Biastoch, A., Schwarzkopf, F. U., Getzlaff, K., Rühs, S., Martin, T., Scheinert, M., Schulzki, T., Handmann, P., Hummels, R., and Böning, C. W.: Regional imprints of changes in the Atlantic Meridional Overturning Circulation in the eddy-rich ocean model VIKING20X, Ocean Sci., 17, 1177–1211,
https://doi.org/10.5194/os-17-1177-2021, 2021.
a
Blanke, B., Bonhommeau, S., Grima, N., and Drillet, Y.: Sensitivity of
advective transfer times across the North Atlantic Ocean to the temporal and
spatial resolution of model velocity data: Implication for European eel
larval transport, Dynam. Atmos. Oceans, 55–56, 22–44,
https://doi.org/10.1016/j.dynatmoce.2012.04.003, 2012.
a
Böning, C. W., Behrens, E., Biastoch, A., Getzlaff, K., and Bamber,
J. L.: Emerging impact of Greenland meltwater on deepwater formation in the
North Atlantic Ocean, Nat. Geosci., 9, 523–527,
https://doi.org/10.1038/ngeo2740, 2016.
a
Brambilla, E. and Talley, L. D.: Subpolar mode water in the northeastern
Atlantic: 1. Averaged properties and mean circulation, J.
Geophys. Res.-Oceans, 113, 1–18,
https://doi.org/10.1029/2006JC004062, 2008.
a,
b
Brambilla, E., Talley, L. D., and Robbins, P. E.: Subpolar mode water in the
northeastern Atlantic: 2. Origin and transformation, J. Geophys.
Res.-Oceans, 113, 1–16,
https://doi.org/10.1029/2006JC004063, 2008.
a
Brandt, P., Funk, A., Czeschel, L., Eden, C., and Böning, C. W.:
Ventilation and transformation of Labrador Sea water and its rapid export in
the deep Labrador Current, J. Phys. Oceanogr., 37, 946–961,
https://doi.org/10.1175/JPO3044.1, 2007.
a
Bringedal, C., Eldevik, T., Øystein Skagseth, Spall, M. A., and Østerhus, S.:
Structure and Forcing of Observed Exchanges across the Greenland–Scotland
Ridge, J. Climate, 31, 9881–9901,
https://doi.org/10.1175/JCLI-D-17-0889.1,
2018.
a,
b
Bryden, H. L., Johns, W. E., King, B. A., McCarthy, G., McDonagh, E. L., Moat,
B. I., and Smeed, D. A.: Reduction in Ocean Heat Transport at 26
∘ N since
2008 Cools the Eastern Subpolar Gyre of the North Atlantic Ocean, J/
Climate, 33, 1677–1689,
https://doi.org/10.1175/JCLI-D-19-0323.1, 2020.
a
Böning, C. W., Scheinert, M., Dengg, J., Biastoch, A., and Funk, A.: Decadal
variability of subpolar gyre transport and its reverberation in the North
Atlantic overturning, Geophys. Res. Lett., 33,
https://doi.org/10.1029/2006GL026906, 2006.
a
Chafik, L. and Rossby, T.: Volume, Heat, and Freshwater Divergences in the
Subpolar North Atlantic Suggest the Nordic Seas as Key to the State of the
Meridional Overturning Circulation, Geophys. Res. Lett., 46,
4799–4808,
https://doi.org/10.1029/2019GL082110, 2019.
a,
b
Chafik, L., Holliday, N. P., Bacon, S., and Rossby, T.: Irminger Sea Is the
Center of Action for Subpolar AMOC Variability, Geophys. Res. Lett.,
49, e2022GL099133,
https://doi.org/10.1029/2022GL099133, 2022.
a
Daniault, N., Lherminier, P., and Mercier, H.: Circulation and Transport at the
Southeast Tip of Greenland, J. Phys. Oceanogr., 41, 437–457,
https://doi.org/10.1175/2010JPO4428.1, 2011a.
a,
b,
c,
d,
e
Daniault, N., Lherminier, P., and Mercier, H.: The 1992–2009 transport
variability of the East Greenland-Irminger Current at 60
∘ N, Geophys.
