Articles | Volume 19, issue 3
https://doi.org/10.5194/os-19-629-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-19-629-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Response of the sea surface temperature to heatwaves during the France 2022 meteorological summer
Thibault Guinaldo
CORRESPONDING AUTHOR
Centre National de Recherches Météorologiques, Université de Toulouse, Météo-France, CNRS, Lannion, France
Aurore Voldoire
Centre National de Recherches Météorologiques, Université de Toulouse, Météo-France, CNRS, Toulouse, France
Robin Waldman
Centre National de Recherches Météorologiques, Université de Toulouse, Météo-France, CNRS, Toulouse, France
Stéphane Saux Picart
Centre National de Recherches Météorologiques, Université de Toulouse, Météo-France, CNRS, Lannion, France
Hervé Roquet
Direction de l'enseignement supérieur et de la recherche, Météo-France, Saint-Mandé, France
Related authors
Thibault Guinaldo, Simon Munier, Patrick Le Moigne, Aaron Boone, Bertrand Decharme, Margarita Choulga, and Delphine J. Leroux
Geosci. Model Dev., 14, 1309–1344, https://doi.org/10.5194/gmd-14-1309-2021, https://doi.org/10.5194/gmd-14-1309-2021, 2021
Short summary
Short summary
Lakes are of fundamental importance in the Earth system as they support essential environmental and economic services such as freshwater supply. Despite the impact of lakes on the water cycle, they are generally not considered in global hydrological studies. Based on a model called MLake, we assessed both the importance of lakes in simulating river flows at global scale and the value of their level variations for water resource management.
Alisée A. Chaigneau, Angélique Melet, Aurore Voldoire, Maialen Irazoqui Apecechea, Guillaume Reffray, Stéphane Law-Chune, and Lotfi Aouf
Nat. Hazards Earth Syst. Sci., 24, 4031–4048, https://doi.org/10.5194/nhess-24-4031-2024, https://doi.org/10.5194/nhess-24-4031-2024, 2024
Short summary
Short summary
Climate-change-induced sea level rise increases the frequency of extreme sea levels. We analyze projected changes in extreme sea levels for western European coasts produced with high-resolution models (∼ 6 km). Unlike commonly used coarse-scale global climate models, this approach allows us to simulate key processes driving coastal sea level variations, such as long-term sea level rise, tides, storm surges induced by low atmospheric surface pressure and winds, waves, and their interactions.
Marc Mallet, Aurore Voldoire, Fabien Solmon, Pierre Nabat, Thomas Drugé, and Romain Roehrig
Atmos. Chem. Phys., 24, 12509–12535, https://doi.org/10.5194/acp-24-12509-2024, https://doi.org/10.5194/acp-24-12509-2024, 2024
Short summary
Short summary
This study investigates the interactions between smoke aerosols and climate in tropical Africa using a coupled ocean–atmosphere–aerosol climate model. The work shows that smoke plumes have a significant impact by increasing the low-cloud fraction, decreasing the ocean and continental surface temperature and reducing the precipitation of coastal western Africa. It also highlights the role of the ocean temperature response and its feedbacks for the September–November season.
Marie-Noëlle Bouin, Cindy Lebeaupin Brossier, Sylvie Malardel, Aurore Voldoire, and César Sauvage
Geosci. Model Dev., 17, 117–141, https://doi.org/10.5194/gmd-17-117-2024, https://doi.org/10.5194/gmd-17-117-2024, 2024
Short summary
Short summary
In numerical models, the turbulent exchanges of heat and momentum at the air–sea interface are not represented explicitly but with parameterisations depending on the surface parameters. A new parameterisation of turbulent fluxes (WASP) has been implemented in the surface model SURFEX v8.1 and validated on four case studies. It combines a close fit to observations including cyclonic winds, a dependency on the wave growth rate, and the possibility of being used in atmosphere–wave coupled models.
Alisée A. Chaigneau, Stéphane Law-Chune, Angélique Melet, Aurore Voldoire, Guillaume Reffray, and Lotfi Aouf
Ocean Sci., 19, 1123–1143, https://doi.org/10.5194/os-19-1123-2023, https://doi.org/10.5194/os-19-1123-2023, 2023
Short summary
Short summary
Wind waves and swells are major drivers of coastal environment changes and can drive coastal marine hazards such as coastal flooding. In this paper, by using numerical modeling along the European Atlantic coastline, we assess how present and future wave characteristics are impacted by sea level changes. For example, at the end of the century under the SSP5-8.5 climate change scenario, extreme significant wave heights are higher by up to +40 % due to the effect of tides and mean sea level rise.
