Articles | Volume 19, issue 2
https://doi.org/10.5194/os-19-485-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-19-485-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
An analogues-based forecasting system for Mediterranean marine-litter concentration
Centre Oceanogràfic de les Balears, Spanish Institute of
Oceanography (CN-IEO/CSIC), Mallorca, 07015, Spain
Department of Physics, University of the Balearic Islands (UIB), Mallorca, 07122, Spain
Department of Applied Physics II, Physical Oceanography Group of the University of Málaga (GOFIMA),
Málaga, 29071, Spain
Institute of Oceanic Engineering of the University of Málaga
(IIO), Málaga, 29071, Spain
Related authors
Jorge Ramos-Alcántara, Damià Gomis, and Gabriel Jordà
Ocean Sci., 18, 1781–1803, https://doi.org/10.5194/os-18-1781-2022, https://doi.org/10.5194/os-18-1781-2022, 2022
Short summary
Short summary
In a context of climate change, having sea level data all along the coast is essential. However, tide gauges yield pointwise observations, and satellite altimetry has limitations at the coast. We present a method that, learning from a years-long model output and using tide gauge observations only, is able to reconstruct sea level all along the coast. The accuracy of the reconstruction has been validated against independent observations and proven to be better than that of satellite altimetry.
Ivan Manso-Narvarte, Erick Fredj, Gabriel Jordà, Maristella Berta, Annalisa Griffa, Ainhoa Caballero, and Anna Rubio
Ocean Sci., 16, 575–591, https://doi.org/10.5194/os-16-575-2020, https://doi.org/10.5194/os-16-575-2020, 2020
Short summary
Short summary
Our main aim is to study the feasibility of reconstructing oceanic currents by extending the data obtained from coastal multiplatform observatories to nearby areas in 3D in the SE Bay of Biscay. To that end, two different data-reconstruction methods with different approaches were tested, providing satisfactory results. This work is a first step towards the real applicability of these methods in this study area, and it shows the capabilities of the methods for a wide range of applications.
Miguel Agulles, Gabriel Jordà, Burt Jones, Susana Agustí, and Carlos M. Duarte
Ocean Sci., 16, 149–166, https://doi.org/10.5194/os-16-149-2020, https://doi.org/10.5194/os-16-149-2020, 2020
Short summary
Short summary
The Red Sea holds one of the most diverse marine ecosystems in the world, although fragile and vulnerable to ocean warming. To better understand the long-term variability and trends of temperature in the whole water column, we produce a 3-D gridded temperature product (TEMPERSEA) for the period 1958–2017, based on a large number of in situ observations, covering the Red Sea and the Gulf of Aden.
Mathieu Hamon, Jonathan Beuvier, Samuel Somot, Jean-Michel Lellouche, Eric Greiner, Gabriel Jordà, Marie-Noëlle Bouin, Thomas Arsouze, Karine Béranger, Florence Sevault, Clotilde Dubois, Marie Drevillon, and Yann Drillet
Ocean Sci., 12, 577–599, https://doi.org/10.5194/os-12-577-2016, https://doi.org/10.5194/os-12-577-2016, 2016
Short summary
Short summary
The paper describes MEDRYS, a MEDiterranean sea ReanalYsiS at high resolution for the period 1992–2013. The NEMOMED12 ocean model is forced at the surface by a new high resolution atmospheric forcing dataset (ALDERA). Altimeter data, satellite SST and temperature and salinity vertical profiles are jointly assimilated. The ability of the reanalysis to represent the sea surface high-frequency variability, water mass characteristics and transports through the Strait of Gibraltar is shown.
Jorge Ramos-Alcántara, Damià Gomis, and Gabriel Jordà
Ocean Sci., 18, 1781–1803, https://doi.org/10.5194/os-18-1781-2022, https://doi.org/10.5194/os-18-1781-2022, 2022
Short summary
Short summary
In a context of climate change, having sea level data all along the coast is essential. However, tide gauges yield pointwise observations, and satellite altimetry has limitations at the coast. We present a method that, learning from a years-long model output and using tide gauge observations only, is able to reconstruct sea level all along the coast. The accuracy of the reconstruction has been validated against independent observations and proven to be better than that of satellite altimetry.
