Articles | Volume 19, issue 3
https://doi.org/10.5194/os-19-837-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-19-837-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
High interannual surface pCO2 variability in the southern Canadian Arctic Archipelago's Kitikmeot Sea
Richard P. Sims
CORRESPONDING AUTHOR
Department of Geography, University of Calgary, Calgary, Alberta, T2N
1N4, Canada
Mohamed M. M. Ahmed
Department of Geography, University of Calgary, Calgary, Alberta, T2N
1N4, Canada
Geology Department, Beni-Suef University, 101 Salah Salem St., Bani
Sweif, 62511, Egypt
Education and Research Group, Esri Canada, Calgary, Alberta, T2P 3T7,
Canada
Brian J. Butterworth
Cooperative Institute for Research in Environmental Sciences,
University of Colorado, Boulder, Colorado, USA
NOAA Physical Sciences Laboratory, Boulder, Colorado, USA
Patrick J. Duke
School of Earth and Ocean Sciences, University of Victoria, Victoria,
British Columbia V8W 2Y2, Canada
Stephen F. Gonski
School of Marine Science and Policy, University of Delaware, Lewes,
Delaware, USA
Samantha F. Jones
Department of Geography, University of Calgary, Calgary, Alberta, T2N
1N4, Canada
Kristina A. Brown
Institute of Ocean Sciences, Fisheries and Oceans Canada, Sidney,
British Columbia V8L 5T5, Canada
Centre for Earth Observation Science, Department of Environment and
Geography, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
Christopher J. Mundy
Centre for Earth Observation Science, Department of Environment and
Geography, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
William J. Williams
Institute of Ocean Sciences, Fisheries and Oceans Canada, Sidney,
British Columbia V8L 5T5, Canada
Brent G. T. Else
Department of Geography, University of Calgary, Calgary, Alberta, T2N
1N4, Canada
Related authors
Richard P. Sims, Thomas M. Holding, Peter E. Land, Jean-Francois Piolle, Hannah L. Green, and Jamie D. Shutler
Earth Syst. Sci. Data, 15, 2499–2516, https://doi.org/10.5194/essd-15-2499-2023, https://doi.org/10.5194/essd-15-2499-2023, 2023
Short summary
Short summary
The flow of carbon between the land and ocean is poorly quantified with existing measurements. It is not clear how seasonality and long-term variability impact this flow of carbon. Here, we demonstrate how satellite observations can be used to create decadal time series of the inorganic carbonate system in the Amazon and Congo River outflows.
Peter Edward Land, Helen S. Findlay, Jamie D. Shutler, Jean-Francois Piolle, Richard Sims, Hannah Green, Vassilis Kitidis, Alexander Polukhin, and Irina I. Pipko
Earth Syst. Sci. Data, 15, 921–947, https://doi.org/10.5194/essd-15-921-2023, https://doi.org/10.5194/essd-15-921-2023, 2023
Short summary
Short summary
Measurements of the ocean’s carbonate system (e.g. CO2 and pH) have increased greatly in recent years, resulting in a need to combine these data with satellite measurements and model results, so they can be used to test predictions of how the ocean reacts to changes such as absorption of the CO2 emitted by humans. We show a method of combining data into regions of interest (100 km circles over a 10 d period) and apply it globally to produce a harmonised and easy-to-use data archive.
Brent G. T. Else, Araleigh Cranch, Richard P. Sims, Samantha Jones, Laura A. Dalman, Christopher J. Mundy, Rebecca A. Segal, Randall K. Scharien, and Tania Guha
The Cryosphere, 16, 3685–3701, https://doi.org/10.5194/tc-16-3685-2022, https://doi.org/10.5194/tc-16-3685-2022, 2022
Short summary
Short summary
Sea ice helps control how much carbon dioxide polar oceans absorb. We compared ice cores from two sites to look for differences in carbon chemistry: one site had thin ice due to strong ocean currents and thick snow; the other site had thick ice, thin snow, and weak currents. We did find some differences in small layers near the top and the bottom of the cores, but for most of the ice volume the chemistry was the same. This result will help build better models of the carbon sink in polar oceans.
Richard P. Sims, Michael Bedington, Ute Schuster, Andrew J. Watson, Vassilis Kitidis, Ricardo Torres, Helen S. Findlay, James R. Fishwick, Ian Brown, and Thomas G. Bell
Biogeosciences, 19, 1657–1674, https://doi.org/10.5194/bg-19-1657-2022, https://doi.org/10.5194/bg-19-1657-2022, 2022
Short summary
Short summary
The amount of carbon dioxide (CO2) being absorbed by the ocean is relevant to the earth's climate. CO2 values in the coastal ocean and estuaries are not well known because of the instrumentation used. We used a new approach to measure CO2 across the coastal and estuarine zone. We found that CO2 and salinity were linked to the state of the tide. We used our CO2 measurements and model salinity to predict CO2. Previous studies overestimate how much CO2 the coastal ocean draws down at our site.
Patrick J. Duke, Roberta C. Hamme, Debby Ianson, Peter Landschützer, Mohamed M. M. Ahmed, Neil C. Swart, and Paul A. Covert
Biogeosciences, 20, 3919–3941, https://doi.org/10.5194/bg-20-3919-2023, https://doi.org/10.5194/bg-20-3919-2023, 2023
Short summary
Short summary
The ocean is both impacted by climate change and helps mitigate its effects through taking up carbon from the atmosphere. We used a machine learning approach to investigate what controls open-ocean carbon uptake in the northeast Pacific open ocean. Marine heatwaves that lasted 2–3 years increased uptake, while the upwelling strength of the Alaskan Gyre controlled uptake over 10-year time periods. The trend from 1998–2019 suggests carbon uptake in the northeast Pacific open ocean is increasing.
