Bascompte, J., Melián, C. J., and Sala, E.: Interaction Strength Combinations and the Overfishing of a Marine Food Web, P. Natl. Acad. Sci. USA, 102, 5443–5447,
https://doi.org/10.1073/pnas.0501562102, 2005.
a
Berlow, E. L., Neutel, A.-M., Cohen, J. E., De Ruiter, P. C., Ebenman, B., Emmerson, M., Fox, J. W., Jansen, V. A. A., Iwan Jones, J., Kokkoris, G. D., Logofet, D. O., McKane, A. J., Montoya, J. M., and Petchey, O.: Interaction Strengths in Food Webs: Issues and Opportunities, J. Anim. Ecol., 73, 585–598,
https://doi.org/10.1111/j.0021-8790.2004.00833.x, 2004.
a
Brose, U., Jonsson, T., Berlow, E. L., Warren, P., Banasek-Richter, C., Bersier, L.-F., Blanchard, J. L., Brey, T., Carpenter, S. R., Blandenier, M.-F. C., Cushing, L., Dawah, H. A., Dell, T., Edwards, F., Harper-Smith, S., Jacob, U., Ledger, M. E., Martinez, N. D., Memmott, J., Mintenbeck, K., Pinnegar, J. K., Rall, B. C., Rayner, T. S., Reuman, D. C., Ruess, L., Ulrich, W., Williams, R. J., Woodward, G., and Cohen, J. E.: Consumer–Resource Body-Size Relationships in Natural Food Webs, Ecology, 87, 2411–2417,
https://doi.org/10.1890/0012-9658(2006)87[2411:CBRINF]2.0.CO;2, 2006.
a,
b
Brose, U., Archambault, P., Barnes, A. D., Bersier, L.-F., Boy, T., Canning-Clode, J., Conti, E., Dias, M., Digel, C., Dissanayake, A., Flores, A. A. V., Fussmann, K., Gauzens, B., Gray, C., Häussler, J., Hirt, M. R., Jacob, U., Jochum, M., Kéfi, S., McLaughlin, O., MacPherson, M. M., Latz, E., Layer-Dobra, K., Legagneux, P., Li, Y., Madeira, C., Martinez, N. D., Mendonça, V., Mulder, C., Navarrete, S. A., O'Gorman, E. J., Ott, D., Paula, J., Perkins, D., Piechnik, D., Pokrovsky, I., Raffaelli, D., Rall, B. C., Rosenbaum, B., Ryser, R., Silva, A., Sohlström, E. H., Sokolova, N., Thompson, M. S. A., Thompson, R. M., Vermandele, F., Vinagre, C., Wang, S., Wefer, J. M., Williams, R. J., Wieters, E., Woodward, G., and Iles, A. C.: Predator Traits Determine Food-Web Architecture across Ecosystems, Nat. Ecol. Evol.,
https://doi.org/10.1038/s41559-019-0899-x, 2019.
a,
b
Burnham, K. P. and Anderson, D. R.: Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach, Springer, New YorkBurnham KP, Anderson DR, Huyvaert KP
(2011) AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons, Behav. Ecol. Sociobiol., 65, 23–35, 2002. a
Carrara, F., Giometto, A., Seymour, M., Rinaldo, A., and Altermatt, F.: Inferring Species Interactions in Ecological Communities: A Comparison of Methods at Different Levels of Complexity, Meth. Ecol. Evol., 6, 895–906,
https://doi.org/10.1111/2041-210X.12363, 2015.
a,
b
Chang, C.-W., Miki, T., Ushio, M., Ke, P.-J., Lu, H.-P., Shiah, F.-K., and Hsieh, C.-H.: Reconstructing Large Interaction Networks from Empirical Time Series Data, Ecol. Lett., 24, 2763–2774,
https://doi.org/10.1111/ele.13897, 2021.
