Articles | Volume 19, issue 2
https://doi.org/10.5194/os-19-431-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-19-431-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Current observed global mean sea level rise and acceleration estimated from satellite altimetry and the associated measurement uncertainty
Adrien Guérou
CORRESPONDING AUTHOR
Business Unit Environment, Collecte Localisation Satellite (CLS), 31250 Ramonville-Saint-Agne, France
Benoit Meyssignac
LEGOS, CNRS, IRD, Université Paul Sabatier, 31400 Toulouse, France
Centre National d’Etudes Spatiales (CNES), 31400 Toulouse, France
Pierre Prandi
Business Unit Environment, Collecte Localisation Satellite (CLS), 31250 Ramonville-Saint-Agne, France
Michaël Ablain
MAGELLIUM, 31520 Ramonville-Saint-Agne, France
Aurélien Ribes
CNRM, Université Paul Sabatier, Météo France, CNRS, 31400 Toulouse, France
François Bignalet-Cazalet
Centre National d’Etudes Spatiales (CNES), 31400 Toulouse, France
Related authors
Rémi Jugier, Michaël Ablain, Robin Fraudeau, Adrien Guerou, and Pierre Féménias
Ocean Sci., 18, 1263–1274, https://doi.org/10.5194/os-18-1263-2022, https://doi.org/10.5194/os-18-1263-2022, 2022
Short summary
Short summary
To ensure that the sea level is measured as accurately as possible by satellite altimeters, we must monitor possible sea level drifts caused by those instruments through comparison with other satellite altimeters or tide gauges. In this paper, we describe a method and estimate the associated uncertainties for detecting altimeter drifts over short time periods (from 2 to 10 years) through cross-comparison with other satellite altimeters and apply it to the recent Sentinel-3 A/B altimeters.
Angélique Melet, Roderik van de Wal, Angel Amores, Arne Arns, Alisée A. Chaigneau, Irina Dinu, Ivan D. Haigh, Tim H. J. Hermans, Piero Lionello, Marta Marcos, H. E. Markus Meier, Benoit Meyssignac, Matthew D. Palmer, Ronja Reese, Matthew J. R. Simpson, and Aimée B. A. Slangen
State Planet, 3-slre1, 4, https://doi.org/10.5194/sp-3-slre1-4-2024, https://doi.org/10.5194/sp-3-slre1-4-2024, 2024
Short summary
Short summary
The EU Knowledge Hub on Sea Level Rise’s Assessment Report strives to synthesize the current scientific knowledge on sea level rise and its impacts across local, national, and EU scales to support evidence-based policy and decision-making, primarily targeting coastal areas. This paper complements IPCC reports by documenting the state of knowledge of observed and 21st century projected changes in mean and extreme sea levels with more regional information for EU seas as scoped with stakeholders.
Florence Marti, Benoit Meyssignac, Victor Rousseau, Michaël Ablain, Robin Fraudeau, Alejandro Blazquez, and Sébastien Fourest
State Planet, 4-osr8, 3, https://doi.org/10.5194/sp-4-osr8-3-2024, https://doi.org/10.5194/sp-4-osr8-3-2024, 2024
Short summary
Short summary
As space geodetic observations are used to monitor the global ocean heat content change, they allow estimating the Earth energy imbalance (EEI). Over 1993–2022, the space geodetic EEI estimate shows a positive trend of 0.29 W m−2 per decade, indicating accelerated warming of the ocean in line with other independent estimates. The study highlights the importance of comparing various estimates and their uncertainties to reliably assess EEI changes.
Florence Birol, François Bignalet-Cazalet, Mathilde Cancet, Jean-Alexis Daguze, Wassim Fkaier, Ergane Fouchet, Fabien Léger, Claire Maraldi, Fernando Niño, Marie-Isabelle Pujol, and Ngan Tran
EGUsphere, https://doi.org/10.5194/egusphere-2024-2449, https://doi.org/10.5194/egusphere-2024-2449, 2024
Short summary
Short summary
We take advantage of the availability of several algorithms for most of the terms/corrections used to calculate altimetry sea level data to analyze the sources of uncertainties associated when approaching the coast. The results highlight the hierarchy of sources of uncertainties. Tidal corrections and mean sea surface contribute to coastal sea level data uncertainties. But, improving the retracking algorithm is today the main factor to bring accurate altimetry sea level data closer to the shore.
Michaël Ablain, Noémie Lalau, Benoit Meyssignac, Robin Fraudeau, Anne Barnoud, Gérald Dibarboure, Alejandro Egido, and Craig James Donlon
EGUsphere, https://doi.org/10.5194/egusphere-2024-1802, https://doi.org/10.5194/egusphere-2024-1802, 2024
Short summary
Short summary
This study proposes a novel cross-validation method to assess the instrumental stability in sea level trends. The method involves implementing a second tandem flight phase between two successive altimeter missions a few years after the first. The trend in systematic instrumental differences made during the two tandem phases can be estimated below ±0.1 mm/yr (16–84 % confidence level) on a global scale, for time intervals between the tandem phases of four years or more.