Aurore Voldoire, Romain Roehrig, Hervé Giordani, Robin Waldman, Yunyan Zhang, Shaocheng Xie, and Marie-Nöelle Bouin
Geosci. Model Dev., 15, 3347–3370, https://doi.org/10.5194/gmd-15-3347-2022, https://doi.org/10.5194/gmd-15-3347-2022, 2022
Short summary
Short summary
A single-column version of the global climate model CNRM-CM6-1 has been designed to ease development and validation of the model physics at the air–sea interface in a simplified environment. This model is then used to assess the ability to represent the sea surface temperature diurnal cycle. We conclude that the sea surface temperature diurnal variability is reasonably well represented in CNRM-CM6-1 with a 1 h coupling time step and the upper-ocean model resolution of 1 m.
Alisée A. Chaigneau, Guillaume Reffray, Aurore Voldoire, and Angélique Melet
Geosci. Model Dev., 15, 2035–2062, https://doi.org/10.5194/gmd-15-2035-2022, https://doi.org/10.5194/gmd-15-2035-2022, 2022
Short summary
Short summary
Climate-change-induced sea level rise is a major threat for coastal and low-lying regions. Projections of coastal sea level changes are thus of great interest for coastal risk assessment and have significantly developed in recent years. In this paper, the objective is to provide high-resolution (6 km) projections of sea level changes in the northeastern Atlantic region bordering western Europe. For that purpose, a regional model is used to refine existing coarse global projections.
Thibault Guinaldo, Simon Munier, Patrick Le Moigne, Aaron Boone, Bertrand Decharme, Margarita Choulga, and Delphine J. Leroux
Geosci. Model Dev., 14, 1309–1344, https://doi.org/10.5194/gmd-14-1309-2021, https://doi.org/10.5194/gmd-14-1309-2021, 2021
Short summary
Short summary
Lakes are of fundamental importance in the Earth system as they support essential environmental and economic services such as freshwater supply. Despite the impact of lakes on the water cycle, they are generally not considered in global hydrological studies. Based on a model called MLake, we assessed both the importance of lakes in simulating river flows at global scale and the value of their level variations for water resource management.
Claudia Tebaldi, Kevin Debeire, Veronika Eyring, Erich Fischer, John Fyfe, Pierre Friedlingstein, Reto Knutti, Jason Lowe, Brian O'Neill, Benjamin Sanderson, Detlef van Vuuren, Keywan Riahi, Malte Meinshausen, Zebedee Nicholls, Katarzyna B. Tokarska, George Hurtt, Elmar Kriegler, Jean-Francois Lamarque, Gerald Meehl, Richard Moss, Susanne E. Bauer, Olivier Boucher, Victor Brovkin, Young-Hwa Byun, Martin Dix, Silvio Gualdi, Huan Guo, Jasmin G. John, Slava Kharin, YoungHo Kim, Tsuyoshi Koshiro, Libin Ma, Dirk Olivié, Swapna Panickal, Fangli Qiao, Xinyao Rong, Nan Rosenbloom, Martin Schupfner, Roland Séférian, Alistair Sellar, Tido Semmler, Xiaoying Shi, Zhenya Song, Christian Steger, Ronald Stouffer, Neil Swart, Kaoru Tachiiri, Qi Tang, Hiroaki Tatebe, Aurore Voldoire, Evgeny Volodin, Klaus Wyser, Xiaoge Xin, Shuting Yang, Yongqiang Yu, and Tilo Ziehn
Earth Syst. Dynam., 12, 253–293, https://doi.org/10.5194/esd-12-253-2021, https://doi.org/10.5194/esd-12-253-2021, 2021
Short summary
Short summary
We present an overview of CMIP6 ScenarioMIP outcomes from up to 38 participating ESMs according to the new SSP-based scenarios. Average temperature and precipitation projections according to a wide range of forcings, spanning a wider range than the CMIP5 projections, are documented as global averages and geographic patterns. Times of crossing various warming levels are computed, together with benefits of mitigation for selected pairs of scenarios. Comparisons with CMIP5 are also discussed.