Ivan Manso-Narvarte, Erick Fredj, Gabriel Jordà, Maristella Berta, Annalisa Griffa, Ainhoa Caballero, and Anna Rubio
Ocean Sci., 16, 575–591, https://doi.org/10.5194/os-16-575-2020, https://doi.org/10.5194/os-16-575-2020, 2020
Short summary
Short summary
Our main aim is to study the feasibility of reconstructing oceanic currents by extending the data obtained from coastal multiplatform observatories to nearby areas in 3D in the SE Bay of Biscay. To that end, two different data-reconstruction methods with different approaches were tested, providing satisfactory results. This work is a first step towards the real applicability of these methods in this study area, and it shows the capabilities of the methods for a wide range of applications.
Miguel Agulles, Gabriel Jordà, Burt Jones, Susana Agustí, and Carlos M. Duarte
Ocean Sci., 16, 149–166, https://doi.org/10.5194/os-16-149-2020, https://doi.org/10.5194/os-16-149-2020, 2020
Short summary
Short summary
The Red Sea holds one of the most diverse marine ecosystems in the world, although fragile and vulnerable to ocean warming. To better understand the long-term variability and trends of temperature in the whole water column, we produce a 3-D gridded temperature product (TEMPERSEA) for the period 1958–2017, based on a large number of in situ observations, covering the Red Sea and the Gulf of Aden.
Mathieu Hamon, Jonathan Beuvier, Samuel Somot, Jean-Michel Lellouche, Eric Greiner, Gabriel Jordà, Marie-Noëlle Bouin, Thomas Arsouze, Karine Béranger, Florence Sevault, Clotilde Dubois, Marie Drevillon, and Yann Drillet
Ocean Sci., 12, 577–599, https://doi.org/10.5194/os-12-577-2016, https://doi.org/10.5194/os-12-577-2016, 2016
Short summary
Short summary
The paper describes MEDRYS, a MEDiterranean sea ReanalYsiS at high resolution for the period 1992–2013. The NEMOMED12 ocean model is forced at the surface by a new high resolution atmospheric forcing dataset (ALDERA). Altimeter data, satellite SST and temperature and salinity vertical profiles are jointly assimilated. The ability of the reanalysis to represent the sea surface high-frequency variability, water mass characteristics and transports through the Strait of Gibraltar is shown.
Cited articles
Caillouet, L., Vidal, J. P., Sauquet, E., and Graff, B.: Probabilistic
precipitation and temperature downscaling of the Twentieth Century
Reanalysis over France, Clim. Past, 12, 635–662,
https://doi.org/10.5194/cp-12-635-2016, 2016.
Casanueva, A., Frías, M. D., Herrera, S., San-Martín, D.,
Zaninovic, K., and Gutiérrez, J. M.: Statistical downscaling of climate
impact indices: testing the direct approach, Climatic Change, 127, 547–560,
https://doi.org/10.1007/s10584-014-1270-5, 2014.
Compa, M., Alomar, C., Wilcox, C., van Sebille, E., Lebreton, L., Hardesty,
B. D., and Deudero, S.: Risk assessment of plastic pollution on marine
diversity in the Mediterranean Sea, Sci. Total Environ., 678, 188–196,
https://doi.org/10.1016/j.scitotenv.2019.04.355, 2019.
Cózar, A., Sanz-Martín, M., Martí, E., González-Gordillo,
J. I., Ubeda, B., Á.gálvez, J., Irigoien, X., and Duarte, C. M.:
Plastic accumulation in the mediterranean sea, PLoS One, 10, 1–12,
https://doi.org/10.1371/journal.pone.0121762, 2015.
Cubasch, U., Von Storch, H., Waszkewitz, J., and Zorita, E.: Estimates of
climate change in Southern Europe derived from dynamical climate model
output, Clim. Res., 7, 129–149, https://doi.org/10.3354/cr007129, 1996.