Richard P. Sims, Thomas M. Holding, Peter E. Land, Jean-Francois Piolle, Hannah L. Green, and Jamie D. Shutler
Earth Syst. Sci. Data, 15, 2499–2516, https://doi.org/10.5194/essd-15-2499-2023, https://doi.org/10.5194/essd-15-2499-2023, 2023
Short summary
Short summary
The flow of carbon between the land and ocean is poorly quantified with existing measurements. It is not clear how seasonality and long-term variability impact this flow of carbon. Here, we demonstrate how satellite observations can be used to create decadal time series of the inorganic carbonate system in the Amazon and Congo River outflows.
Peter Edward Land, Helen S. Findlay, Jamie D. Shutler, Jean-Francois Piolle, Richard Sims, Hannah Green, Vassilis Kitidis, Alexander Polukhin, and Irina I. Pipko
Earth Syst. Sci. Data, 15, 921–947, https://doi.org/10.5194/essd-15-921-2023, https://doi.org/10.5194/essd-15-921-2023, 2023
Short summary
Short summary
Measurements of the ocean’s carbonate system (e.g. CO2 and pH) have increased greatly in recent years, resulting in a need to combine these data with satellite measurements and model results, so they can be used to test predictions of how the ocean reacts to changes such as absorption of the CO2 emitted by humans. We show a method of combining data into regions of interest (100 km circles over a 10 d period) and apply it globally to produce a harmonised and easy-to-use data archive.
Flavienne Bruyant, Rémi Amiraux, Marie-Pier Amyot, Philippe Archambault, Lise Artigue, Lucas Barbedo de Freitas, Guislain Bécu, Simon Bélanger, Pascaline Bourgain, Annick Bricaud, Etienne Brouard, Camille Brunet, Tonya Burgers, Danielle Caleb, Katrine Chalut, Hervé Claustre, Véronique Cornet-Barthaux, Pierre Coupel, Marine Cusa, Fanny Cusset, Laeticia Dadaglio, Marty Davelaar, Gabrièle Deslongchamps, Céline Dimier, Julie Dinasquet, Dany Dumont, Brent Else, Igor Eulaers, Joannie Ferland, Gabrielle Filteau, Marie-Hélène Forget, Jérome Fort, Louis Fortier, Martí Galí, Morgane Gallinari, Svend-Erik Garbus, Nicole Garcia, Catherine Gérikas Ribeiro, Colline Gombault, Priscilla Gourvil, Clémence Goyens, Cindy Grant, Pierre-Luc Grondin, Pascal Guillot, Sandrine Hillion, Rachel Hussherr, Fabien Joux, Hannah Joy-Warren, Gabriel Joyal, David Kieber, Augustin Lafond, José Lagunas, Patrick Lajeunesse, Catherine Lalande, Jade Larivière, Florence Le Gall, Karine Leblanc, Mathieu Leblanc, Justine Legras, Keith Lévesque, Kate-M. Lewis, Edouard Leymarie, Aude Leynaert, Thomas Linkowski, Martine Lizotte, Adriana Lopes dos Santos, Claudie Marec, Dominique Marie, Guillaume Massé, Philippe Massicotte, Atsushi Matsuoka, Lisa A. Miller, Sharif Mirshak, Nathalie Morata, Brivaela Moriceau, Philippe-Israël Morin, Simon Morisset, Anders Mosbech, Alfonso Mucci, Gabrielle Nadaï, Christian Nozais, Ingrid Obernosterer, Thimoté Paire, Christos Panagiotopoulos, Marie Parenteau, Noémie Pelletier, Marc Picheral, Bernard Quéguiner, Patrick Raimbault, Joséphine Ras, Eric Rehm, Llúcia Ribot Lacosta, Jean-François Rontani, Blanche Saint-Béat, Julie Sansoulet, Noé Sardet, Catherine Schmechtig, Antoine Sciandra, Richard Sempéré, Caroline Sévigny, Jordan Toullec, Margot Tragin, Jean-Éric Tremblay, Annie-Pier Trottier, Daniel Vaulot, Anda Vladoiu, Lei Xue, Gustavo Yunda-Guarin, and Marcel Babin
Earth Syst. Sci. Data, 14, 4607–4642, https://doi.org/10.5194/essd-14-4607-2022, https://doi.org/10.5194/essd-14-4607-2022, 2022
Short summary
Short summary
This paper presents a dataset acquired during a research cruise held in Baffin Bay in 2016. We observed that the disappearance of sea ice in the Arctic Ocean increases both the length and spatial extent of the phytoplankton growth season. In the future, this will impact the food webs on which the local populations depend for their food supply and fisheries. This dataset will provide insight into quantifying these impacts and help the decision-making process for policymakers.
Brent G. T. Else, Araleigh Cranch, Richard P. Sims, Samantha Jones, Laura A. Dalman, Christopher J. Mundy, Rebecca A. Segal, Randall K. Scharien, and Tania Guha
The Cryosphere, 16, 3685–3701, https://doi.org/10.5194/tc-16-3685-2022, https://doi.org/10.5194/tc-16-3685-2022, 2022
Short summary
Short summary
Sea ice helps control how much carbon dioxide polar oceans absorb. We compared ice cores from two sites to look for differences in carbon chemistry: one site had thin ice due to strong ocean currents and thick snow; the other site had thick ice, thin snow, and weak currents. We did find some differences in small layers near the top and the bottom of the cores, but for most of the ice volume the chemistry was the same. This result will help build better models of the carbon sink in polar oceans.
Richard P. Sims, Michael Bedington, Ute Schuster, Andrew J. Watson, Vassilis Kitidis, Ricardo Torres, Helen S. Findlay, James R. Fishwick, Ian Brown, and Thomas G. Bell
Biogeosciences, 19, 1657–1674, https://doi.org/10.5194/bg-19-1657-2022, https://doi.org/10.5194/bg-19-1657-2022, 2022
Short summary
Short summary
The amount of carbon dioxide (CO2) being absorbed by the ocean is relevant to the earth's climate. CO2 values in the coastal ocean and estuaries are not well known because of the instrumentation used. We used a new approach to measure CO2 across the coastal and estuarine zone. We found that CO2 and salinity were linked to the state of the tide. We used our CO2 measurements and model salinity to predict CO2. Previous studies overestimate how much CO2 the coastal ocean draws down at our site.