Daniel T. McCoy, Paul R. Field, Gregory S. Elsaesser, Alejandro Bodas-Salcedo, Brian H. Kahn, Mark D. Zelinka, Chihiro Kodama, Thorsten Mauritsen, Benoit Vanniere, Malcolm Roberts, Pier L. Vidale, David Saint-Martin, Aurore Voldoire, Rein Haarsma, Adrian Hill, Ben Shipway, and Jonathan Wilkinson
Atmos. Chem. Phys., 19, 1147–1172, https://doi.org/10.5194/acp-19-1147-2019, https://doi.org/10.5194/acp-19-1147-2019, 2019
Short summary
Short summary
The largest single source of uncertainty in the climate sensitivity predicted by global climate models is how much low-altitude clouds change as the climate warms. Models predict that the amount of liquid within and the brightness of low-altitude clouds increase in the extratropics with warming. We show that increased fluxes of moisture into extratropical storms in the midlatitudes explain the majority of the observed trend and the modeled increase in liquid water within these storms.
Aurore Voldoire, Bertrand Decharme, Joris Pianezze, Cindy Lebeaupin Brossier, Florence Sevault, Léo Seyfried, Valérie Garnier, Soline Bielli, Sophie Valcke, Antoinette Alias, Mickael Accensi, Fabrice Ardhuin, Marie-Noëlle Bouin, Véronique Ducrocq, Stéphanie Faroux, Hervé Giordani, Fabien Léger, Patrick Marsaleix, Romain Rainaud, Jean-Luc Redelsperger, Evelyne Richard, and Sébastien Riette
Geosci. Model Dev., 10, 4207–4227, https://doi.org/10.5194/gmd-10-4207-2017, https://doi.org/10.5194/gmd-10-4207-2017, 2017
Short summary
Short summary
This study presents the principles of the new coupling interface based on the SURFEX multi-surface model and the OASIS3-MCT coupler. As SURFEX can be plugged into several atmospheric models, it can be used in a wide range of applications. The objective of this development is to build and share a common structure for the atmosphere–surface coupling of all these applications, involving on the one hand atmospheric models and on the other hand ocean, ice, hydrology, and wave models.
Roland Séférian, Christine Delire, Bertrand Decharme, Aurore Voldoire, David Salas y Melia, Matthieu Chevallier, David Saint-Martin, Olivier Aumont, Jean-Christophe Calvet, Dominique Carrer, Hervé Douville, Laurent Franchistéguy, Emilie Joetzjer, and Séphane Sénési
Geosci. Model Dev., 9, 1423–1453, https://doi.org/10.5194/gmd-9-1423-2016, https://doi.org/10.5194/gmd-9-1423-2016, 2016
Short summary
Short summary
This paper presents the first IPCC-class Earth system model developed at Centre National de Recherches Météorologiques (CNRM-ESM1). We detail how the various carbon reservoirs were initialized and analyze the behavior of the carbon cycle and its prominent physical drivers, comparing model results to the most up-to-date climate and carbon cycle dataset over the latest decades.
P. Huszar, H. Teyssèdre, M. Michou, A. Voldoire, D. J. L. Olivié, D. Saint-Martin, D. Cariolle, S. Senesi, D. Salas Y Melia, A. Alias, F. Karcher, P. Ricaud, and T. Halenka
Atmos. Chem. Phys., 13, 10027–10048, https://doi.org/10.5194/acp-13-10027-2013, https://doi.org/10.5194/acp-13-10027-2013, 2013
V. Masson, P. Le Moigne, E. Martin, S. Faroux, A. Alias, R. Alkama, S. Belamari, A. Barbu, A. Boone, F. Bouyssel, P. Brousseau, E. Brun, J.-C. Calvet, D. Carrer, B. Decharme, C. Delire, S. Donier, K. Essaouini, A.-L. Gibelin, H. Giordani, F. Habets, M. Jidane, G. Kerdraon, E. Kourzeneva, M. Lafaysse, S. Lafont, C. Lebeaupin Brossier, A. Lemonsu, J.-F. Mahfouf, P. Marguinaud, M. Mokhtari, S. Morin, G. Pigeon, R. Salgado, Y. Seity, F. Taillefer, G. Tanguy, P. Tulet, B. Vincendon, V. Vionnet, and A. Voldoire
Geosci. Model Dev., 6, 929–960, https://doi.org/10.5194/gmd-6-929-2013, https://doi.org/10.5194/gmd-6-929-2013, 2013