Fossi, M. C., Romeo, T., Baini, M., Panti, C., Marsili, L., Campani, T.,
Canese, S., Galgani, F., Druon, J.-N., Airoldi, S., Taddei, S., Fattorini,
M., Brandini, C., and Lapucci, C.: Plastic Debris Occurrence, Convergence
Areas and Fin Whales Feeding Ground in the Mediterranean Marine Protected
Area Pelagos Sanctuary: A Modeling Approach, Front. Mar. Sci., 4, 1–15,
https://doi.org/10.3389/fmars.2017.00167, 2017.
Grouillet, B., Ruelland, D., Ayar, P. V., and Vrac, M.: Sensitivity analysis
of runoff modeling to statistical downscaling models in the western
Mediterranean, Hydrol. Earth Syst. Sci., 20, 1031–1047,
https://doi.org/10.5194/hess-20-1031-2016, 2016.
Gutiérrez, J. M., San-Martín, D., Brands, S., Manzanas, R., and
Herrera, S.: Reassessing statistical downscaling techniques for their robust
application under climate change conditions, J. Clim., 26, 171–188,
https://doi.org/10.1175/JCLI-D-11-00687.1, 2013.
Hayes, A., Kucera, M., Kallel, N., Sbaffi, L., and Rohling, E. J.: Glacial
Mediterranean sea surface temperatures based on planktonic foraminiferal
assemblages, Quaternary Sci. Rev., 24, 999–1016,
https://doi.org/10.1016/j.quascirev.2004.02.018, 2005.
Herrmann, M. J. and Somot, S.: Relevance of ERA40 dynamical downscaling for
modeling deep convection in the Mediterranean Sea, Geophys. Res. Lett., 35,
1–5, https://doi.org/10.1029/2007GL032442, 2008.
Hersbach, H., Bell, B., Berrisford, P., et al.: The ERA5 global reanalysis, Q. J. R. Meteorol. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020 (data available at https://climate.copernicus.eu/climate-reanalysis, last access: 17 May 2021).
Jambeck, J. R., Geyer, R., Wilcox, C., Siegler, T. R., Perryman, M., Andrady,
A., Narayan, R., and Law, K. L.: Plastic waste inputs from land into the
ocean, Science, 347, 768–771, https://doi.org/10.1126/science.1260352, 2015.
Jordà, G. and Soto-Navarro, J.: An analogue based forecasting system for
Mediterranean marine litter concentration – Code and simulations dataset, Zenodo [code and data set],
https://doi.org/10.5281/zenodo.7104402, 2022.
Law, K. L., Morét-Ferguson, S. E., Goodwin, D. S., Zettler, E. R.,
Deforce, E., Kukulka, T., and Proskurowski, G.: Distribution of surface
plastic debris in the eastern pacific ocean from an 11-year data set,
Environ. Sci. Technol., 48, 4732–4738, https://doi.org/10.1021/es4053076,
2014.
Lebreton, L. and Andrady, A.: Future scenarios of global plastic waste
generation and disposal, Palgrave Commun., 5, 1–11,
https://doi.org/10.1057/s41599-018-0212-7, 2019.
Lebreton, L., Egger, M., and Slat, B.: A global mass budget for positively
buoyant macroplastic debris in the ocean, Sci. Rep., 9, 1–10,
https://doi.org/10.1038/s41598-019-49413-5, 2019.
Lebreton, L. C. M., Greer, S. D., and Borrero, J. C.: Numerical modelling of
floating debris in the world's oceans, Mar. Pollut. Bull., 64, 653–661,
https://doi.org/10.1016/j.marpolbul.2011.10.027, 2012.
Liubartseva, S., Coppini, G., Lecci, R., and Creti, S.: Regional approach to
modeling the transport of floating plastic debris in the Adriatic Sea, Mar.
Pollut. Bull., 103, 115–127,
https://doi.org/10.1016/j.marpolbul.2015.12.031, 2016.
Liubartseva, S., Coppini, G., Lecci, R., and Clementi, E.: Tracking plastics
in the Mediterranean: 2D Lagrangian model, Mar. Pollut. Bull., 129,
151–162, https://doi.org/10.1016/j.marpolbul.2018.02.019, 2018.