Res. Lett., 38, L07601,
https://doi.org/10.1029/2011GL046863,
2011b.
a,
b
de Boisséson, E., Thierry, V., Mercier, H., and Caniaux, G.: Mixed layer
heat budget in the Iceland Basin from Argo, J. Geophys. Res.-Oceans, 115, 1–15,
https://doi.org/10.1029/2010JC006283, 2010.
a,
b,
c
de Boisséson, E., Thierry, V., Mercier, H., Caniaux, G., and
Desbruyères, D.: Origin, formation and variability of the Subpolar
Mode Water located over the Reykjanes Ridge, J. Geophys.
Res.-Oceans, 117, C12005,
https://doi.org/10.1029/2011jc007519, 2012.
a,
b
de Jong, M. F. and de Steur, L.: Strong winter cooling over the Irminger Sea
in winter 2014–2015, exceptional deep convection, and the emergence of
anomalously low SST, Geophys, Res, Lett,, 42, 7106–7113,
https://doi.org/10.1002/2016GL069596, 2016.
a,
b
de Jong, M. F., Van Aken, H. M., Våge, K., and Pickart, R. S.:
Convective mixing in the central Irminger Sea: 2002–2010, Deep-Sea Res.
Pt. I, 63, 36–51,
https://doi.org/10.1016/j.dsr.2012.01.003, 2012.
a
de Jong, M. F., de Steur, L., Fried, N., Bol, R., and Kritsotalakis, S.:
Year-Round Measurements of the Irminger Current: Variability of a Two-Core
Current System Observed in 2014–2016, J. Geophys. Res.-Oceans, 125, e2020JC016193,
https://doi.org/10.1029/2020JC016193,
2020.
a,
b,
c,
d
Deacu, D. and Myers, P. G.: Effect of a Variable Eddy Transfer Coefficient in
an Eddy-Permitting Model of the Subpolar North Atlantic Ocean, J.
Phys. Oceanogr., 35, 289–307,
https://doi.org/10.1175/JPO-2674.1,
2005a.
a
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi,
S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P.,
Beljaars, A. C., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C.,
Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B.,
Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler,
M., Matricardi, M., Mcnally, A. P., Monge-Sanz, B. M., Morcrette, J. J.,
Park, B. K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J. N.,
and Vitart, F.: The ERA-Interim reanalysis: Configuration and performance of
the data assimilation system, Q. J. Roy. Meteor.
Soc., 137, 553–597,
https://doi.org/10.1002/qj.828, 2011.
a
Desbruyères, D., Thierry, V., and Mercier, H.: Simulated decadal
variability of the meridional overturning circulation across the A25-Ovide
section, J. Geophys. Res.-Oceans, 118, 462–475,
https://doi.org/10.1029/2012JC008342, 2013.
a,
b
Desbruyères, D., Mercier, H., and Thierry, V.: On the mechanisms behind
decadal heat content changes in the eastern subpolar gyre, Prog.
Oceanogr., 132, 262–272,
https://doi.org/10.1016/j.pocean.2014.02.005, 2015.
a
Desbruyères, D., Chafik, L., and Maze, G.: A shift in the ocean
circulation has warmed the subpolar North Atlantic Ocean since 2016,
Commun. Earth Environ., 2, 48,
https://doi.org/10.1038/s43247-021-00120-y,
2021.
a
Desbruyères, D. G., Mercier, H., Maze, G., and Daniault, N.: Surface predictor of overturning circulation and heat content change in the subpolar North Atlantic, Ocean Sci., 15, 809–817,
https://doi.org/10.5194/os-15-809-2019, 2019.
a
Döös, K., Kjellsson, J., and Jönsson, B.: TRACMASS – A Lagrangian
Trajectory Model, in: Preventive Methods for Coastal Protection, edited by: Soomere, T. and Quak, E., Springer, Heidelberg, 225–249,
https://doi.org/10.1007/978-3-319-00440-2_7, 2013.
a
Döös, K., Jönsson, B., and Kjellsson, J.: Evaluation of oceanic and atmospheric trajectory schemes in the TRACMASS trajectory model v6.0, Geosci. Model Dev., 10, 1733–1749,
https://doi.org/10.5194/gmd-10-1733-2017, 2017.
a,
b
Evans, D. G., Holliday, N. P., Bacon, S., and Le Bras, I.: Mixing and air-sea buoyancy fluxes set the time-mean overturning circulation in the subpolar North Atlantic, EGUsphere [preprint],
https://doi.org/10.5194/egusphere-2022-1059, 2022.