Piers M. Forster, Chris Smith, Tristram Walsh, William F. Lamb, Robin Lamboll, Bradley Hall, Mathias Hauser, Aurélien Ribes, Debbie Rosen, Nathan P. Gillett, Matthew D. Palmer, Joeri Rogelj, Karina von Schuckmann, Blair Trewin, Myles Allen, Robbie Andrew, Richard A. Betts, Alex Borger, Tim Boyer, Jiddu A. Broersma, Carlo Buontempo, Samantha Burgess, Chiara Cagnazzo, Lijing Cheng, Pierre Friedlingstein, Andrew Gettelman, Johannes Gütschow, Masayoshi Ishii, Stuart Jenkins, Xin Lan, Colin Morice, Jens Mühle, Christopher Kadow, John Kennedy, Rachel E. Killick, Paul B. Krummel, Jan C. Minx, Gunnar Myhre, Vaishali Naik, Glen P. Peters, Anna Pirani, Julia Pongratz, Carl-Friedrich Schleussner, Sonia I. Seneviratne, Sophie Szopa, Peter Thorne, Mahesh V. M. Kovilakam, Elisa Majamäki, Jukka-Pekka Jalkanen, Margreet van Marle, Rachel M. Hoesly, Robert Rohde, Dominik Schumacher, Guido van der Werf, Russell Vose, Kirsten Zickfeld, Xuebin Zhang, Valérie Masson-Delmotte, and Panmao Zhai
Earth Syst. Sci. Data, 16, 2625–2658, https://doi.org/10.5194/essd-16-2625-2024, https://doi.org/10.5194/essd-16-2625-2024, 2024
Short summary
Short summary
This paper tracks some key indicators of global warming through time, from 1850 through to the end of 2023. It is designed to give an authoritative estimate of global warming to date and its causes. We find that in 2023, global warming reached 1.3 °C and is increasing at over 0.2 °C per decade. This is caused by all-time-high greenhouse gas emissions.
Gerald Dibarboure, Cécile Anadon, Frédéric Briol, Emeline Cadier, Robin Chevrier, Antoine Delepoulle, Yannice Faugère, Alice Laloue, Rosemary Morrow, Nicolas Picot, Pierre Prandi, Marie-Isabelle Pujol, Matthias Raynal, Anaelle Treboutte, and Clément Ubelmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-1501, https://doi.org/10.5194/egusphere-2024-1501, 2024
Short summary
Short summary
The Surface Water and Ocean Topography (SWOT) mission delivers unprecedented swath altimetry products. In this paper, we describe how we extended the Level-3 algorithms to handle SWOT’s unique swath-altimeter data. We also illustrate and discuss the benefits, relevance, and limitations of Level-3 swath-altimeter products for various research domains.
Victor Rousseau, Robin Fraudeau, Matthew Hammond, Odilon Joël Houndegnonto, Michaël Ablain, Alejandro Blazquez, Fransisco Mir Calafat, Damien Desbruyères, Giuseppe Foti, William Llovel, Florence Marti, Benoît Meyssignac, Marco Restano, and Jérôme Benveniste
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-236, https://doi.org/10.5194/essd-2023-236, 2023
Preprint withdrawn
Short summary
Short summary
The estimation of regional Ocean Heat Content (OHC) is crucial for climate analysis and future climate predictions. In our study, we accurately estimate regional OHC changes in the Atlantic Ocean using satellite and in situ data. Findings reveal significant warming in the Atlantic basin from 2002 to 2020 with a mean trend of 0.17W/m², representing 230 times the power of global nuclear plants. The product has also been successfully validated in the North Atlantic basin using in situ data.
Piers M. Forster, Christopher J. Smith, Tristram Walsh, William F. Lamb, Robin Lamboll, Mathias Hauser, Aurélien Ribes, Debbie Rosen, Nathan Gillett, Matthew D. Palmer, Joeri Rogelj, Karina von Schuckmann, Sonia I. Seneviratne, Blair Trewin, Xuebin Zhang, Myles Allen, Robbie Andrew, Arlene Birt, Alex Borger, Tim Boyer, Jiddu A. Broersma, Lijing Cheng, Frank Dentener, Pierre Friedlingstein, José M. Gutiérrez, Johannes Gütschow, Bradley Hall, Masayoshi Ishii, Stuart Jenkins, Xin Lan, June-Yi Lee, Colin Morice, Christopher Kadow, John Kennedy, Rachel Killick, Jan C. Minx, Vaishali Naik, Glen P. Peters, Anna Pirani, Julia Pongratz, Carl-Friedrich Schleussner, Sophie Szopa, Peter Thorne, Robert Rohde, Maisa Rojas Corradi, Dominik Schumacher, Russell Vose, Kirsten Zickfeld, Valérie Masson-Delmotte, and Panmao Zhai
Earth Syst. Sci. Data, 15, 2295–2327, https://doi.org/10.5194/essd-15-2295-2023, https://doi.org/10.5194/essd-15-2295-2023, 2023
Short summary
Short summary
This is a critical decade for climate action, but there is no annual tracking of the level of human-induced warming. We build on the Intergovernmental Panel on Climate Change assessment reports that are authoritative but published infrequently to create a set of key global climate indicators that can be tracked through time. Our hope is that this becomes an important annual publication that policymakers, media, scientists and the public can refer to.