a
Cirtwill, A. R., Dalla Riva, G. V., Gaiarsa, M. P., Bimler, M. D., Cagua, E. F., Coux, C., and Dehling, D. M.: A Review of Species Role Concepts in Food Webs, Food Webs, 16, e00093,
https://doi.org/10.1016/j.fooweb.2018.e00093, 2018.
a,
b,
c
Constable, A. J., Melbourne-Thomas, J., Corney, S. P., Arrigo, K. R., Barbraud, C., Barnes, D. K. A., Bindoff, N. L., Boyd, P. W., Brandt, A., Costa, D. P., Davidson, A. T., Ducklow, H. W., Emmerson, L., Fukuchi, M., Gutt, J., Hindell, M. A., Hofmann, E. E., Hosie, G. W., Iida, T., Jacob, S., Johnston, N. M., Kawaguchi, S., Kokubun, N., Koubbi, P., Lea, M.-A., Makhado, A., Massom, R. A., Meiners, K., Meredith, M. P., Murphy, E. J., Nicol, S., Reid, K., Richerson, K., Riddle, M. J., Rintoul, S. R., Smith, W. O., Southwell, C., Stark, J. S., Sumner, M., Swadling, K. M., Takahashi, K. T., Trathan, P. N., Welsford, D. C., Weimerskirch, H., Westwood, K. J., Wienecke, B. C., Wolf-Gladrow, D., Wright, S. W., Xavier, J. C., and Ziegler, P.: Climate Change and Southern Ocean Ecosystems I: How Changes in Physical Habitats Directly Affect Marine Biota, Glob. Change Biol., 20, 3004–3025,
https://doi.org/10.1111/gcb.12623, 2014.
a
Cordone, G., Salinas, V., Marina, T. I., Doyle, S. R., Pasotti, F., Saravia, L. A., and Momo, F. R.: Green vs Brown Food Web: Effects of Habitat Type on Multidimensional Stability Proxies for a Highly-Resolved Antarctic Food Web, Food Webs, 25, e00166,
https://doi.org/10.1016/j.fooweb.2020.e00166, 2020.
a
Csárdi, G., Nepusz, T., Traag, V., Horvát, S., Zanini, F., Noom, D., Müller, K.: igraph: Network Analysis and Visualization in R, Zenodo [data set],
https://doi.org/10.5281/zenodo.7682609, 2023 (R package version 1.6.0, available at:
https://CRAN.R-project.org/package=igraph, last access: 25 January 2024).
a
de Santana, C. N., Rozenfeld, A. F., Marquet, P. A., and Duarte, C. M.: Topological Properties of Polar Food Webs, Mar. Ecol.-Prog. Ser., 474, 15–26,
https://doi.org/10.3354/meps10073, 2013.
a
de Steur, L., Gutt, J., and Moreau, S.: Report from the Workshop on the Development of the Weddell Sea – Dronning Maud Land Regional Working Group SOOS, Zenodo,
https://doi.org/10.5281/zenodo.3941419, 2019.
a
Dunne, J. A., Williams, R. J., and Martinez, N. D.: Food-Web Structure and Network Theory: The Role of Connectance and Size, P. Natl. Acad. Sci. USA, 99, 12917–12922,
https://doi.org/10.1073/pnas.192407699, 2002a.
a
Dunne, J. A., Williams, R. J., and Martinez, N. D.: Network Structure and Biodiversity Loss in Food Webs: Robustness Increases with Connectance, Ecol. Lett., 5, 558–567,
https://doi.org/10.1046/j.1461-0248.2002.00354.x, 2002b.
a,
b
Emmerson, M. C. and Raffaelli, D.: Predator–Prey Body Size, Interaction Strength and the Stability of a Real Food Web, J. Anim. Ecol., 73, 399–409,
https://doi.org/10.1111/j.0021-8790.2004.00818.x, 2004.