Charel Wohl, Anna E. Jones, William T. Sturges, Philip D. Nightingale, Brent Else, Brian J. Butterworth, and Mingxi Yang
Biogeosciences, 19, 1021–1045, https://doi.org/10.5194/bg-19-1021-2022, https://doi.org/10.5194/bg-19-1021-2022, 2022
Short summary
Short summary
We measured concentrations of five different organic gases in seawater in the high Arctic during summer. We found higher concentrations near the surface of the water column (top 5–10 m) and in areas of partial ice cover. This suggests that sea ice influences the concentrations of these gases. These gases indirectly exert a slight cooling effect on the climate, and it is therefore important to measure the levels accurately for future climate predictions.
Stefan Metzger, David Durden, Sreenath Paleri, Matthias Sühring, Brian J. Butterworth, Christopher Florian, Matthias Mauder, David M. Plummer, Luise Wanner, Ke Xu, and Ankur R. Desai
Atmos. Meas. Tech., 14, 6929–6954, https://doi.org/10.5194/amt-14-6929-2021, https://doi.org/10.5194/amt-14-6929-2021, 2021
Short summary
Short summary
The key points are the following. (i) Integrative observing system design can multiply the information gain of surface–atmosphere field measurements. (ii) Catalyzing numerical simulations and first-principles machine learning open up observing system simulation experiments to novel applications. (iii) Use cases include natural climate solutions, emission inventory validation, urban air quality, and industry leak detection.
Philippe Massicotte, Rémi Amiraux, Marie-Pier Amyot, Philippe Archambault, Mathieu Ardyna, Laurent Arnaud, Lise Artigue, Cyril Aubry, Pierre Ayotte, Guislain Bécu, Simon Bélanger, Ronald Benner, Henry C. Bittig, Annick Bricaud, Éric Brossier, Flavienne Bruyant, Laurent Chauvaud, Debra Christiansen-Stowe, Hervé Claustre, Véronique Cornet-Barthaux, Pierre Coupel, Christine Cox, Aurelie Delaforge, Thibaud Dezutter, Céline Dimier, Florent Domine, Francis Dufour, Christiane Dufresne, Dany Dumont, Jens Ehn, Brent Else, Joannie Ferland, Marie-Hélène Forget, Louis Fortier, Martí Galí, Virginie Galindo, Morgane Gallinari, Nicole Garcia, Catherine Gérikas Ribeiro, Margaux Gourdal, Priscilla Gourvil, Clemence Goyens, Pierre-Luc Grondin, Pascal Guillot, Caroline Guilmette, Marie-Noëlle Houssais, Fabien Joux, Léo Lacour, Thomas Lacour, Augustin Lafond, José Lagunas, Catherine Lalande, Julien Laliberté, Simon Lambert-Girard, Jade Larivière, Johann Lavaud, Anita LeBaron, Karine Leblanc, Florence Le Gall, Justine Legras, Mélanie Lemire, Maurice Levasseur, Edouard Leymarie, Aude Leynaert, Adriana Lopes dos Santos, Antonio Lourenço, David Mah, Claudie Marec, Dominique Marie, Nicolas Martin, Constance Marty, Sabine Marty, Guillaume Massé, Atsushi Matsuoka, Lisa Matthes, Brivaela Moriceau, Pierre-Emmanuel Muller, Christopher-John Mundy, Griet Neukermans, Laurent Oziel, Christos Panagiotopoulos, Jean-Jacques Pangrazi, Ghislain Picard, Marc Picheral, France Pinczon du Sel, Nicole Pogorzelec, Ian Probert, Bernard Quéguiner, Patrick Raimbault, Joséphine Ras, Eric Rehm, Erin Reimer, Jean-François Rontani, Søren Rysgaard, Blanche Saint-Béat, Makoto Sampei, Julie Sansoulet, Catherine Schmechtig, Sabine Schmidt, Richard Sempéré, Caroline Sévigny, Yuan Shen, Margot Tragin, Jean-Éric Tremblay, Daniel Vaulot, Gauthier Verin, Frédéric Vivier, Anda Vladoiu, Jeremy Whitehead, and Marcel Babin
Earth Syst. Sci. Data, 12, 151–176, https://doi.org/10.5194/essd-12-151-2020, https://doi.org/10.5194/essd-12-151-2020, 2020
Short summary
Short summary
The Green Edge initiative was developed to understand the processes controlling the primary productivity and the fate of organic matter produced during the Arctic spring bloom (PSB). In this article, we present an overview of an extensive and comprehensive dataset acquired during two expeditions conducted in 2015 and 2016 on landfast ice southeast of Qikiqtarjuaq Island in Baffin Bay.
Charel Wohl, David Capelle, Anna Jones, William T. Sturges, Philip D. Nightingale, Brent G. T. Else, and Mingxi Yang
Ocean Sci., 15, 925–940, https://doi.org/10.5194/os-15-925-2019, https://doi.org/10.5194/os-15-925-2019, 2019
Short summary
Short summary
In this paper we present a gas equilibrator that can be used to equilibrate gases continuously or in discrete samples from seawater into a carrier gas. The headspace is analysed by a commercially available proton-transfer-reaction mass spectrometer. This allows for the measurement of a broad range of dissolved gases up to a very high solubility in seawater. The main advantage of this equilibrator is its unique design and ease of reproducibility.
Victoria E. Irish, Sarah J. Hanna, Yu Xi, Matthew Boyer, Elena Polishchuk, Mohamed Ahmed, Jessie Chen, Jonathan P. D. Abbatt, Michel Gosselin, Rachel Chang, Lisa A. Miller, and Allan K. Bertram
Atmos. Chem. Phys., 19, 7775–7787, https://doi.org/10.5194/acp-19-7775-2019, https://doi.org/10.5194/acp-19-7775-2019, 2019
Short summary
Short summary
The ocean is a source of atmospheric ice-nucleating particles (INPs). In this study we compared INPs measured in microlayer and bulk seawater in the Canadian Arctic in 2016 to those measured in 2014. A strong negative correlation between salinity and freezing temperatures was observed, possibly due to INPs associated with melting sea ice. In addition, although spatial patterns of INPs and salinities were similar in 2014 and 2016, the concentrations of INPs were on average higher in 2016.