a
Fay, A. R. and McKinley, G. A.: Observed Regional Fluxes to Constrain Modeled
Estimates of the Ocean Carbon Sink, Geophys. Res. Lett., 48,
e2021GL095325,
https://doi.org/10.1029/2021GL095325, 2021.
a
Fichefet, T. and Morales Maqueda, M. A.: Modelling the influence of snow
accumulation and snow-ice formation on the seasonal cycle of the Antarctic
sea-ice cover, Clim. Dynam., 15, 251–268,
https://doi.org/10.1007/s003820050280,
1999.
a
Flatau, M. K., Talley, L., and Niiler, P. P.: The North Atlantic Oscillation,
surface current velocities, and SST changes in the subpolar North Atlantic,
J. Climate, 16, 2355–2369,
https://doi.org/10.1175/2787.1, 2003.
a
Fofonoff, N. P. and Millard, R. C.: Algorithms for computation of fundamental
properties of seawater, UNESCO Technical papers in marine science, 44, 53 pp.,
http://darchive.mblwhoilibrary.org:8080/handle/1912/2470 (last access: 23 November 2022),
1983. a
Foukal, N. P., Gelderloos, R., and Pickart, R. S.: A continuous pathway for
fresh water along the East Greenland shelf, Sci. Adv., 6, eabc4254,
https://doi.org/10.1126/sciadv.abc4254, 2020.
a
Fried, N. and de Jong, M. F.: The Role of the Irminger Current in the Irminger
Sea Northward Transport Variability, J. Geophys. Res.-Oceans, 127, 1–16,
https://doi.org/10.1029/2021JC018188, 2022.
a
Fu, Y., Feili, L., Karstensen, J., and Wang, C.: A stable Atlantic Meridional
Overturning Circulation in a changing North Atlantic Ocean since the 1990s,
Sci. Adv., 6, eabc7836,
https://doi.org/10.1126/sciadv.abc7836, 2020.
a
Gary, S. F., Susan Lozier, M., Böning, C. W., and Biastoch, A.: Deciphering
the pathways for the deep limb of the Meridional Overturning Circulation,
Deep-Sea Res. Pt. II, 58, 1781–1797,
https://doi.org/10.1016/j.dsr2.2010.10.059, 2011.
a
Georgiou, S., Ypma, S. L., Brüggemann, N., Sayol, J., van der Boog,
C. G., Spence, P., Pietrzak, J. D., and Katsman, C. A.: Direct and Indirect
Pathways of Convected Water Masses and Their impacts on the Overturning
Dynamics of the Labrador Sea, J. Geophys. Res.-Oceans, 126,
1–19,
https://doi.org/10.1029/2020jc016654, 2021.
a
Grist, J. P., Josey, S. A., Jacobs, Z. L., Marsh, R., Sinha, B., and Van
Sebille, E.: Extreme air–sea interaction over the North Atlantic subpolar
gyre during the winter of 2013–2014 and its sub-surface legacy, Clim.
Dynam., 46, 4027–4045,
https://doi.org/10.1007/s00382-015-2819-3, 2016.
a
Groeskamp, S., Zika, J. D., Sloyan, B. M., McDougall, T. J., and McIntosh,
P. C.: A Thermohaline Inverse Method for Estimating Diathermohaline
Circulation and Mixing, J. Phys. Oceanogr., 44, 2681–2697,
https://doi.org/10.1175/JPO-D-14-0039.1, 2014.
a
Hirschi, J. J.-M., Barnier, B., Böning, C., Biastoch, A., Blaker, A. T.,
Coward, A., Danilov, S., Drijfhout, S., Getzlaff, K., Griffies, S. M.,
Hasumi, H., Hewitt, H., Iovino, D., Kawasaki, T., Kiss, A. E., Koldunov, N.,
Marzocchi, A., Mecking, J. V., Moat, B., Molines, J.-M., Myers, P. G.,
Penduff, T., Roberts, M., Treguier, A.-M., Sein, D. V., Sidorenko, D., Small,
J., Spence, P., Thompson, L., Weijer, W., and Xu, X.: The Atlantic Meridional
Overturning Circulation in High-Resolution Models, J. Geophys.