a,
b,
c
Fahrbach, E., Beszczynska-Möller, A., and Rohardt, G.: Polar Oceans – an Oceanographic Overview, in: Biological Studies in Polar Oceans – Exploration of Life in Icy Waters, edited by: Hempel, G. and Hempel, H., 17–36, Wirtschaftsverlag NW, Bremerhaven, ISBN 978-3-86509-865-8, 2009. a
Gauzens, B., Barnes, A., Giling, D. P., Hines, J., Jochum, M., Lefcheck, J. S., Rosenbaum, B., Wang, S., and Brose, U.: Fluxweb: An R Package to Easily Estimate Energy Fluxes in Food Webs, Meth. Ecol. Evol., 10, 270–279,
https://doi.org/10.1111/2041-210X.13109, 2019.
a,
b
Gellner, G., McCann, K., and Hastings, A.: Stable Diverse Food Webs Become More Common When Interactions Are More Biologically Constrained, P. Natl. Acad. Sci. USA, 120, e2212061120,
https://doi.org/10.1073/pnas.2212061120, 2023.
a
Griffiths, H. J., Meijers, A. J. S., and Bracegirdle, T. J.: More Losers than Winners in a Century of Future Southern Ocean Seafloor Warming, Nat. Clim. Change, 7, 749–754,
https://doi.org/10.1038/nclimate3377, 2017.
a
Gross, T., Rudolf, L., Levin, S. A., and Dieckmann, U.: Generalized Models Reveal Stabilizing Factors in Food Webs, Science, 325, 747–750,
https://doi.org/10.1126/science.1173536, 2009.
a
Gutt, J., Isla, E., Xavier, J. C., Adams, B. J., Ahn, I.-Y., Cheng, C.-H. C., Colesie, C., Cummings, V. J., di Prisco, G., Griffiths, H., Hawes, I., Hogg, I., McIntyre, T., Meiners, K. M., Pearce, D. A., Peck, L., Piepenburg, D., Reisinger, R. R., Saba, G. K., Schloss, I. R., Signori, C. N., Smith, C. R., Vacchi, M., Verde, C., and Wall, D. H.: Antarctic Ecosystems in Transition – Life between Stresses and Opportunities, Biol. Rev., 96, 798–821,
https://doi.org/10.1111/brv.12679, 2021.
a
Houstin, A., Zitterbart, D. P., Heerah, K., Eisen, O., Planas-Bielsa, V., Fabry, B., and Le Bohec, C.: Juvenile Emperor Penguin Range Calls for Extended Conservation Measures in the Southern Ocean, Roy. Soc. Open Sci., 9, 211708,
https://doi.org/10.1098/rsos.211708, 2022.
a
Hudson, L. N., Emerson, R., Jenkins, G. B., Layer, K., Ledger, M. E., Pichler, D. E., Thompson, M. S. A., O'Gorman, E. J., Woodward, G., and Reuman, D. C.: Cheddar: Analysis and Visualisation of Ecological Communities in R, Meth. Ecol. Evol., 4, 99–104,
https://doi.org/10.1111/2041-210X.12005, 2013.
a
Jacob, U.: Trophic Dynamics of Antarctic Shelf Ecosystems-Food Webs and Energy Flow Budgets, PhD thesis, Universität Bremen,
https://media.suub.uni-bremen.de/handle/elib/2798 (last access: 25 January 2024), 2005.
a,
b
Jacob, U., Thierry, A., Brose, U., Arntz, W. E., Berg, S., Brey, T., Fetzer, I., Jonsson, T., Mintenbeck, K., Möllmann, C., Petchey, O. L., Riede, J. O., and Dunne, J. A.: The Role of Body Size in Complex Food Webs: A Cold Case, in: Advances in Ecological Research, edited by: Belgrano, A., Academic Press,
https://doi.org/10.1016/B978-0-12-386475-8.00005-8, 2011.