Cited articles
Adloff, F., Somot, S., Sevault, F., Jordà, G., Aznar, R., Déqué,
M., Herrmann, M., Marcos, M., Dubois, C., Padorno, E., Alvarez-Fanjul, E., and Gomis, D.: Mediterranean
Sea response to climate change in an ensemble of twenty first century
scenarios, Clim. Dynam., 45, 2775–2802, 2015. a
Amaya, D. J., Miller, A. J., Xie, S.-P., and Kosaka, Y.: Physical drivers of
the summer 2019 North Pacific marine heatwave, Nat. Commun., 11, 1903, https://doi.org/10.1038/s41467-020-15820-w,
2020. a, b, c
Bensoussan, N., Chiggiato, J., Buongiorno Nardelli, B., Pisano, A., and
Garrabou, J.: Insights on 2017 marine heat waves in the Mediterranean Sea,
J. Operat. Ocean., 12, 26–30, https://doi.org/10.1080/1755876X.2019.1633075, 2019. a
Benthuysen, J. A., Oliver, E. C., Feng, M., and Marshall, A. G.: Extreme marine
warming across tropical Australia during austral summer 2015–2016, J. Geophys. Res.-Oceans, 123, 1301–1326, 2018. a
Cazenave, A., Palanisamy, H., and Ablain, M.: Contemporary sea level changes
from satellite altimetry: What have we learned? What are the new challenges?,
Adv. Space Res., 62, 1639–1653, 2018. a
Chen, K., Gawarkiewicz, G. G., Lentz, S. J., and Bane, J. M.: Diagnosing the
warming of the Northeastern US Coastal Ocean in 2012: A linkage between the
atmospheric jet stream variability and ocean response, J. Geophys. Res.-Oceans, 119, 218–227, 2014. a
Cheng, L., Abraham, J., Hausfather, Z., and Trenberth, K. E.: How fast are the
oceans warming?, Science, 363, 128–129, 2019. a
Chevallier, C., Herbette, S., Marié, L., Le Borgne, P., Marsouin, A.,
Péré, S., Levier, B., and Reason, C.: Observations of the Ushant
front displacements with MSG/SEVIRI derived sea surface temperature data,
Remote Sens. Environ., 146, 3–10, 2014. a
Darmaraki, S., Somot, S., Sevault, F., Nabat, P., Cabos Narvaez, W. D.,
Cavicchia, L., Djurdjevic, V., Li, L., Sannino, G., and Sein, D. V.: Future
evolution of marine heatwaves in the Mediterranean Sea, Clim. Dynam., 53,
1371–1392, 2019. a
Doney, S. C., Ruckelshaus, M., Emmett Duffy, J., Barry, J. P., Chan, F.,
English, C. A., Galindo, H. M., Grebmeier, J. M., Hollowed, A. B., Knowlton,
N., Polovina, J., Rabalais, N., Sydeman, W., and Talley, L: Climate change impacts on marine ecosystems, Annu. Rev. Mar. Sci., 4, 11–37, https://doi.org/10.1146/annurev-marine-041911-111611, 2012. a
Donlon, C. J., Martin, M., Stark, J., Roberts-Jones, J., Fiedler, E., and
Wimmer, W.: The Operational Sea Surface Temperature and Sea Ice Analysis
(OSTIA) system, Remote Sens. Environ., 116, 140–158,
https://doi.org/10.1016/j.rse.2010.10.017, 2012. a, b
Drobinski, P., Ducrocq, V., Alpert, P., Anagnostou, E., Béranger, K.,
Borga, M., Braud, I., Chanzy, A., Davolio, S., Delrieu, G., Estournel, C., Boubrahmi, N. F., Font, J., Grubišić, V., Gualdi, S.,
Homar, V., Ivančan-Picek, B., Kottmeier, C., Kotroni, V., Lagouvardos, K., Lionello, P., Llasat, M.
C., Ludwig, W., Lutoff, C., Mariotti, A., Richard, E., Romero, R., Rotunno, R., Roussot, O., Ruin,
I., Somot, S., Taupier-Letage, I., Tintore, J., Uijlenhoet, R., and Wernli, H.: HyMeX: A
10-year multidisciplinary program on the Mediterranean water cycle, B.
Am. Meteorol. Soc., 95, 1063–1082, https://doi.org/10.1175/BAMS-D-12-00242.1, 2014. a
EUMETSAT: Ocean and Sea Ice Satellite Application Facility, Global Metop Sea Surface Temperature 2008-onwards, OSI-201-b, [data set], https://doi.org/10.15770/EUM_SAF_OSI_NRT_2011, last access: 3 May 2023. a
Eyring, V., Gillett, N., Achuta Rao, K., Barimalala, R., Barreiro Parrillo, M.,
Bellouin, N., Cassou, C., Durack, P., Kosaka, Y., McGregor, S., Min, S.,
Morgenstern, O., and Sun, Y.: Human Influence on the Climate System, p.