Res.-Oceans, 125, e2019JC015522,
https://doi.org/10.1029/2019JC015522, 2020.
a,
b,
c
Holliday, N. P., Hughes, S. L., Bacon, S., Beszczynska-Möller, A.,
Hansen, B., Lavín, A., Loeng, H., Mork, K. A., Østerhus, S.,
Sherwin, T., and Walczowski, W.: Reversal of the 1960s to 1990s freshening
trend in the northeast North Atlantic and Nordic Seas, Geophys. Res.
Lett., 35, 1–5,
https://doi.org/10.1029/2007GL032675, 2008.
a
Holliday, N. P., Bacon, S., Cunningham, S. A., Gary, S. F., Karstensen, J.,
King, B. A., Li, F., and Mcdonagh, E. L.: Subpolar North Atlantic
Overturning and Gyre-Scale Circulation in the Summers of 2014 and 2016,
J. Geophys. Res.-Oceans, 123, 4538–4559,
https://doi.org/10.1029/2018JC013841, 2018.
a
Holliday, N. P., Bersch, M., Berx, B., Chafik, L., Cunningham, S.,
Florindo-López, C., Hátún, H., Johns, W., Josey, S. A.,
Larsen, K. M. H., Mulet, S., Oltmanns, M., Reverdin, G., Rossby, T., Thierry,
V., Valdimarsson, H., and Yashayaev, I.: Ocean circulation causes the
largest freshening event for 120 years in eastern subpolar North Atlantic,
Nat. Commun., 11, 585,
https://doi.org/10.1038/s41467-020-14474-y, 2020.
a
Houpert, L., Inall, M. E., Dumont, E., Gary, S., Johnson, C., Porter, M.,
Johns, W. E., and Cunningham, S. A.: Structure and Transport of the North
Atlantic Current in the Eastern Subpolar Gyre From Sustained Glider
Observations, J. Geophys. Res.-Oceans, 123, 6019–6038,
https://doi.org/10.1029/2018JC014162, 2018.
a
Houpert, L., Cunningham, S., Fraser, N., Johnson, C., Holliday, N. P., Jones,
S., Moat, B., and Rayner, D.: Observed Variability of the North Atlantic
Current in the Rockall Trough From 4 Years of Mooring Measurements, J. Geophys. Res.-Oceans, 125, e2020JC016403,
https://doi.org/10.1029/2020JC016403, 2020.
a
Jackson, L. C., Roberts, M. J., Hewitt, H. T., Iovino, D., Koenigk, T., Meccia,
V. L., Roberts, C. D., Ruprich-Robert, Y., and Wood, R. A.: Impact of ocean
resolution and mean state on the rate of AMOC weakening, Clim. Dynam.,
55, 1711–1732,
https://doi.org/10.1007/s00382-020-05345-9, 2020.
a
Kieke, D., Rhein, M., Stramma, L., Smethie, W. M., Bullister, J. L., and LeBel,
D. A.: Changes in the pool of Labrador Sea Water in the subpolar North
Atlantic, Geophys. Res. Lett., 34, 1–5,
https://doi.org/10.1029/2006GL028959, 2007.
a
Lavender, K. L., Davis, R. E., and Owens, W. B.: Mid-depth recirculation
observed in the interior Labrador and Irminger seas by direct velocity
measurements, Nature, 407, 66–69,
https://doi.org/10.1038/35024048, 2000.
a
Le Bras, I. A.-A., Straneo, F., Holte, J., and Holliday, N. P.: Seasonality of
Freshwater in the East Greenland Current System From 2014 to 2016, J.
Geophys. Res.-Oceans, 123, 8828–8848,
https://doi.org/10.1029/2018JC014511, 2018.
a,
b,
c,
d,
e,
f,
g,
h
Le Bras, I. A.-A., Straneo, F., Holte, J., de Jong, M. F., and Holliday, N. P.:
Rapid Export of Waters Formed by Convection Near the Irminger Sea's Western
Boundary, Geophys. Res. Lett., 47, e2019GL085989,
https://doi.org/10.1029/2019GL085989,
2020.
a,
b,
c,
d,
e,
f
Levitus, S., Boyer, T., Conkright, M., O'Brien, T., Antonov, J., Stephens, C.,
Stathoplos, L., Johnson, D., and Gelfeld, R.: World Ocean Database 1998, Tech. rep.,
https://repository.library.noaa.gov/view/noaa/49345 (last access: 23 November 2022), 1998. a
Lherminier, P., Mercier, H., Gourcuff, C., Alvarez, M., Bacon, S., and
Kermabon, C.: Transports across the 2002 Greenland-Portugal Ovide section
and comparison with 1997, J. Geophys. Res.-Oceans, 112,
1–20,
https://doi.org/10.1029/2006JC003716, 2007.
a
Li, F., Lozier, M. S., and Johns, W. E.: Calculating the meridional volume,
heat, and freshwater transports from an observing system in the subpolar
North Atlantic: Observing system simulation experiment, J.