a,
b,
c,
d,
e,
f
Kawaguchi, S., Nicol, S., and Press, A. J.: Direct Effects of Climate Change on the Antarctic Krill Fishery, Fisheries Manag. Ecol., 16, 424–427,
https://doi.org/10.1111/j.1365-2400.2009.00686.x, 2009.
a
Kortsch, S., Primicerio, R., Fossheim, M., Dolgov, A. V., and Aschan, M.: Climate Change Alters the Structure of Arctic Marine Food Webs Due to Poleward Shifts of Boreal Generalists, P. Roy. Soc. B-Biol. Sci., 282, 20151546,
https://doi.org/10.1098/rspb.2015.1546, 2015.
a,
b,
c
Kortsch, S., Primicerio, R., Aschan, M., Lind, S., Dolgov, A. V., and Planque, B.: Food-Web Structure Varies along Environmental Gradients in a High-Latitude Marine Ecosystem, Ecography, 42, 295–308,
https://doi.org/10.1111/ecog.03443, 2019.
a,
b
Kortsch, S., Frelat, R., Pecuchet, L., Olivier, P., Putnis, I., Bonsdorff, E., Ojaveer, H., Jurgensone, I., Strāķe, S., Rubene, G., Krūze, Ē., and Nordström, M. C.: Disentangling Temporal Food Web Dynamics Facilitates Understanding of Ecosystem Functioning, J. Anim. Ecol., 90, 1205–1216,
https://doi.org/10.1111/1365-2656.13447, 2021.
a,
b,
c,
d,
e,
f
Landi, P., Minoarivelo, H. O., Brännström, Å., Hui, C., and Dieckmann, U.: Complexity and Stability of Ecological Networks: A Review of the Theory, Popul. Ecol., 60, 319–345,
https://doi.org/10.1007/s10144-018-0628-3, 2018.
a
Marina, T. I. and Saravia, L. A.: EcoComplex/WeddellSea: New insights into the Weddell Sea ecosystem applying a network approach (v1.0.0), Zenodo [code, data set],
https://doi.org/10.5281/zenodo.10569545, 2024.
a,
b,
c
Marina, T. I., Salinas, V., Cordone, G., Campana, G., Moreira, E., Deregibus, D., Torre, L., Sahade, R., Tatián, M., Barrera Oro, E., De Troch, M., Doyle, S., Quartino, M. L., Saravia, L. A., and Momo, F. R.: The Food Web of Potter Cove (Antarctica): Complexity, Structure and Function, Estuar. Coast. Shelf S., 200, 141–151,
https://doi.org/10.1016/j.ecss.2017.10.015, 2018.
a,
b
Martinez, N. D.: Artifacts or Attributes? Effects of Resolution on the Little Rock Lake Food Web, Ecol. Monogr., 61, 367–392,
https://doi.org/10.2307/2937047, 1991.
a,
b
McCallum, H.: Population Parameters: Estimation for Ecological Models, John Wiley & Sons, ISBN 978-0-470-75742-0, 2008. a
McCann, K., Hastings, A., and Huxel, G. R.: Weak Trophic Interactions and the Balance of Nature, Nature, 395, 794–798,
https://doi.org/10.1038/27427, 1998.
a,
b,
c,
d
McCormack, S. A., Melbourne-Thomas, J., Trebilco, R., Blanchard, J. L., and Constable, A.: Alternative Energy Pathways in Southern Ocean Food Webs: Insights from a Balanced Model of Prydz Bay, Antarctica, Deep-Sea Res. Pt. II, 174, 1–13,
https://doi.org/10.1016/j.dsr2.2019.07.001, 2020.
a
McCormack, S. A., Melbourne-Thomas, J., Trebilco, R., Griffith, G., Hill, S. L., Hoover, C., Johnston, N. M., Marina, T. I., Murphy, E. J., Pakhomov, E. A., Pinkerton, M., Plagányi, É., Saravia, L. A., Subramaniam, R. C., Van de Putte, A. P., and Constable, A. J.: Southern Ocean Food Web Modelling: Progress, Prognoses, and Future Priorities for Research and Policy Makers, Front. Ecol. Evol., 9, 626,
https://doi.org/10.3389/fevo.2021.624763, 2021.