423–552, Cambridge University Press, Cambridge, United Kingdom and New
York, NY, USA, https://doi.org/10.1017/9781009157896.005, 2021. a
Fairall, C. W., Bradley, E. F., Hare, J., Grachev, A. A., and Edson, J. B.:
Bulk parameterization of air–sea fluxes: Updates and verification for the
COARE algorithm, J. Climate, 16, 571–591, 2003. a
Faranda, D., Vrac, M., Yiou, P., Jézéquel, A., and Thao, S.: Changes in
future synoptic circulation patterns: consequences for extreme event
attribution, Geophys. Res. Lett., 47, e2020GL088002, https://doi.org/10.1029/2020GL088002 2020. a
Faranda, D., Bourdin, S., Ginesta, M., Krouma, M., Noyelle, R., Pons, F., Yiou,
P., and Messori, G.: A climate-change attribution retrospective of some
impactful weather extremes of 2021, Weather Clim. Dynam., 3,
1311–1340, https://doi.org/10.5194/wcd-3-1311-2022, 2022. a
Feudale, L. and Shukla, J.: Role of Mediterranean SST in enhancing the European
heat wave of summer 2003, Geophys. Res. Lett., 34, https://doi.org/10.1029/2006GL027991, 2007. a
Garrabou, J., Gómez-Gras, D., Medrano, A., Cerrano, C., Ponti, M.,
Schlegel, R., Bensoussan, N., Turicchia, E., Sini, M., Gerovasileiou, V.,
et al.: Marine heatwaves drive recurrent mass mortalities in the
Mediterranean Sea, Glob. Change Biol., 28, 5708–5725, 2022. a
Giorgi, F.: Climate change hot-spots, Geophys. Res. Lett., 33, https://doi.org/10.1029/2006GL025734, 2006. a
Good, S., Embury, O., Bulgin, C., and Mittaz, J.: ESA Sea Surface Temperature
Climate Change Initiative (SST_CCI): Level 4 Analysis Climate Data Record,
version 2.1., Centre for Environmental Data Analysis,
https://doi.org/10.5285/62c0f97b1eac4e0197a674870afe1ee6, 2019. a
Good, S. A., Embury, O., Bulgin, C. E., and Mittaz, J.: ESA Sea Surface Temperature
Climate Change Initiative (SST_cci): Level 4 Analysis Climate Data Record, version 2.1. Centre for
Environmental Data Analysis, 22 August 2019, [data set], https://doi.org/10.5285/62c0f97b1eac4e0197a674870afe1ee6, 2019. a
Guinaldo, T.: Response of the sea surface temperature to heatwaves during the
France 2022 meteorological summer, Zenodo [code], https://doi.org/10.5281/zenodo.7194099, 2022. a
Häkkinen, S., Rhines, P. B., and Worthen, D. L.: Atmospheric blocking and
Atlantic multidecadal ocean variability, Science, 334, 655–659, 2011. a
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D.,
et al.: The ERA5 global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, 2020. a
Holbrook, N. J., Scannell, H. A., Sen Gupta, A., Benthuysen, J. A., Feng, M.,
Oliver, E. C., Alexander, L. V., Burrows, M. T., Donat, M. G., Hobday, A. J.,
et al.: A global assessment of marine heatwaves and their drivers, Nat. Commun., 10, 1–13, https://doi.org/10.1038/s41467-019-10206-z, 2019. a
Holmlund, K., Grandell, J., Schmetz, J., Stuhlmann, R., Bojkov, B., Munro, R.,
Lekouara, M., Coppens, D., Viticchie, B., August, T., et al.: Meteosat Third
Generation (MTG): Continuation and innovation of observations from
geostationary orbit, B. Am. Meteorol. Soc., 102,
990–1015, https://doi.org/10.1175/BAMS-D-19-0304.1, 2021. a
Hong, C.-C., Tseng, W.-L., Hsu, H.-H., Lee, M.-Y., and Chang, C.-C.: Relative
contribution of Trend and Interannually-varying SST Anomalies to the 2018
Heat Waves in the Extratropical Northern Hemisphere, J. Climate, 34,
1–58, https://doi.org/10.1175/JCLI-D-20-0556.1, 2021. a
IPCC: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate,
Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA,
https://doi.org/10.1017/9781009157964, 2019. a
IPCC: Climate Change 2021: The Physical Science Basis. Contribution of Working
Group I to the Sixth Assessment Report of the Intergovernmental Panel on
Climate Change, Cambridge University Press, Cambridge, United
Kingdom and New York, NY, USA, https://doi.org/10.1017/9781009157896, 2021. a, b
Izquierdo, P., Taboada, F. G., González-Gil, R., Arrontes, J., and Rico,
J. M.: Alongshore upwelling modulates the intensity of marine heatwaves in a
temperate coastal sea, Sci. Total Environ., 835, 155478, https://doi.org/10.1016/j.scitotenv.2022.155478, 2022. a
Karagiorgos, J., Vervatis, V., and Sofianos, S.: The impact of tides on the Bay
of Biscay dynamics, J. Mar. Sci. Eng., 8, 617, https://doi.org/10.3390/jmse8080617, 2020. a
Keeling, R. F., Körtzinger, A., and Gruber, N.: Ocean deoxygenation in
a warming world, Annu. Rev. Mar. Sci, 2, 199–229, https://doi.org/10.1146/annurev.marine.010908.163855, 2010. a
Lazzari, P., Álvarez, E., Terzić, E., Cossarini, G., Chernov, I.,
D’Ortenzio, F., and Organelli, E.: CDOM spatiotemporal variability in the
Mediterranean Sea: a modelling study, J. Mar. Sci. Eng., 9, 176, https://doi.org/10.3390/jmse9020176, 2021. a
Le Borgne, P., Roquet, H., and Merchant, C.: Estimation of Sea Surface
Temperature from the Spinning Enhanced Visible and Infrared Imager, improved
using numerical weather prediction, Remote Sens. Environ., 115,
55–65, https://doi.org/10.1016/j.rse.2010.08.004, 2011. a
Le Moigne, P., Besson, F., Martin, E., Boé, J., Boone, A., Decharme, B., Etchevers, P., Faroux, S., Habets, F., Lafaysse, M., Leroux, D., and Rousset-Regimbeau, F.: The latest improvements with SURFEX v8.0 of the Safran–Isba–Modcou hydrometeorological model for France, Geosci. Model Dev., 13, 3925–3946, https://doi.org/10.5194/gmd-13-3925-2020, 2020. a
Li, C., Zwiers, F., Zhang, X., Li, G., Sun, Y., and Wehner, M.: Changes in
annual extremes of daily temperature and precipitation in CMIP6 models,
J. Climate, 34, 3441–3460, 2021. a
Marsouin, A., Le Borgne, P., Legendre, G., Péré, S., and Roquet, H.: Six
years of OSI-SAF METOP-A AVHRR sea surface temperature, Remote Sens. Environ., 159, 288–306, https://doi.org/10.1016/j.rse.2014.12.018, 2015. a
Masson, V., Le Moigne, P., Martin, E., Faroux, S., Alias, A., Alkama, R., Belamari, S., Barbu, A., Boone, A., Bouyssel, F., Brousseau, P., Brun, E., Calvet, J.-C., Carrer, D., Decharme, B., Delire, C., Donier, S., Essaouini, K., Gibelin, A.-L., Giordani, H., Habets, F., Jidane, M., Kerdraon, G., Kourzeneva, E., Lafaysse, M., Lafont, S., Lebeaupin Brossier, C., Lemonsu, A., Mahfouf, J.-F., Marguinaud, P., Mokhtari, M., Morin, S., Pigeon, G., Salgado, R., Seity, Y., Taillefer, F., Tanguy, G., Tulet, P., Vincendon, B., Vionnet, V., and Voldoire, A.: The SURFEXv7.2 land and ocean surface platform for coupled or offline simulation of earth surface variables and fluxes, Geosci. Model Dev., 6, 929–960, https://doi.org/10.5194/gmd-6-929-2013, 2013. a
Mecking, J., Drijfhout, S., Hirschi, J. J., and Blaker, A.: Ocean and
atmosphere influence on the 2015 European heatwave, Environ. Res. Lett., 14, 114035, https://doi.org/10.1088/1748-9326/ab4d33, 2019. a
Merchant, C., Embury, O., Bulgin, C., T., B., Corlett, G., Fiedler, E., Good,
S., Mittaz, J., Rayner, N., Berry, D., Eastwood, S., Taylor, M., Tsushima,