Brian J. Butterworth and Brent G. T. Else
Atmos. Meas. Tech., 11, 6075–6090, https://doi.org/10.5194/amt-11-6075-2018, https://doi.org/10.5194/amt-11-6075-2018, 2018
Short summary
Short summary
This study measured how quickly carbon dioxide was absorbed/released from sea ice to the air. We used a method that had never been tested over landlocked sea ice. To avoid water vapor ruining the carbon dioxide measurement, we dried the sample air before it went to the gas analyzer. This gave values that were more credible than those found by previous studies. We showed that this method will be useful for studying the processes which affect carbon dioxide exchange between sea ice and air.
Nicolas-Xavier Geilfus, Ryan J. Galley, Brent G. T. Else, Karley Campbell, Tim Papakyriakou, Odile Crabeck, Marcos Lemes, Bruno Delille, and Søren Rysgaard
The Cryosphere, 10, 2173–2189, https://doi.org/10.5194/tc-10-2173-2016, https://doi.org/10.5194/tc-10-2173-2016, 2016
Short summary
Short summary
The fate of ikaite precipitation within sea ice is poorly understood. In this study, we estimated ikaite precipitation of up to 167 µmol kg-1 within sea ice, while its export and dissolution into the underlying seawater was responsible for a TA increase of 64–66 μmol kg-1. We estimated that more than half of the total ikaite precipitated was still contained in the ice when sea ice began to melt. The dissolution of the ikaite crystals in the water column kept the seawater pCO2 undersaturated.
Odile Crabeck, Ryan Galley, Bruno Delille, Brent Else, Nicolas-Xavier Geilfus, Marcos Lemes, Mathieu Des Roches, Pierre Francus, Jean-Louis Tison, and Søren Rysgaard
The Cryosphere, 10, 1125–1145, https://doi.org/10.5194/tc-10-1125-2016, https://doi.org/10.5194/tc-10-1125-2016, 2016
Short summary
Short summary
We present a new non-destructive X-ray-computed tomography technique to quantify the air volume fraction and produce separate 3-D images of air-volume inclusions in sea ice. While the internal layers showed air-volume fractions < 2 %, the ice–air interface (top 2 cm) showed values up to 5 %. As a result of the presence of large bubbles and higher air volume fraction measurements in sea ice, we introduce new perspectives on processes regulating gas exchange at the ice–atmosphere interface.
K. E. Giesbrecht, L. A. Miller, M. Davelaar, S. Zimmermann, E. Carmack, W. K. Johnson, R. W. Macdonald, F. McLaughlin, A. Mucci, W. J. Williams, C. S. Wong, and M. Yamamoto-Kawai
Earth Syst. Sci. Data, 6, 91–104, https://doi.org/10.5194/essd-6-91-2014, https://doi.org/10.5194/essd-6-91-2014, 2014
Cited articles
Ahmed, M. and Else, B. G.: The Ocean CO2 Sink in the Canadian Arctic
Archipelago: A Present-Day Budget and Past Trends Due to Climate Change,
Geophys. Res. Lett., 46, 9777–9785,
https://doi.org/10.1029/2019GL083547, 2019.
Ahmed, M., Else, B., Burgers, T., and Papakyriakou, T.: Variability of
surface water pCO2 in the Canadian Arctic Archipelago from 2010 to 2016,
J. Geophys. Res.-Ocean., 124, 1876–1896,
https://doi.org/10.1029/2018JC014639, 2019.
Ahmed, M. M., Else, B. G., Capelle, D., Miller, L. A., and Papakyriakou, T.:
Underestimation of surface pCO2 and air-sea CO2 fluxes due to freshwater
stratification in an Arctic shelf sea, Hudson Bay, Elementa, 8, 084, https://doi.org/10.1525/elementa.084, 2020.
Ahmed, M. M., Else, B. G., Butterworth, B., Capelle, D. W., Guéguen, C.,
Miller, L. A., Meilleur, C., and Papakyriakou, T.: Widespread surface water
pCO2 undersaturation during ice-melt season in an Arctic continental shelf
sea (Hudson Bay, Canada), Elementa, 9, 00130,
https://doi.org/10.1525/elementa.2020.00130, 2021.
Arrigo, K. R., Perovich, D. K., Pickart, R. S., Brown, Z. W., Van Dijken, G.
L., Lowry, K. E., Mills, M. M., Palmer, M. A., Balch, W. M., and Bahr, F.:
Massive phytoplankton blooms under Arctic sea ice, Science, 336, 1408,
https://doi.org/10.1126/science.1215065, 2012.
Back, D.-Y., Ha, S.-Y., Else, B., Hanson, M., Jones, S. F., Shin, K.-H.,
Tatarek, A., Wiktor, J. M., Cicek, N., and Alam, S.: On the impact of
wastewater effluent on phytoplankton in the Arctic coastal zone: a case
study in the Kitikmeot Sea of the Canadian Arctic, Sci. Total
Environ., 764, 143861, https://doi.org/10.1016/j.scitotenv.2020.143861,
2021.