Atmos. Ocean. Tech., 34, 1483–1500,
https://doi.org/10.1175/JTECH-D-16-0247.1, 2017.
a,
b,
c
Li, F., Lozier, M. S., Bacon, S., Bower, A. S., Cunningham, S. A., de Jong,
M. F., DeYoung, B., Fraser, N., Fried, N., Han, G., Holliday, N. P., Holte,
J., Houpert, L., Inall, M. E., Johns, W. E., Jones, S., Johnson, C.,
Karstensen, J., Le Bras, I. A., Lherminier, P., Lin, X., Mercier, H.,
Oltmanns, M., Pacini, A., Petit, T., Pickart, R. S., Rayner, D., Straneo, F.,
Thierry, V., Visbeck, M., Yashayaev, I., and Zhou, C.: Subpolar North
Atlantic western boundary density anomalies and the Meridional Overturning
Circulation, Nat. Commun., 12, 1–9,
https://doi.org/10.1038/s41467-021-23350-2, 2021a.
a,
b,
c,
d,
e,
f,
g,
h
Li, F., Lozier, M. S., Holliday, N. P., Johns, W. E., Le Bras, I. A., Moat,
B. I., Cunningham, S. A., and de Jong, M. F.: Observation-based estimates
of heat and freshwater exchanges from the subtropical North Atlantic to the
Arctic, Prog. Oceanogr., 197, 102640,
https://doi.org/10.1016/j.pocean.2021.102640, 2021b.
a,
b
Lozier, M., Leadbetter, S., Williams, R., Roussenov, V., Reed, M., and Moore,
N.: The Spatial Pattern and Mechanisms of Heat-Content Change in the North
Atlantic, Science, 319, 800–803,
https://doi.org/10.1126/science.1146436, 2008.
a
Lozier, M. S., Bacon, S., Bower, A. S., Cunningham, S. A., De Jong, M. F.,
De Steur, L., De Young, B., Fischer, J., Gary, S. F., Greenan, B. J.,
Heimbmbach, P., Holliday, N. P., Houpert, L., Inall, M. E., Johns, W. E.,
Johnson, H. L., Karstensen, J., Li, F., Lin, X., Mackay, N., Marshall, D. P.,
Mercier, H., Myers, P. G., Pickart, R. S., Pillar, H. R., Straneo, F.,
Thierry, V., Weller, R. A., Williams, R. G., Wilson, C., Yang, J., Zhao, J.,
and Zika, J. D.: Overturning in the Subpolar north Atlantic program: A new
international ocean observing system, B. Am.
Meteorol. Soc., 98, 737–752,
https://doi.org/10.1175/BAMS-D-16-0057.1, 2017.
a
Lozier, M. S., Li, F., Bacon, S., Bahr, F., Bower, A. S., Cunningham, S. A.,
De Jong, M. F., De Steur, L., DeYoung, B., Fischer, J., Gary, S. F.,
Greenan, B. J., Holliday, N. P., Houk, A., Houpert, L., Inall, M. E., Johns,
W. E., Johnson, H. L., Johnson, C., Karstensen, J., Koman, G., Le Bras,
I. A., Lin, X., Mackay, N., Marshall, D. P., Mercier, H., Oltmanns, M.,
Pickart, R. S., Ramsey, A. L., Rayner, D., Straneo, F., Thierry, V., Torres,
D. J., Williams, R. G., Wilson, C., Yang, J., Yashayaev, I., and Zhao, J.: A
sea change in our view of overturning in the subpolar North Atlantic,
Science, 363, 516–521,
https://doi.org/10.1126/science.aau6592, 2019.
a,
b,
c,
d,
e,
f
MacGilchrist, G. A., Johnson, H. L., Marshall, D. P., Lique, C., Thomas, M.,
Jackson, L. C., and Wood, R. A.: Locations and mechanisms of ocean
ventilation in the high-latitude north atlantic in an eddy-permitting ocean
model, J. Climate, 33, 10113–10131,
https://doi.org/10.1175/JCLI-D-20-0191.1, 2020.
a,
b,
c,
d,
e,
f
MacGilchrist, G. A., Johnson, H. L., Lique, C., and Marshall, D. P.: Demons in
the North Atlantic: Variability of Deep Ocean Ventilation, Geophys.