Y., Waterfall, A., Wilson, R., and Donlon, C.: Satellite-based time-series of
sea-surface temperature since 1981 for climate applications, Sci. Data,
6, 223, https://doi.org/10.1038/s41597-019-0236-x, 2019. a
Minnett, P., Alvera-Azcárate, A., Chin, T., Corlett, G., Gentemann, C.,
Karagali, I., Li, X., Marsouin, A., Marullo, S., Maturi, E., et al.: Half a
century of satellite remote sensing of sea-surface temperature, Remote
Sens. Environ., 233, 111366, https://doi.org/10.1016/j.rse.2019.111366, 2019. a, b
Moisan, J. R. and Niiler, P. P.: The seasonal heat budget of the North Pacific:
Net heat flux and heat storage rates (1950–1990), J. Phys. Ocean., 28, 401–421, 1998. a
Monin, A. S. and Obukhov, A. M.: Osnovnye zakonomernosti turbulentnogo peremesivanija v
prizemnom sloe atmosfery, Trudy geofiz. inst. AN SSSR, 24, 163–187,
1954. a
NWP SAF: MAIA version 4 for Suomi SNPP-VIIRS and NOAA/METOP-AVHRR cloud mask
and classification-Scientific user manual., Tech. Rep., EUMETSAT,
https://nwp-saf.eumetsat.int/site/download/documentation/aapp/NWPSAF-MF-UD-009_MAIAv4_v1.3.pdf (last access: 3 May 2023),
2017. a
O'Dea, E., Furner, R., Wakelin, S., Siddorn, J., While, J., Sykes, P., King, R., Holt, J., and Hewitt, H.: The CO5 configuration of the 7 km Atlantic Margin Model: large-scale biases and sensitivity to forcing, physics options and vertical resolution, Geosci. Model Dev., 10, 2947–2969, https://doi.org/10.5194/gmd-10-2947-2017, 2017. a
Olita, A., Sorgente, R., Natale, S., Gaberšek, S., Ribotti, A., Bonanno, A., and Patti, B.: Effects of the 2003 European heatwave on the Central Mediterranean Sea: surface fluxes and the dynamical response, Ocean Sci., 3, 273–289, https://doi.org/10.5194/os-3-273-2007, 2007. a
Oliver, E. C., Benthuysen, J. A., Darmaraki, S., Donat, M. G., Hobday, A. J.,
Holbrook, N. J., Schlegel, R. W., and Sen Gupta, A.: Marine heatwaves, Annu. Rev. Mar. Sci., 13, 313–342, 2021. a
OSI SAF: Low Earth OrbiterSea Surface TemperatureProduct User Manual: GBL SST
(OSI-201-b), NAR SST (OSI-202-b), MGR SST (OSI-204-b), IASI SST (OSI-208-b),
Tech. Rep., EUMETSAT,
https://osi-saf.eumetsat.int/lml/doc/osisaf_cdop2_ss1_pum_leo_sst.pdf (last access: 10 May 2023),
2018a. a
OSI SAF: Algorithms Theoretical Basis Document for the Low Earth Orbiter Sea
Surface Temperature Processing Chain (OSI-201b/OSI-202b/OSI-204b),
Tech. Rep., EUMETSAT,
https://osi-saf.eumetsat.int/lml/doc/osisaf_cdop2_ss1_atbd_leo_sst.pdf (last access: 10 May 2023),
2018b. a
O’Carroll, A. G., Armstrong, E. M., Beggs, H. M., Bouali, M., Casey, K. S.,
Corlett, G. K., Dash, P., Donlon, C. J., Gentemann, C. L., Høyer, J. L.,
et al.: Observational needs of sea surface temperature, Front. Mar. Sci., 6, 2296–7745, https://doi.org/10.3389/fmars.2019.00420, 2019. a
Ribes, A., Thao, S., and Cattiaux, J.: Describing the relationship between a
weather event and climate change: a new statistical approach, J. Climate, 33, 6297–6314, 2020. a
Ribes, A., Boé, J., Qasmi, S., Dubuisson, B., Douville, H., and Terray, L.: An updated assessment of past and future warming over France based on a regional observational constraint, Earth Syst. Dynam., 13, 1397–1415, https://doi.org/10.5194/esd-13-1397-2022, 2022. a
Rignot, E., Mouginot, J., Morlighem, M., Seroussi, H., and Scheuchl, B.:
Widespread, rapid grounding line retreat of Pine Island, Thwaites, Smith, and
Kohler glaciers, West Antarctica, from 1992 to 2011, Geophys. Res.