Bakker, D. C. E., Pfeil, B., Landa, C. S., Metzl, N., O'Brien, K. M., Olsen, A., Smith, K., Cosca, C., Harasawa, S., Jones, S. D., Nakaoka, S., Nojiri, Y., Schuster, U., Steinhoff, T., Sweeney, C., Takahashi, T., Tilbrook, B., Wada, C., Wanninkhof, R., Alin, S. R., Balestrini, C. F., Barbero, L., Bates, N. R., Bianchi, A. A., Bonou, F., Boutin, J., Bozec, Y., Burger, E. F., Cai, W.-J., Castle, R. D., Chen, L., Chierici, M., Currie, K., Evans, W., Featherstone, C., Feely, R. A., Fransson, A., Goyet, C., Greenwood, N., Gregor, L., Hankin, S., Hardman-Mountford, N. J., Harlay, J., Hauck, J., Hoppema, M., Humphreys, M. P., Hunt, C. W., Huss, B., Ibánhez, J. S. P., Johannessen, T., Keeling, R., Kitidis, V., Körtzinger, A., Kozyr, A., Krasakopoulou, E., Kuwata, A., Landschützer, P., Lauvset, S. K., Lefèvre, N., Lo Monaco, C., Manke, A., Mathis, J. T., Merlivat, L., Millero, F. J., Monteiro, P. M. S., Munro, D. R., Murata, A., Newberger, T., Omar, A. M., Ono, T., Paterson, K., Pearce, D., Pierrot, D., Robbins, L. L., Saito, S., Salisbury, J., Schlitzer, R., Schneider, B., Schweitzer, R., Sieger, R., Skjelvan, I., Sullivan, K. F., Sutherland, S. C., Sutton, A. J., Tadokoro, K., Telszewski, M., Tuma, M., van Heuven, S. M. A. C., Vandemark, D., Ward, B., Watson, A. J., and Xu, S.: A multi-decade record of high-quality fCO2 data in version 3 of the Surface Ocean CO2 Atlas (SOCAT), Earth Syst. Sci. Data, 8, 383–413, https://doi.org/10.5194/essd-8-383-2016, 2016.
Bates, N. and Mathis, J.: The Arctic Ocean marine carbon cycle: evaluation
of air-sea CO2 exchanges, ocean acidification impacts and potential
feedbacks, Biogeosciences, 6, 2433–2459,
https://doi.org/10.5194/bg-6-2433-2009, 2009.
Brown, K. A., Williams, W. J., Carmack, E. C., Fiske, G., François, R.,
McLennan, D., and Peucker-Ehrenbrink, B.: Geochemistry of small Canadian
Arctic Rivers with diverse geological and hydrological settings, J.
Geophys. Res.-Biogeo., 125, e2019JG005414,
https://doi.org/10.1029/2019JG005414, 2020.
Butterworth, B. J. and Else, B. G. T.: Dried, closed-path eddy covariance method for measuring carbon dioxide flux over sea ice, Atmos. Meas. Tech., 11, 6075–6090, https://doi.org/10.5194/amt-11-6075-2018, 2018.
Cai, W.-J., Chen, L., Chen, B., Gao, Z., Lee, S. H., Chen, J., Pierrot, D.,
Sullivan, K., Wang, Y., and Hu, X.: Decrease in the CO2 uptake capacity in
an ice-free Arctic Ocean basin, Science, 329, 556–559,
https://doi.org/10.1126/science.1189338, 2010.
Chierici, M., Fransson, A., Lansard, B., Miller, L. A., Mucci, A., Shadwick,
E., Thomas, H., Tremblay, J., and Papakyriakou, T. N.: Impact of
biogeochemical processes and environmental factors on the calcium carbonate
saturation state in the Circumpolar Flaw Lead in the Amundsen Gulf, Arctic
Ocean, J. Geophys. Re.-Ocean., 116, C00G09,
https://doi.org/10.1029/2011JC007184, 2011.
Cruz-García, R., Ortega, P., Guemas, V., Acosta Navarro, J. C.,
Massonnet, F., and Doblas-Reyes, F. J.: An anatomy of Arctic sea ice
forecast biases in the seasonal prediction system with EC-Earth, Clim.
Dynam., 56, 1799–1813, https://doi.org/10.1007/s00382-020-05560-4, 2021.
Dalman, L. A., Else, B. G., Barber, D., Carmack, E., Williams, W. J.,
Campbell, K., Duke, P. J., Kirillov, S., Mundy, C. J., and Tremblay,
J.-É.: Enhanced bottom-ice algal biomass across a tidal strait in the
Kitikmeot Sea of the Canadian Arctic, Elementa,
7, 22, https://doi.org/10.1525/elementa.361, 2019.
DeGrandpre, M., Evans, W., Timmermans, M. L., Krishfield, R., Williams, B.,
and Steele, M.: Changes in the Arctic Ocean carbon cycle with diminishing
ice cover, Geophys. Res. Lett., 47, e2020GL088051,
https://doi.org/10.1002/essoar.10502603.1, 2020.
Dickson, A. G. and Millero, F. J.: A comparison of the equilibrium
constants for the dissociation of carbonic acid in seawater media, Deep-Sea
Res. Pt. A, 34, 1733–1743,
https://doi.org/10.1016/0198-0149(87)90021-5, 1987.
Dickson, A. G.: Thermodynamics of the dissociation of boric acid in
synthetic seawater from 273.15 to 318.15 K, Deep-Sea Res. Pt. A, 37, 755–766,
https://doi.org/10.1016/0198-0149(90)90004-F, 1990.
Dickson, A. G., Sabine, C. L., and Christian, J. R.: Guide to best practices
for ocean CO2 measurements, North Pacific Marine Science Organization,
Sidney, British Columbia, 191, https://doi.org/10.25607/OBP-1342, 2007.
Dong, Y., Yang, M., Bakker, D. C. E., Kitidis, V., and Bell, T. G.:
Uncertainties in eddy covariance air–sea CO2 flux measurements and
implications for gas transfer velocity parameterisations, Atmos.
Chem. Phys., 21, 8089–8110,
https://doi.org/10.5194/acp-21-8089-2021, 2021a.
Dong, Y., Yang, M., Bakker, D. C. E., Liss, P. S., Kitidis, V., Brown, I.,
Chierici, M., Fransson, A., and Bell, T. G.: Near-Surface Stratification Due
to Ice Melt Biases Arctic Air-Sea CO2 Flux Estimates, Geophys. Res.
Lett., 48, e2021GL095266, https://doi.org/10.1029/2021GL095266, 2021b.