Res. Lett., 48, 1–9,
https://doi.org/10.1029/2020GL092340, 2021.
a,
b
Mackay, N., Wilson, C., Holliday, N. P., and Zika, J. D.: The Observation-Based
Application of a Regional Thermohaline Inverse Method to Diagnose the
Formation and Transformation of Water Masses North of the OSNAP Array from
2013 to 2015, J. Phys. Oceanogr., 50, 1533–1555,
https://doi.org/10.1175/JPO-D-19-0188.1, 2020.
a
Madec, G., Benshila, R., Bricaud, C., Coward, A., Dobricic, S., Furner, R., and Oddo, P.: NEMO ocean engine, in: Notes du Pôle de modélisation de l'Institut Pierre-Simon Laplace (IPSL) (v3.4, Number 27), Zenodo,
https://doi.org/10.5281/zenodo.1464817, 2013.
a,
b
Marzocchi, A., Hirschi, J. J.-M., Holliday, N. P., Cunningham, S. A., Blaker,
A. T., and Coward, A. C.: The North Atlantic subpolar circulation in an
eddy-resolving global ocean model, J. Marine Syst., 142, 126–143,
https://doi.org/10.1016/j.jmarsys.2014.10.007, 2015.
a,
b
McKinley, G. A., Fay, A. R., Lovenduski, N. S., and Pilcher, D. J.: Natural
Variability and Anthropogenic Trends in the Ocean Carbon Sink, Annu. Rev. Mar. Sci., 9, 125–150,
https://doi.org/10.1146/annurev-marine-010816-060529,
2017.
a
Menary, M. B., Jackson, L. C., and Lozier, M. S.: Reconciling the Relationship
Between the AMOC and Labrador Sea in OSNAP Observations and Climate Models,
Geophys. Res. Lett., 47, e2020GL089793,
https://doi.org/10.1029/2020GL089793, 2020.
a,
b
Mercier, H., Lherminier, P., Sarafanov, A., Gaillard, F., Daniault, N.,
Desbruyères, D., Falina, A., Ferron, B., Gourcuff, C., Huck, T., and
Thierry, V.: Variability of the meridional overturning circulation at the
Greenland-Portugal OVIDE section from 1993 to 2010, Prog.
Oceanogr., 132, 250–261,
https://doi.org/10.1016/j.pocean.2013.11.001, 2015.
a,
b,
c,
d,
e,
f,
g
Mielke, C., Frajka-Williams, E., and Baehr, J.: Observed and simulated
variability of the AMOC at 26
∘ N and 41
∘ N, Geophys. Res. Lett.,
40, 1159–1164,
https://doi.org/10.1002/grl.50233, 2013.
a
Østerhus, S., Woodgate, R., Valdimarsson, H., Turrell, B., de Steur, L., Quadfasel, D., Olsen, S. M., Moritz, M., Lee, C. M., Larsen, K. M. H., Jónsson, S., Johnson, C., Jochumsen, K., Hansen, B., Curry, B., Cunningham, S., and Berx, B.: Arctic Mediterranean exchanges: a consistent volume budget and trends in transports from two decades of observations, Ocean Sci., 15, 379–399,
https://doi.org/10.5194/os-15-379-2019, 2019.
a
Pacini, A., Pickart, R. S., Bahr, F., Torres, D. J., Ramsey, A. L., Holte, J.,
Karstensen, J., Oltmanns, M., Straneo, F., Bras, I. A. L., Moore, G. W. K.,
and de Jong, M. F.: Mean Conditions and Seasonality of the West Greenland
Boundary Current System near Cape Farewell, J. Phys. Oceanogr.,
50, 2849–2871,
https://doi.org/10.1175/JPO-D-20-0086.1, 2020.
a,
b,
c,
d,
e
Paris, C. B., Helgers, J., van Sebille, E., and Srinivasan, A.: Connectivity
Modeling System: A probabilistic modeling tool for the multi-scale tracking
of biotic and abiotic variability in the ocean, Environ. Modell.