Lett., 41, 3502–3509, 2014. a
Ruti, P. M., Somot, S., Giorgi, F., Dubois, C., Flaounas, E., Obermann, A.,
Dell’Aquila, A., Pisacane, G., Harzallah, A., Lombardi, E., et al.:
MED-CORDEX initiative for Mediterranean climate studies, B. Am. Meteorol. Soc., 97, 1187–1208, https://doi.org/10.1175/BAMS-D-14-00176.1, 2016. a
Salinger, M. J., Renwick, J., Behrens, E., Mullan, A. B., Diamond, H. J.,
Sirguey, P., Smith, R. O., Trought, M. C., Alexander, L., Cullen, N. J.,
et al.: The unprecedented coupled ocean-atmosphere summer heatwave in the New
Zealand region 2017/18: drivers, mechanisms and impacts, Environ. Res. Lett., 14, 044023, https://doi.org/10.3402/tellusa.v67.26032, 2019. a
Santos, J. A., Pfahl, S., Pinto, J. G., and Wernli, H.: Mechanisms underlying
temperature extremes in Iberia: a Lagrangian perspective, Tellus A, 67, 26032, https://doi.org/10.3402/tellusa.v67.26032, 2015.
a
Schaeffer, A. and Roughan, M.: Subsurface intensification of marine heatwaves
off southeastern Australia: the role of stratification and local winds,
Geophys. Res. Lett., 44, 5025–5033, 2017. a
Schulzweida, U.: CDO User Guide, Zenodo, https://doi.org/10.5281/zenodo.7112925, 2022. a
Sen Gupta, A., Thomsen, M., Benthuysen, J. A., Hobday, A. J., Oliver, E.,
Alexander, L. V., Burrows, M. T., Donat, M. G., Feng, M., Holbrook, N. J.,
et al.: Drivers and impacts of the most extreme marine heatwave events,
Sci. Rep., 10, 1–15, https://doi.org/10.1038/s41598-020-75445-3, 2020. a, b, c
Smith, K. E., Burrows, M. T., Hobday, A. J., King, N. G., Moore, P. J.,
Sen Gupta, A., Thomsen, M. S., Wernberg, T., and Smale, D. A.: Biological
Impacts of Marine Heatwaves, Annu. Rev. Mar. Sci., 15, 119–145,
https://doi.org/10.1146/annurev-marine-032122-121437, 2022. a
Stobart, B., Mayfield, S., Mundy, C., Hobday, A., and Hartog, J.: Comparison of
in situ and satellite sea surface-temperature data from South Australia and
Tasmania: how reliable are satellite data as a proxy for coastal temperatures
in temperate southern Australia?, Mar. Freshw. Res., 67,
612–625, 2015. a
Trenberth, K. E. and Shea, D. J.: Relationships between precipitation and
surface temperature, Geophys. Res. Lett., 32, https://doi.org/10.1029/2005GL022760, 2005. a
Trenberth, K. E., Fasullo, J. T., and Shepherd, T. G.: Attribution of climate
extreme events, Nat. Clim. Change, 5, 725–730, 2015. a
Vanhellemont, Q., Neukermans, G., and Ruddick, K.: Synergy between
polar-orbiting and geostationary sensors: Remote sensing of the ocean at high
spatial and high temporal resolution, Remote Sens. Environ., 146,
49–62, 2014. a
Zschenderlein, P., Fink, A. H., Pfahl, S., and Wernli, H.: Processes
determining heat waves across different European climates, Q. J. Roy. Meteor. Soc., 145, 2973–2989, 2019. a
Co-editor-in-chief
Summer 2022 was memorable and record-breaking in much of Europe - for example heatwaves in France. This paper discusses marine heatwaves in the Mediterranean and northeastern Atlantic Ocean and their importance for European climate. It investigates the causes of increased sea surface temperature during summer 2022 for the seas around France through assessing the different atmospheric fluxes determining the upper ocean heat budget. It highlights the need for continuous monitoring of the ocean surface in order to assess the impact of these marine heatwave events.
Summer 2022 was memorable and record-breaking in much of Europe - for example heatwaves in...
Short summary
In the summer of 2022, France experienced a series of unprecedented heatwaves. This study is the first to examine the response of sea surface temperatures to these events, using spatial operational data and attributing the observed abnormally warm SSTs to atmospheric forcings. The findings of this study underscore the critical need for an efficient and sustainable operational system to monitor alterations that threaten the oceans in the context of climate change.
In the summer of 2022, France experienced a series of unprecedented heatwaves. This study is the...