Duke, P., Else, B., Jones, S., Marriot, S., Ahmed, M., Nandan, V.,
Butterworth, B., Gonski, S., Dewey, R., and Sastri, A.: Seasonal marine
carbon system processes in an Arctic coastal landfast sea ice environment
observed with an innovative underwater sensor platform, Elementa, 9, 00103, https://doi.org/10.1525/elementa.2021.00103,
2021.
Else, B., Galley, R., Papakyriakou, T., Miller, L., Mucci, A., and Barber,
D.: Sea surface pCO2 cycles and CO2 fluxes at landfast sea ice edges in
Amundsen Gulf, Canada, J. Geophys. Res.-Ocean., 117, C09010,
https://doi.org/10.1029/2012JC007901, 2012.
Else, B. G., Whitehead, J. J., Galindo, V., Ferland, J., Mundy, C., Gonski,
S. F., Ehn, J. K., Rysgaard, S., and Babin, M.: Response of the Arctic
marine inorganic carbon system to ice algae and under-ice phytoplankton
blooms: A case study along the fast-ice edge of Baffin Bay, J.
Geophys. Res.-Ocean., 124, 1277–1293,
https://doi.org/10.1029/2018JC013899, 2019.
Else, B. G., Cranch, A., Sims, R. P., Jones, S., Dalman, L. A., Mundy, C.
J., Segal, R. A., Scharien, R. K., and Guha, T.: Variability in sea ice
carbonate chemistry: a case study comparing the importance of ikaite
precipitation, bottom-ice algae, and currents across an invisible polynya,
The Cryosphere, 16, 3685–3701, https://doi.org/10.5194/tc-16-3685-2022,
2022.
Evans, W., Pocock, K., Hare, A., Weekes, C., Hales, B., Jackson, J.,
Gurney-Smith, H., Mathis, J. T., Alin, S. R., and Feely, R. A.: Marine CO2
patterns in the northern salish sea, Front. Mar. Sci., 5, 536,
https://doi.org/10.3389/fmars.2018.00536, 2019.
Ford, J. D., Smit, B., Wandel, J., Allurut, M., Shappa, K., Ittusarjuat, H.,
and Qrunnut, K.: Climate change in the Arctic: current and future
vulnerability in two Inuit communities in Canada, Geogr. J., 174,
45–62, https://doi.org/10.1111/j.1475-4959.2007.00249.x, 2008.
Geilfus, N.-X., Galley, R., Crabeck, O., Papakyriakou, T., Landy, J., Tison,
J.-L., and Rysgaard, S.: Inorganic carbon dynamics of melt-pond-covered
first-year sea ice in the Canadian Arctic, Biogeosciences, 12, 2047–2061,
https://doi.org/10.5194/bg-12-2047-2015, 2015.
Geilfus, N.-X., Pind, M., Else, B., Galley, R., Miller, L., Thomas, H.,
Gosselin, M., Rysgaard, S., Wang, F., and Papakyriakou, T.: Spatial and
temporal variability of seawater pCO2 within the Canadian Arctic Archipelago
and Baffin Bay during the summer and autumn 2011, Cont. Shelf
Res., 156, 1–10, https://doi.org/10.1016/j.csr.2018.01.006, 2018.
Harris, L. N., Yurkowski, D. J., Gilbert, M. J., Else, B. G., Duke, P. J.,
Ahmed, M. M., Tallman, R. F., Fisk, A. T., and Moore, J.: Depth and
temperature preference of anadromous Arctic char Salvelinus alpinus in the
Kitikmeot Sea, a shallow and low-salinity area of the Canadian Arctic,
Mar. Ecol. Prog. Ser., 634, 175–197,
https://doi.org/10.3354/meps13195, 2020.
Ho, D. T. and Schanze, J. J.: Precipitation-Induced Reduction in Surface
Ocean pCO2: Observations From the Eastern Tropical Pacific Ocean,
Geophys. Res. Lett., 47, e2020GL088252,
https://doi.org/10.1029/2020GL088252, 2020.
Jakobsson, M.: Hypsometry and volume of the Arctic Ocean and its constituent
seas, Geochem. Geophy. Geosy., 3, 1–18,
https://doi.org/10.1029/2001GC000302, 2002.
JCGM: Evaluation of measurement data – Guide to the expression of
uncertainty in measurement, 134, 2008.
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L.,
Iredell, M., Saha, S., White, G., and Woollen, J.: The NCEP/NCAR 40-year
reanalysis project, Bull. Am. Meteorol. Soc., 77,
437–472, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2, 1996.
Kanamitsu, M., Ebisuzaki, W., Woollen, J., Yang, S.-K., Hnilo, J. J., Fiorino, M., and Potter, G. L.: NCEP-DOE AMIP-II Reanalysis (R-2), Bull. Am. Meteorol. Soc., 1631–1643, https://doi.org/10.1175/BAMS-83-11-1631, 2002 (data available at https://psl.noaa.gov/data/gridded/data.ncep.reanalysis2.html, last access: 25 January 2021).
Kim, K., Ha, S.-Y., Kim, B. K., Mundy, C., Gough, K. M., Pogorzelec, N. M.,
and Lee, S. H.: Carbon and nitrogen uptake rates and macromolecular
compositions of bottom-ice algae and phytoplankton at Cambridge Bay in Dease
Strait, Canada, Ann. Glaciol., 61, 106–116,
https://doi.org/10.1017/aog.2020.17, 2020.
Kljun, N., Calanca, P., Rotach, M. W., and Schmid, H. P.: A simple two-dimensional parameterisation for Flux Footprint Prediction (FFP), Geosci. Model Dev., 8, 3695–3713, https://doi.org/10.5194/gmd-8-3695-2015, 2015.
Lan, X., Dlugokencky, E. J., Mund, J. W., Crotwell, A. M., Crotwell, M. J., Moglia, E., Madronich, M., Neff, D., and Thoning, K. W.: Atmospheric Carbon Dioxide Dry Air Mole Fractions from the NOAA GML Carbon Cycle Cooperative Global Air Sampling Network (Version: 2022-07-28) [data set], https://doi.org/10.15138/wkgj-f215, 2022.