Softw., 42, 47–54,
https://doi.org/10.1016/j.envsoft.2012.12.006,
2013.
a
Petit, T., Lozier, M. S., Josey, S. A., and Cunningham, S. A.: Atlantic Deep
Water Formation Occurs Primarily in the Iceland Basin and Irminger Sea by
Local Buoyancy Forcing, Geophys. Res. Lett., 47, e2020GL091028,
https://doi.org/10.1029/2020GL091028, 2020.
a,
b,
c,
d,
e,
f,
g
Piron, A., Thierry, V., Mercier, H., and Caniaux, G.: Argo float observations
of basin-scale deep convection in the Irminger sea during winter
2011–2012, Deep-Sea Res. Pt. I, 109,
76–90,
https://doi.org/10.1016/j.dsr.2015.12.012, 2016.
a,
b
Pollard, R. T., Read, J. F., Holliday, N. P., and Leach, H.: Water masses and
circulation pathways through the Iceland Basin during Vivaldi 1996, J.
Geophys. Res.-Oceans, 109, C04004,
https://doi.org/10.1029/2003JC002067, 2004.
a,
b
Sarafanov, A., Mercier, H., Falina, A., Sokov, A., and Lherminier, P.:
Cessation and partial reversal of deep water freshening in the northern
North Atlantic: Observation-based estimates and attribution, Tellus A, 62, 80–90,
https://doi.org/10.1111/j.1600-0870.2009.00418.x, 2010.
a
Sarafanov, A., Falina, A., Mercier, H., Sokov, A., Lherminier, P., Gourcuff,
C., Gladyshev, S., Gaillard, F., and Daniault, N.: Mean full-depth summer
circulation and transports at the northern periphery of the Atlantic Ocean in
the 2000s, J. Geophys. Res.-Oceans, 117, 1–22,
https://doi.org/10.1029/2011JC007572, 2012.
a,
b
Steele, M., Morley, R., and Ermold, W.: PHC: a global hydrography with a high
quality Arctic Ocean, J. Climate, 14, 2079–2087,
https://www.jstor.org/stable/26247422 (last access: 23 November 2022), 2001. a
Stommel, H.: Determination of water mass properties of water pumped down from
the Ekman layer to the geostrophic flow below, P. Natl.
Acad. Sci. USA, 76, 3051–3055,
https://doi.org/10.1073/pnas.76.7.3051, 1979.
a
Sutherland, D. A., Pickart, R. S., Peter Jones, E., Azetsu-Scott, K.,
Jane Eert, A., and Ólafsson, J.: Freshwater composition of the waters off
southeast Greenland and their link to the Arctic Ocean, J.
Geophys. Res.-Oceans, 114, C05020,
https://doi.org/10.1029/2008JC004808, 2009.
a
Tamsitt, V., Abernathey, R. P., Mazloff, M. R., Wang, J., and Talley, L. D.:
Transformation of Deep Water Masses Along Lagrangian Upwelling Pathways in
the Southern Ocean, J. Geophys. Res.-Oceans, 123,
1994–2017,
https://doi.org/10.1002/2017JC013409, 2018.
a
Thierry, V., de Boisséon, E., and Mercier, H.: Interannual variability
of the Subpolar Mode Water properties over the Reykjanes Ridge during
1990–2006, J. Geophys. Res.-Oceans, 113, 1–14,
https://doi.org/10.1029/2007JC004443, 2008.
a,
b
Tooth, O. J., Johnson, H. L., and Wilson, C.: Lagrangian Overturning Pathways
in the Eastern Subpolar North Atlantic, J. Climate, 36, 823–844,
https://doi.org/10.1175/JCLI-D-21-0985.1, 2023.
a,
b,
c,
d,
e,
f,
g,
h,
i,
j,
k,
l,
m,
n,
o
Treguier, A. M., Theetten, S., Chassignet, E. P., Penduff, T., Smith, R.,
Talley, L., Beismann, J. O., and Böning, C.: The North Atlantic Subpolar
Gyre in Four High-Resolution Models, J. Phys. Oceanogr., 35,
757–774,
https://doi.org/10.1175/JPO2720.1, 2005.