a
McMeans, B. C., McCann, K. S., Humphries, M., Rooney, N., and Fisk, A. T.: Food Web Structure in Temporally-Forced Ecosystems, Trend. Ecol. Evol., 30, 662–672,
https://doi.org/10.1016/j.tree.2015.09.001, 2015.
a
Montoya, J. M., Woodward, G., Emmerson, M. C., and Solé, R. V.: Press Perturbations and Indirect Effects in Real Food Webs, Ecology, 90, 2426–2433,
https://doi.org/10.1890/08-0657.1, 2009.
a
Murphy, E. J., Cavanagh, R. D., Drinkwater, K. F., Grant, S. M., Heymans, J. J., Hofmann, E. E., Hunt, G. L., and Johnston, N. M.: Understanding the Structure and Functioning of Polar Pelagic Ecosystems to Predict the Impacts of Change, P. Roy. Soc. B, 283, 20161646,
https://doi.org/10.1098/rspb.2016.1646, 2016.
a,
b
Neutel, A.-M. and Thorne, M. A. S.: Interaction Strengths in Balanced Carbon Cycles and the Absence of a Relation between Ecosystem Complexity and Stability, Ecol. Lett., 17, 651–661,
https://doi.org/10.1111/ele.12266, 2014.
a
Neutel, A.-M., Heesterbeek, J. A. P., and de Ruiter, P. C.: Stability in Real Food Webs: Weak Links in Long Loops, Science, 296, 1120–1123,
https://doi.org/10.1126/science.1068326, 2002.
a,
b
Novak, M., Wootton, J. T., Doak, D. F., Emmerson, M., Estes, J. A., and Tinker, M. T.: Predicting Community Responses to Perturbations in the Face of Imperfect Knowledge and Network Complexity, Ecology, 92, 836–846,
https://doi.org/10.1890/10-1354.1, 2011.
a
Novotny, A., Serandour, B., Kortsch, S., Gauzens, B., Jan, K. M. G., and Winder, M.: DNA Metabarcoding Highlights Cyanobacteria as the Main Source of Primary Production in a Pelagic Food Web Model, Sci. Adv., 9, eadg1096,
https://doi.org/10.1126/sciadv.adg1096, 2023.
a
Paine, R. T.: Food-Web Analysis through Field Measurement of per Capita Interaction Strength, Nature, 355, 73–75, 1992.
a,
b
Pascual, M., Dunne, J. A., and Dunne, J. A.: Ecological Networks: Linking Structure to Dynamics in Food Webs, edited by: Pascual, M. and Dunne, J. A., Oxford University Press, USA, ISBN 978-0-19-518816-5, 2006. a
Pawar, S., Dell, A. I., and Savage, V. M.: Dimensionality of Consumer Search Space Drives Trophic Interaction Strengths, Nature, 486, 485–489,
https://doi.org/10.1038/nature11131, 2012.
a,
b,
c,
d,
e,
f,
g,
h,
i,
j
Pecuchet, L., Jørgensen, L. L., Dolgov, A. V., Eriksen, E., Husson, B., Skern-Mauritzen, M., and Primicerio, R.: Spatio-Temporal Turnover and Drivers of Bentho-Demersal Community and Food Web Structure in a High-Latitude Marine Ecosystem, Divers. Distrib., 28, 2503–2520,
https://doi.org/10.1111/ddi.13580, 2022.
a,
b,
c,
d
Perkins, D. M., Hatton, I. A., Gauzens, B., Barnes, A. D., Ott, D., Rosenbaum, B., Vinagre, C., and Brose, U.: Consistent Predator-Prey Biomass Scaling in Complex Food Webs, Nat. Commun., 13, 4990,
https://doi.org/10.1038/s41467-022-32578-5, 2022.