Landrum, L. and Holland, M. M.: Extremes become routine in an emerging new
Arctic, Nat. Clim. Change, 10, 1108–1115,
https://doi.org/10.1038/s41558-020-0892-z, 2020.
Landschützer, P., Laruelle, G. G., Roobaert, A., and Regnier, P.: A
uniform pCO2 climatology combining open and coastal oceans, Earth Syst.
Sci. Data, 12, 2537–2553, https://doi.org/10.5194/essd-12-2537-2020,
2020.
Lewis, E., Wallace, D., and Allison, L. J.: Program developed for CO2
system calculations, Carbon Dioxide Information Analysis Center, managed by
Lockheed Martin Energy Research Corporation for the US Department of Energy
Tennessee, https://doi.org/10.2172/639712, 1998.
Loose, B., Schlosser, P., Perovich, D., Ringelberg, D., Ho, D., Takahashi,
T., Richter-Menge, J., Reynolds, C., McGillis, W., and Tison, J.-L.: Gas
diffusion through columnar laboratory sea ice: implications for mixed-layer
ventilation of CO2 in the seasonal ice zone, Tellus B, 63, 23–39, https://doi.org/10.1111/j.1600-0889.2010.00506.x,
2011.
Macdonald, R., Anderson, L., Christensen, J., Miller, L., Semiletov, I., and
Stein, R.: The Arctic Ocean: budgets and fluxes, in: Carbon and Nutrient
Fluxes in Continental Margins: A Global Synthesis, edited by: Liu, K.,
Atkinson, , L., Q., and R., T.-M., Springer-Verlag, Berlin Heidelberg,
291–303, https://doi.org/10.1007/978-3-540-92735-8, 2010.
Manning, C. C., Preston, V. L., Jones, S. F., Michel, A. P., Nicholson, D.
P., Duke, P. J., Ahmed, M. M., Manganini, K., Else, B. G., and Tortell, P.
D.: River inflow dominates methane emissions in an Arctic coastal system,
Geophys. Res. Lett., 47, e2020GL087669,
https://doi.org/10.1029/2020GL087669, 2020.
Martin, J., Dumont, D., and Tremblay, J. É.: Contribution of subsurface
chlorophyll maxima to primary production in the coastal Beaufort Sea
(Canadian Arctic): A model assessment, J. Geophys. Res.-Ocean., 118, 5873–5886, https://doi.org/10.1002/2013JC008843, 2013.
Mehrbach, C., Culberson, C. H., Hawley, J. E., and Pytkowicx, R. M.:
Measurement of the apparent dissociation constants of carbonic acid in
seawater at atmospheric pressure, Limnol. Oceanogr., 18, 897–907,
https://doi.org/10.4319/lo.1973.18.6.0897, 1973.
Meire, L., Søgaard, D., Mortensen, J., Meysman, F., Soetaert, K., Arendt,
K., Juul-Pedersen, T., Blicher, M., and Rysgaard, S.: Glacial meltwater and
primary production are drivers of strong CO2 uptake in fjord and coastal
waters adjacent to the Greenland Ice Sheet, Biogeosciences, 12, 2347–2363,
https://doi.org/10.5194/bg-12-2347-2015, 2015.
Miller, L. A., Burgers, T. M., Burt, W. J., Granskog, M. A., and
Papakyriakou, T. N.: Air-Sea CO2 Flux Estimates in Stratified Arctic Coastal
Waters: How Wrong Can We Be?, Geophys. Res. Lett., 46, 235–243,
https://doi.org/10.1029/2018GL080099, 2018.
Mundy, C., Gosselin, M., Ehn, J., Gratton, Y., Rossnagel, A., Barber, D. G.,
Martin, J., Tremblay, J. É., Palmer, M., and Arrigo, K. R.: Contribution
of under-ice primary production to an ice-edge upwelling phytoplankton bloom
in the Canadian Beaufort Sea, Geophys. Res. Lett., 36,
L17601,
https://doi.org/10.1029/2009GL038837, 2009.
NGDC, N. G. D. C.: 2‐minute gridded global relief data (ETOPO2) v2, National Geophysical Data Center, NOAA [data set], https://doi.org/10.7289/V5J1012Q, 2006.
Nightingale, P. D., Malin, G., Law, C. S., Watson, A. J., Liss, P. S.,
Liddicoat, M. I., Boutin, J., and Upstill-Goddard, R. C.: In situ evaluation
of air-sea gas exchange parameterizations using novel conservative and
volatile tracers, Global Biogeochem. Cy., 14, 373–387,
https://doi.org/10.1029/1999GB900091, 2000.
Parmentier, F.-J. W., Christensen, T. R., Sørensen, L. L., Rysgaard, S.,
McGuire, A. D., Miller, P. A., and Walker, D. A.: The impact of lower
sea-ice extent on Arctic greenhouse-gas exchange, Nat. Clim. Change, 3,
195–202, https://doi.org/10.1038/nclimate1784, 2013.
Pawlowicz, R.: M_Map: A mapping package for MATLAB (1.4) [code], 2020.
Perrette, M., Yool, A., Quartly, G., and Popova, E. E.: Near-ubiquity of
ice-edge blooms in the Arctic, Biogeosciences, 8, 515–524,
https://doi.org/10.5194/bg-8-515-2011, 2011.
Peterson, J. T., Komhyr, W., Waterman, L., Gammon, R., Thoning, K., and
Conway, T.: Atmospheric CO2 variations at Barrow, Alaska, 1973–1982, in:
Scientific Application of Baseline Observations of Atmospheric Composition
(SABOAC), edited by: Ehhalt, D., Pearman, G., and Galbally, I., Springer,
Dordrecht, 397–416, https://doi.org/10.1007/978-94-009-3909-7_20, 1987.
