Pegliasco, C., and Stegner, A.: Anticyclonic Eddies Connecting the Western Boundaries of Indian and Atlantic Oceans, J. Geophys. Res.-Oceans, 7651–7677, https://doi.org/10.1029/2018JC014270, 2018.
Le Traon, P. Y., Nadal, F., and Ducet, N.: An Improved Mapping Method of Multisatellite Altimeter Data, J. Atmos. Ocean. Tech., 15, 522–534, https://doi.org/10.1175/1520-0426(1998)015<0522:AIMMOM>2.0.CO;2, 1998.
Lévy, M., Couespel, D., Haëck, C., Keerthi, M. G., Mangolte, I., and Prend, C. J.: The Impact of Fine-Scale Currents on Biogeochemical Cycles in a Changing Ocean, Annu. Rev. Mar. Sci., 16, 191–215, https://doi.org/10.1146/annurev-marine-020723-020531, 2024.
Lin, H., Liu, Z., Hu, J., Menemenlis, D., and Huang, Y.: Characterizing meso- to submesoscale features in the South China Sea, Prog. Oceanogr., 188, 102420, https://doi.org/10.1016/j.pocean.2020.102420, 2020.
Liu, L., Jiang, X., Fei, J., and Li, Z.: Development and evaluation of a new merged sea surface height product from multi-satellite altimeters, Chinese Sci. Bull., 65, 1888–1897, https://doi.org/10.1360/TB-2020-0097, 2020.
Liu, L., Zhang, X., Fei, J., Li, Z., Shi, W., Wang, H., Jiang, X., Zhang, Z., and Lv, X.: Key Factors for Improving the Resolution of Mapped Sea Surface Height from Multi-Satellite Altimeters in the South China Sea, Remote Sensing, 15, 4275, https://doi.org/10.3390/rs15174275, 2023.
Lumpkin, R. and Elipot, S.: Surface drifter pair spreading in the North Atlantic, J. Geophys. Res., 115, 2010JC006338, https://doi.org/10.1029/2010JC006338, 2010.
Ma, X., Jing, Z., Chang, P., Liu, X., Montuoro, R., Small, R. J., Bryan, F. O., Greatbatch, R. J., Brandt, P., Wu, D., Lin, X., and Wu, L.: Western boundary currents regulated by interaction between ocean eddies and the atmosphere, Nature, 535, 533–537, https://doi.org/10.1038/nature18640, 2016.
Mahadevan, A.: The Impact of Submesoscale Physics on Primary Productivity of Plankton, Annu. Rev. Mar. Sci., 8, 161–184, https://doi.org/10.1146/annurev-marine-010814-015912, 2016.
Martin, A., Lemerle, E., Mccann, D., Macedo, K., Andrievskaia, D., Gommenginger, C., and Casal, T.: Towards mapping total currents and winds during the BioSWOT-Med campaign with the OSCAR airborne instrument, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16040, https://doi.org/10.5194/egusphere-egu24-16040, 2024.
Mason, E., Pascual, A., and McWilliams, J. C.: A New Sea Surface Height–Based Code for Oceanic Mesoscale Eddy Tracking, J. Atmos. Ocean. Tech., 31, 1181–1188, https://doi.org/10.1175/JTECH-D-14-00019.1, 2014.
Mcwilliams, J. C.: The vortices of two-dimensional turbulence, J. Fluid Mech., 219, 361–385, https://doi.org/10.1017/S0022112090002981, 1990.
Mkhinini, N., Coimbra, A. L. S., Stegner, A., Arsouze, T., Taupier-Letage, I., and Béranger, K.: Long-lived mesoscale eddies in the eastern Mediterranean Sea: Analysis of 20 years of AVISO geostrophic velocities, J. Geophys. Res.-Oceans, 119, 8603–8626, https://doi.org/10.1002/2014JC010176, 2014.
Morrow, R., Fu, L.-L., Ardhuin, F., Benkiran, M., Chapron, B., Cosme, E., d'Ovidio, F., Farrar, J. T., Gille, S. T., Lapeyre, G., Le Traon, P.-Y., Pascual, A., Ponte, A., Qiu, B., Rascle, N., Ubelmann, C., Wang, J., and Zaron, E. D.: Global Observations of Fine-Scale Ocean Surface Topography With the Surface Water and Ocean Topography (SWOT) Mission, Front. Mar. Sci., 6, 232, https://doi.org/10.3389/fmars.2019.00232, 2019.
Ni, Q., Zhai, X., Wilson, C., Chen, C., and Chen, D.: Submesoscale Eddies in the South China Sea, Geophys. Res. Lett., 48, e2020GL091555, https://doi.org/10.1029/2020GL091555, 2021.
Ohlmann, J. C., Molemaker, M. J., Baschek, B., Holt, B., Marmorino, G., and Smith, G.: Drifter observations of submesoscale flow kinematics in the coastal ocean, Geophys. Res. Lett., 44, 330–337, https://doi.org/10.1002/2016GL071537, 2017.
Okubo, A.: Horizontal dispersion of floatable particles in the vicinity of velocity singularities such as convergences, Deep Sea Research and Oceanographic Abstracts, 445–454, https://doi.org/10.1016/0011-7471(70)90059-8, 1970.
Pascual, A., Pujol, M.-I., Larnicol, G., Le Traon, P.-Y., and Rio, M.-H.: Mesoscale mapping capabilities of multisatellite altimeter missions: First results with real data in the Mediterranean Sea, J. Marine Syst., 65, 190–211, https://doi.org/10.1016/j.jmarsys.2004.12.004, 2007.