Lopez-Radcenco, M., Pascual, A., Gomez-Navarro, L., Aissa-El-Bey, A.,
Chapron, B., and Fablet, R.: Analog Data Assimilation of Along-Track Nadir
and Wide-Swath SWOT Altimetry Observations in the Western Mediterranean Sea,
IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 12, 2530–2540,
https://doi.org/10.1109/JSTARS.2019.2903941, 2019.
Lorenz, E. N.: Atmospheric Predictability as Revealed by Naturally Occurring
Analogues, J. Atmos. Sci., 26, 636–646,
https://doi.org/10.1175/1520-0469(1969)26<636:APARBN>2.0.CO;2, 1969.
Macias, D., Cózar, A., Garcia-Gorriz, E., González-Fernández,
D., and Stips, A.: Surface water circulation develops seasonally changing
patterns of floating litter accumulation in the Mediterranean Sea. A
modelling approach, Mar. Pollut. Bull., 149, 110619,
https://doi.org/10.1016/j.marpolbul.2019.110619, 2019.
Mansui, J., Molcard, A., and Ourmières, Y.: Modelling the transport and
accumulation of floating marine debris in the Mediterranean basin, Mar.
Pollut. Bull., 91, 249–257,
https://doi.org/10.1016/j.marpolbul.2014.11.037, 2015.
Martínez-Asensio, A., Marcos, M., Tsimplis, M. N., Jordà, G., Feng,
X., and Gomis, D.: On the ability of statistical wind-wave models to capture
the variability and long-term trends of the North Atlantic winter wave
climate, Ocean Model., 103, 177–189,
https://doi.org/10.1016/j.ocemod.2016.02.006, 2016.
Maximenko, N., Hafner, J., and Niiler, P.: Pathways of marine debris derived
from trajectories of Lagrangian drifters, Mar. Pollut. Bull., 65, 51–62,
https://doi.org/10.1016/j.marpolbul.2011.04.016, 2012.
Maximenko, N., Corradi, P., Law, K. L., Van Sebille, E., Garaba, S. P.,
Lampitt, R. S., Galgani, F., Martinez-Vicente, V., Goddijn-Murphy, L.,
Veiga, J. M., Thompson, R. C., Maes, C., Moller, D., Löscher, C. R.,
Addamo, A. M., Lamson, M. R., Centurioni, L. R., Posth, N. R., Lumpkin, R.,
Vinci, M., Martins, A. M., Pieper, C. D., Isobe, A., Hanke, G., Edwards, M.,
Chubarenko, I. P., Rodriguez, E., Aliani, S., Arias, M., Asner, G. P.,
Brosich, A., Carlton, J. T., Chao, Y., Cook, A.-M., Cundy, A. B., Galloway,
T. S., Giorgetti, A., Goni, G. J., Guichoux, Y., Haram, L. E., Hardesty, B.
D., Holdsworth, N., Lebreton, L., Leslie, H. A., Macadam-Somer, I., Mace,
T., Manuel, M., Marsh, R., Martinez, E., Mayor, D. J., Le Moigne, M., Molina
Jack, M. E., Mowlem, M. C., Obbard, R. W., Pabortsava, K., Robberson, B.,
Rotaru, A.-E., Ruiz, G. M., Spedicato, M. T., Thiel, M., Turra, A., and
Wilcox, C.: Toward the Integrated Marine Debris Observing System, Front.
Mar. Sci., 6, 447, https://doi.org/10.3389/fmars.2019.00447, 2019.
Palatinus, A., Kovač Viršek, M., Robič, U., Grego, M., Bajt, O.,
Šiljić, J., Suaria, G., Liubartseva, S., Coppini, G., and Peterlin,
M.: Marine litter in the Croatian part of the middle Adriatic Sea:
Simultaneous assessment of floating and seabed macro and micro litter
abundance and composition, Mar. Pollut. Bull., 139, 427–439,
https://doi.org/10.1016/j.marpolbul.2018.12.038, 2019.
Politikos, D. V., Ioakeimidis, C., Papatheodorou, G., and Tsiaras, K.:
Modeling the Fate and Distribution of Floating Litter Particles in the
Aegean Sea (E. Mediterranean), Front. Mar. Sci., 4, 1–18,
https://doi.org/10.3389/fmars.2017.00191, 2017.