a
Uppala, S. M., Kållberg, P. W., Simmons, A. J., Andrae, U., da Costa
Bechtold, V., Fiorino, M., Gibson, J. K., Haseler, J., Hernandez, A., Kelly,
G. A., Li, X., Onogi, K., Saarinen, S., Sokka, N., Allan, R. P., Andersson,
E., Arpe, K., Balmaseda, M. A., Beljaars, A. C., van de Berg, L., Bidlot, J.,
Bormann, N., Caires, S., Chevallier, F., Dethof, A., Dragosavac, M., Fisher,
M., Fuentes, M., Hagemann, S., Hólm, E., Hoskins, B. J., Isaksen, L.,
Janssen, P. A., Jenne, R., McNally, A. P., Mahfouf, J. F., Morcrette, J. J.,
Rayner, N. A., Saunders, R. W., Simon, P., Sterl, A., Trenberth, K. E.,
Untch, A., Vasiljevic, D., Viterbo, P., and Woollen, J.: The ERA-40
re-analysis, Q. J. Roy. Meteor. Soc., 131,
2961–3012,
https://doi.org/10.1256/qj.04.176, 2005.
a
Våge, K., Pickart, R. S., Sarafanov, A., Knutsen, Ø., Mercier, H.,
Lherminier, P., van Aken, H. M., Meincke, J., Quadfasel, D., and Bacon, S.:
The Irminger Gyre: Circulation, convection, and interannual variability,
Deep-Sea Res. Pt. I, 58, 590–614,
https://doi.org/10.1016/j.dsr.2011.03.001, 2011.
a
Visbeck, M., Chassignet, E. P., Curry, R. G., Delworth, T. L., Dickson, R. R.,
and Krahmann, G.: The Ocean's Response to North Atlantic Oscillation
Variability, in: The North Atlantic Oscillation: Climatic Significance and Environmental Impact, edited by: Hurrell, J. W., Kushnir, Y., Ottersen, G., and Visbeck, M., 113–145, American Geophysical Union (AGU),
https://doi.org/10.1029/134GM06, 2003.
a
Wang, H., Zhao, J., Li, F., and Lin, X.: Seasonal and Interannual Variability
of the Meridional Overturning Circulation in the Subpolar North Atlantic
Diagnosed From a High Resolution Reanalysis Data Set, J. Geophys.
Res.-Oceans, 126, e2020JC017130,
https://doi.org/10.1029/2020JC017130, 2021.
a,
b,
c,
d,
e,
f,
g,
h,
i,
j,
k,
l
Williams, R., Marshall, J., and Spall, M. A.: Does Stommel's Mixed Layer “Demon”
Work?, J. Phys. Oceanogr., 25, 3089–3102,
https://doi.org/10.1175/1520-0485(1995)025<3089:dsmlw>2.0.co;2, 1995.
a
Willis, J. K.: Can in situ floats and satellite altimeters detect long-term
changes in Atlantic Ocean overturning?, Geophys. Res. Lett., 37, L06602,
https://doi.org/10.1029/2010GL042372, 2010.
a
Xu, X., Hurlburt, H. E., Schmitz, W. J., Zantopp, R., Fischer, J., and Hogan,
P. J.: On the currents and transports connected with the atlantic meridional
overturning circulation in the subpolar North Atlantic, J.
Geophys. Res.-Oceans, 118, 502–516,
https://doi.org/10.1002/jgrc.20065, 2013.
a,
b
Xu, X., Chassignet, E., Johns, W., Schmitz Jr., W., and Metzger, J.:
Intraseasonal to interannual variability of the Atlantic meridional
overturning circulation from eddy-resolving simulations and observations,
J. Geophys. Res.-Oceans, 119, 5140–5159,
https://doi.org/10.1002/2014JC009994, 2014.
a,
b
Xu, X., Bower, A., Furey, H., and Chassignet, E. P.: Variability of the
Iceland-Scotland Overflow Water Transport Through the Charlie-Gibbs Fracture
Zone: Results From an Eddying Simulation and Observations, J.
Geophys. Res.-Oceans, 123, 5808–5823,
https://doi.org/10.1029/2018JC013895,
2018a.
a
Xu, X., Rhines, P. B., and Chassignet, E. P.: On mapping the diapycnal water
mass transformation of the upper North Atlantic Ocean, J. Phys.
Oceanogr., 48, 2233–2258,
https://doi.org/10.1175/JPO-D-17-0223.1,
2018b.
a,
b,
c,
d