Pujol, M.-I., Faugère, Y., Taburet, G., Dupuy, S., Pelloquin, C., Ablain, M., and Picot, N.: DUACS DT2014: the new multi-mission altimeter data set reprocessed over 20 years, Ocean Sci., 12, 1067–1090, https://doi.org/10.5194/os-12-1067-2016, 2016.
Sadarjoen, I. A. and Post, F. H. P.: Detection, quantification, and tracking of vortices using streamline geometry, Computers and Graphics, 24, 333–341, https://doi.org/10.1016/S0097-8493(00)00029-7, 2000.
Su, D., Lin, P., Mao, H., Wu, J., Liu, H., Cui, Y., and Qiu, C.: Features of Slope Intrusion Mesoscale Eddies in the Northern South China Sea, J. Geophys. Res.-Oceans, 125, e2019JC015349, https://doi.org/10.1029/2019JC015349, 2020.
Taburet, G., Sanchez-Roman, A., Ballarotta, M., Pujol, M.-I., Legeais, J.-F., Fournier, F., Faugere, Y., and Dibarboure, G.: DUACS DT2018: 25 years of reprocessed sea level altimetry products, Ocean Sci., 15, 1207–1224, https://doi.org/10.5194/os-15-1207-2019, 2019.
Ubelmann, C., Le Guillou, F., Ballarotta, M., Cosme, E., Metref, S., and Rio, M.-H.: Dynamical mapping of SWOT: performances from real observations, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10460, https://doi.org/10.5194/egusphere-egu24-10460, 2024.
Verger-Miralles, E., Mourre, B., Barceló-Llull, B., Gómez-Navarro, L., R. Tarry, D., Zarokanellos, N., and Pascual, A.: Analysis of fine-scale dynamics in the Balearic Sea through high-resolution observations and SWOT satellite data, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17643, https://doi.org/10.5194/egusphere-egu24-17643, 2024.
Wang, J. and Fu, L.-L.: On the Long-Wavelength Validation of the SWOT KaRIn Measurement, J. Atmos. Ocean. Tech., 36, 843–848, https://doi.org/10.1175/JTECH-D-18-0148.1, 2019.
Wang, Y., Chen, X., Han, G., Jin, P., and Yang, J.: From ° to °: Influence of Spatial Resolution on Eddy Detection Using Altimeter Data, Remote Sensing, 14, 149, https://doi.org/10.3390/rs14010149, 2021.
Weiss, J.: The dynamics of enstrophy transfer in 2-dimensional hydrodynamics, Physica D, 273–294, https://doi.org/10.1016/0167-2789(91)90088-Q, 1991.
Wunsch, C. and Heimbach, P.: Dynamically and Kinematically Consistent Global Ocean Circulation and Ice State Estimates, in: International Geophysics, vol. 103, Elsevier, 553–579, https://doi.org/10.1016/B978-0-12-391851-2.00021-0, 2013.
Yu, X., Ponte, A. L., Elipot, S., Menemenlis, D., Zaron, E. D., and Abernathey, R.: Surface Kinetic Energy Distributions in the Global Oceans From a High-Resolution Numerical Model and Surface Drifter Observations, Geophys. Res. Lett., 46, 9757–9766, https://doi.org/10.1029/2019GL083074, 2019.
Zhang, X.: Code for paper “Advances in surface water and ocean topography for fine-scale eddy identification from altimeter sea surface height merging maps in the South China Sea”, Zenodo [code], https://doi.org/10.5281/zenodo.13629576, 2024a.
Zhang, X.: 2DVAR Dataset for paper “Advances in surface water and ocean topography for fine-scale eddy identification from altimeter sea surface height merging maps in the South China Sea”, Zenodo [data set], https://doi.org/10.5281/zenodo.11219285, 2024b.
Zhang, G., Chen, R., Li, L., Wei, H., and Sun, S.: Global trends in surface eddy mixing from satellite altimetry, Front. Mar. Sci., 10, 1157049, https://doi.org/10.3389/fmars.2023.1157049, 2023.
Zhang, Z. and Qiu, B.: Evolution of Submesoscale Ageostrophic Motions Through the Life Cycle of Oceanic Mesoscale Eddies, Geophys. Res. Lett., 45, 11847–11855, https://doi.org/10.1029/2018GL080399, 2018.
Zhang, Z., Miao, M., Qiu, B., Tian, J., Jing, Z., Chen, G., Chen, Z., and Zhao, W.: Submesoscale Eddies Detected by SWOT and Moored Observations in the Northwestern Pacific, Geophys. Res. Lett., 51, e2024GL110000, https://doi.org/10.1029/2024GL110000, 2024.
Zu, T., Xue, H., Wang, D., Geng, B., Zeng, L., Liu, Q., Chen, J., and He, Y.: Interannual variation of the South China Sea circulation during winter: intensified in the southern basin, Clim. Dynam., 52, 1917–1933, https://doi.org/10.1007/s00382-018-4230-3, 2019.
Short summary
Our research evaluated the precision of mapping the ocean's surface with combined data from a couple of satellites, focusing on dynamic aspects revealed by sea level changes. The results show that 2DVAR (two-dimensional variation), a new mapping product, aligns more closely and with less error with the most advanced satellite observations than a widely used mapping product called AVISO (Archiving, Validation, and Interpretation of Satellite Oceanographic). The results suggest that 2DVAR detects minor ocean movements better, making it more valuable and reliable for ocean dynamic study.
Our research evaluated the precision of mapping the ocean's surface with combined data from a...