Soto-Navarro, J., Jordà, G., Deudero, S., Alomar, C., Amores, Á.,
and Compa, M.: 3D hotspots of marine litter in the Mediterranean: A modeling
study, Mar. Pollut. Bull., 155, 111159,
https://doi.org/10.1016/j.marpolbul.2020.111159, 2020.
Soto-Navarro, J., Jordá, G., Compa, M., Alomar, C., Fossi, M. C., and
Deudero, S.: Impact of the marine litter pollution on the Mediterranean
biodiversity: A risk assessment study with focus on the marine protected
areas, Mar. Pollut. Bull., 165, 112169,
https://doi.org/10.1016/j.marpolbul.2021.112169, 2021.
UNEP: Matine Litter, A Global Chanllenge, UNEP, Nairobi, 232 pp., ISBN 978-92-807-3029-6, 2009.
Van Sebille, E., Chris, W., Laurent, L., Nikolai, M., Britta Denise, H.,
Jan, A. van F., Marcus, E., David, S., Francois, G., and Kara Lavender, L.:
A global inventory of small floating plastic debris, Environ. Res. Lett.,
10, 124006, https://doi.org/10.1088/1748-9326/10/12/124006, 2015.
Van Sebille, E., Aliani, S., Law, K. L., Maximenko, N., Alsina, J. M.,
Bagaev, A., Bergmann, M., Chapron, B., Chubarenko, I., Cózar, A.,
Delandmeter, P., Egger, M., Fox-Kemper, B., Garaba, S. P., Goddijn-Murphy,
L., Hardesty, B. D., Hoffman, M. J., Isobe, A., Jongedijk, C. E., Kaandorp,
M. L. A., Khatmullina, L., Koelmans, A. A., Kukulka, T., Laufkötter, C.,
Lebreton, L., Lobelle, D., Maes, C., Martinez-Vicente, V., Morales Maqueda,
M. A., Poulain-Zarcos, M., Rodríguez, E., Ryan, P. G., Shanks, A. L.,
Shim, W. J., Suaria, G., Thiel, M., Van Den Bremer, T. S., and Wichmann, D.:
The physical oceanography of the transport of floating marine debris,
Environ. Res. Lett., 15, 023003, https://doi.org/10.1088/1748-9326/ab6d7d, 2020.
Wang, X. L., Swail, V. R., and Cox, A.: Dynamical versus statistical
downscaling methods for ocean wave heights, Int. J. Climatol., 30, 317–332,
https://doi.org/10.1002/joc.1899, 2010.
Wu, W., Liu, Y., Ge, M., Rostkier-Edelstein, D., Descombes, G., Kunin, P.,
Warner, T., Swerdlin, S., Givati, A., Hopson, T., and Yates, D.: Statistical
downscaling of climate forecast system seasonal predictions for the
Southeastern Mediterranean, Atmos. Res., 118, 346–356,
https://doi.org/10.1016/j.atmosres.2012.07.019, 2012.
Zorita, E. and von Storch, H.: The Analog Method as a Simple Statistical
Downscaling Technique: Comparison with More Complicated Methods, J. Clim.,
12, 2474–2489, https://doi.org/10.1175/1520-0442(1999)012<2474:TAMAAS>2.0.CO;2, 1999.
Zorita, E., Hughes, J. P., Lettermaier, D. P., and von Storch, H.:
Stochastic Characterization of Regional Circulation Patterns for Climate
Model Diagnosis and Estimation of Local Precipitation, J. Clim., 8,
1023–1042, 1995.
Short summary
We develop a forecasting system for marine-litter concentration (MLC) in the Mediterranean based on a simple statistical method. The idea is that similar meteorological situations yield similar MLC patterns. We train our model with a historical meteorological dataset and MLCs from numerical simulations to recognize these situations and patterns and use them to forecast the future MLC. The results are promising; the approach has potential to become a suitable, cost-effective forecasting method.
We develop a forecasting system for marine-litter concentration (MLC) in the Mediterranean based...