Sharp, Jonathan D., Pierrot, Denis, Humphreys, Matthew P., Epitalon, Jean-Marie, Orr, James C., Lewis, Ernie R., and Wallace, Douglas W. R.: CO2SYSv3 for MATLAB (v3.0.1), Zenodo [software], https://doi.org/10.5281/zenodo.3952803, 2020.
Sims, R. P., Schuster, U., Watson, A. J., Yang, M. X., Hopkins, F. E., Stephens, J., and Bell, T. G.: A measurement system for vertical seawater profiles close to the air–sea interface, Ocean Sci., 13, 649–660, https://doi.org/10.5194/os-13-649-2017, 2017.
Sims, R. P.: Martin Bergmann pCO2 dataset 2016–2019 (1.0.0), Zenodo [data set], https://doi.org/10.5281/zenodo.7979465, 2023a.
Sims, R. P.: Richard-Sims/Sims_2023_Bergmann_pCO2: v1.0.0-Publication (v1.0.0-Publication), Zenodo [code], https://doi.org/10.5281/zenodo.7979433, 2023b.
Spreen, G., Kaleschke, L., and Heygster, G.: Sea ice remote sensing using
AMSR-E 89-GHz channels, J. Geophys. Res.-Ocean., 113,
https://doi.org/10.1029/2005JC003384, 2008 (data set is available at https://seaice.uni-bremen.de/sea-ice-concentration/amsre-amsr2/, last access: 20 June 2020).
Takahashi, T., Olafsson, J., Goddard, J. G., Chipman, D. W., and Sutherland,
S.: Seasonal variation of CO2 and nutrients in the high-latitude
surface oceans: A comparative study, Global Biogeochem. Cy., 7,
843–878, https://doi.org/10.1029/93GB02263, 1993.
Teodoru, C. R., Del Giorgio, P. A., Prairie, Y. T., and Camire, M.: Patterns
in pCO2 in boreal streams and rivers of northern Quebec, Canada, Global
Biogeochem. Cy., 23, GB2012, https://doi.org/10.1029/2008GB003404, 2009.
Thoning, K. W., Crotwell, A. M., and Mund, a. J. W.: Atmospheric Carbon Dioxide Dry Air Mole Fractions from continuous measurements at Mauna Loa, Hawaii, Barrow, Alaska, American Samoa and South Pole, (Version 2020-08) [data set], https://doi.org/10.15138/yaf1-bk21, 2020.
Van Heuven, S., Pierrot, D., Rae, J., Lewis, E., and Wallace, D.: MATLAB
Program Developed for CO2 System Calculations, ORNL/CDIAC-105b, Carbon
Dioxide Information Analysis Center, Oak Ridge National Laboratory, US
Department of Energy, Oak Ridge, Tennessee [code], https://cdiac.ess-dive.lbl.gov/ftp/co2sys/CO2SYS_calc_MATLAB_v1.1/ (last access: 28 July 2016), 2011.
Wang, Q., Myers, P. G., Hu, X., and Bush, A. B.: Flow constraints on
pathways through the Canadian Arctic Archipelago, Atmos.-Ocean., 50,
373–385, https://doi.org/10.1080/07055900.2012.704348, 2012.
Wanninkhof, R.: Relationship between wind speed and gas exchange over the
ocean revisited, Limnol. Oceanogr.-Method., 12, 351–362,
https://doi.org/10.4319/lom.2014.12.351, 2014.
Weiss, R. F.: Carbon dioxide in water and seawater: the solubility of a
non-ideal gas, Mar. Chem., 2, 203–215, https://doi.org/10.1016/0304-4203(74)90015-2, 1974.
Wessel, P. and Smith, W. H.: A global, self-consistent, hierarchical,
high-resolution shoreline database, J. Geophys. Res.-Sol.
Ea., 101, 8741–8743, https://doi.org/10.1029/96JB00104, 1996.
Williams, W., Brown, K. A., Bluhm, B., Carmack, E. C., Dalman, L.,
Danielson, S. L., Else, B. G., Friedriksen, R., Mundy, C., and Rotermund, L.
M.: Stratification in the Canadian Arctic Archipelago's Kitikmeot Sea:
biological and geochemical consequences, Polar Knowledge Canada, Ottawa,
Canada, 46–52, https://doi.org/10.35298/pkc.2018.06, 2018.
Woolf, D. K., Shutler, J. D., Goddijn-Murphy, L., Watson, A., Chapron, B.,
Nightingale, P. D., Donlon, C. J., Piskozub, J., Yelland, M., and Ashton,
I.: Key uncertainties in the recent air-sea flux of CO2, Global
Biogeochem. Cy., 33, 1548–1563, https://doi.org/10.1029/2018GB006041,
2019.
Wynja, V., Demers, A.-M., Laforest, S., Lacelle, M., Pasher, J., Duffe, J.,
Chaudhary, B., Wang, H., and Giles, T.: Mapping coastal information across
Canada's northern regions based on low-altitude helicopter videography in
support of environmental emergency preparedness efforts, J. Coast.
Res., 31, 276–290, https://doi.org/10.2112/JCOASTRES-D-14-00059.1, 2015.
Xu, C., Mikhael, W., Myers, P. G., Else, B., Sims, R. P., and Zhou, Q.:
Effects of Seasonal Ice Coverage on the Physical Oceanographic Conditions of
the Kitikmeot Sea in the Canadian Arctic Archipelago, Atmos.-Ocean., 59,
1–19, https://doi.org/10.1080/07055900.2021.1965531, 2021.
Short summary
Using a small research vessel based out of Cambridge Bay in the Kitikmeot Sea (Canadian Arctic Archipelago), we were able to make measurements of surface ocean pCO2 shortly after sea ice breakup for 4 consecutive years. We compare our measurements to previous underway measurements and the two ongoing ocean carbon observatories in the region. We identify high interannual variability and a potential bias in previous estimates due to lower pCO2 in bays and inlets.
Using a small research vessel based out of Cambridge Bay in the Kitikmeot Sea (Canadian Arctic...