a
Pinkerton, M. H. and Bradford-Grieve, J. M.: Characterizing Foodweb Structure to Identify Potential Ecosystem Effects of Fishing in the Ross Sea, Antarctica, ICES J. Mar. Sci., 71, 1542–1553,
https://doi.org/10.1093/icesjms/fst230, 2014.
a
Riccialdelli, L., Becker, Y. A., Fioramonti, N. E., Torres, M., Bruno, D. O., Rey, A. R., and Fernández, D. A.: Trophic Structure of Southern Marine Ecosystems: A Comparative Isotopic Analysis from the Beagle Channel to the Oceanic Burdwood Bank Area under a Wasp-Waist Assumption, Mar. Ecol.-Prog. Ser., 655, 1–27,
https://doi.org/10.3354/meps13524, 2020.
a
Rodriguez, I. D., Marina, T. I., Schloss, I. R., and Saravia, L. A.: Marine Food Webs Are More Complex but Less Stable in Sub-Antarctic (Beagle Channel, Argentina) than in Antarctic (Potter Cove, Antarctic Peninsula) Regions, Mar. Environ. Res., 174, 105561,
https://doi.org/10.1016/j.marenvres.2022.105561, 2022.
a,
b
Rossi, L., Sporta Caputi, S., Calizza, E., Careddu, G., Oliverio, M., Schiaparelli, S., and Costantini, M. L.: Antarctic Food Web Architecture under Varying Dynamics of Sea Ice Cover, Sci. Rep., 9, 12454,
https://doi.org/10.1038/s41598-019-48245-7, 2019.
a,
b,
c
Saravia, L. A., Marina, T. I., Kristensen, N. P., De Troch, M., and Momo, F. R.: Ecological Network Assembly: How the Regional Metaweb Influences Local Food Webs, J. Anim. Ecol., 91, 630–642,
https://doi.org/10.1111/1365-2656.13652, 2022.
a
Teixidó, N., Garrabou, J., and Arntz, W.: Spatial Pattern Quantification of Antarctic Benthic Communities Using Landscape Indices, Mar. Ecol.-Prog. Ser., 242, 1–14,
https://doi.org/10.3354/meps242001, 2002.
a
Teschke, K., Brtnik, P., Hain, S., Herata, H., Liebschner, A., Pehlke, H., and Brey, T.: Planning Marine Protected Areas under the CCAMLR Regime – The Case of the Weddell Sea (Antarctica), Mar. Policy, 124, 104370,
https://doi.org/10.1016/j.marpol.2020.104370, 2021.
a,
b
Thompson, R. M., Brose, U., Dunne, J. A., Hall Jr., R. O., Hladyz, S., Kitching, R. L., Martinez, N. D., Rantala, H., Romanuk, T. N., Stouffer, D. B., and Tylianakis, J. M.: Food Webs: Reconciling the Structure and Function of Biodiversity, Trend. Ecol. Evol., 27, 689–697,
https://doi.org/10.1016/j.tree.2012.08.005, 2012.
a
Turner, J., Guarino, M. V., Arnatt, J., Jena, B., Marshall, G. J., Phillips, T., Bajish, C. C., Clem, K., Wang, Z., Andersson, T., Murphy, E. J., and Cavanagh, R.: Recent Decrease of Summer Sea Ice in the Weddell Sea, Antarctica, Geophys. Res. Lett., 47, e2020GL087127,
https://doi.org/10.1029/2020GL087127, 2020.
a
Wolanski, E., McLusky, D., Wilson, J. G., and Luczkovich, J. J.: Trophic Relationships of Coastal and Estuarine Ecosystems, Vol. 6, Academic Press, London, UK, ISBN 978-0-12-374711-2, 2011. a
Wootton, J. T. and Emmerson, M.: Measurement of Interaction Strength in Nature, Annu. Rev. Ecol. Evol. S., 36, 419–444, 2005.
a,
b