Karina von Schuckmann, Audrey Minière, Flora Gues, Francisco José Cuesta-Valero, Gottfried Kirchengast, Susheel Adusumilli, Fiammetta Straneo, Michaël Ablain, Richard P. Allan, Paul M. Barker, Hugo Beltrami, Alejandro Blazquez, Tim Boyer, Lijing Cheng, John Church, Damien Desbruyeres, Han Dolman, Catia M. Domingues, Almudena García-García, Donata Giglio, John E. Gilson, Maximilian Gorfer, Leopold Haimberger, Maria Z. Hakuba, Stefan Hendricks, Shigeki Hosoda, Gregory C. Johnson, Rachel Killick, Brian King, Nicolas Kolodziejczyk, Anton Korosov, Gerhard Krinner, Mikael Kuusela, Felix W. Landerer, Moritz Langer, Thomas Lavergne, Isobel Lawrence, Yuehua Li, John Lyman, Florence Marti, Ben Marzeion, Michael Mayer, Andrew H. MacDougall, Trevor McDougall, Didier Paolo Monselesan, Jan Nitzbon, Inès Otosaka, Jian Peng, Sarah Purkey, Dean Roemmich, Kanako Sato, Katsunari Sato, Abhishek Savita, Axel Schweiger, Andrew Shepherd, Sonia I. Seneviratne, Leon Simons, Donald A. Slater, Thomas Slater, Andrea K. Steiner, Toshio Suga, Tanguy Szekely, Wim Thiery, Mary-Louise Timmermans, Inne Vanderkelen, Susan E. Wjiffels, Tonghua Wu, and Michael Zemp
Earth Syst. Sci. Data, 15, 1675–1709, https://doi.org/10.5194/essd-15-1675-2023, https://doi.org/10.5194/essd-15-1675-2023, 2023
Short summary
Short summary
Earth's climate is out of energy balance, and this study quantifies how much heat has consequently accumulated over the past decades (ocean: 89 %, land: 6 %, cryosphere: 4 %, atmosphere: 1 %). Since 1971, this accumulated heat reached record values at an increasing pace. The Earth heat inventory provides a comprehensive view on the status and expectation of global warming, and we call for an implementation of this global climate indicator into the Paris Agreement’s Global Stocktake.
Anne Barnoud, Julia Pfeffer, Anny Cazenave, Robin Fraudeau, Victor Rousseau, and Michaël Ablain
Ocean Sci., 19, 321–334, https://doi.org/10.5194/os-19-321-2023, https://doi.org/10.5194/os-19-321-2023, 2023
Short summary
Short summary
The increase in ocean mass due to land ice melting is responsible for about two-thirds of the global mean sea level rise. The ocean mass variations are monitored by GRACE and GRACE Follow-On gravimetry satellites that faced instrumental issues over the last few years. In this work, we assess the robustness of these data by comparing the ocean mass gravimetry estimates to independent observations (other satellite observations, oceanographic measurements and land ice and water models).
Maxime Ballarotta, Clément Ubelmann, Pierre Veillard, Pierre Prandi, Hélène Etienne, Sandrine Mulet, Yannice Faugère, Gérald Dibarboure, Rosemary Morrow, and Nicolas Picot
Earth Syst. Sci. Data, 15, 295–315, https://doi.org/10.5194/essd-15-295-2023, https://doi.org/10.5194/essd-15-295-2023, 2023
Short summary
Short summary
We present a new gridded sea surface height and current dataset produced by combining observations from nadir altimeters and drifting buoys. This product is based on a multiscale and multivariate mapping approach that offers the possibility to improve the physical content of gridded products by combining the data from various platforms and resolving a broader spectrum of ocean surface dynamic than in the current operational mapping system. A quality assessment of this new product is presented.
Aurélien Ribes, Julien Boé, Saïd Qasmi, Brigitte Dubuisson, Hervé Douville, and Laurent Terray
Earth Syst. Dynam., 13, 1397–1415, https://doi.org/10.5194/esd-13-1397-2022, https://doi.org/10.5194/esd-13-1397-2022, 2022
Short summary
Short summary
We use a novel statistical method to combine climate simulations and observations, and we deliver an updated assessment of past and future warming over France. As a key result, we find that the warming over that region was underestimated in previous multi-model ensembles by up to 50 %. We also assess the contribution of greenhouse gases, aerosols, and other factors to the observed warming, as well as the impact on the seasonal temperature cycle, and we discuss implications for climate services.
Marie-Isabelle Pujol, Stéphanie Dupuy, Oscar Vergara, Antonio Sánchez-Román, Yannice Faugère, Pierre Prandi, Mei-Ling Dabat, Quentin Dagneaux, Marine Lievin, Emeline Cadier, Gérald Dibarboure, and Nicolas Picot
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-292, https://doi.org/10.5194/essd-2022-292, 2022
Manuscript not accepted for further review
Short summary
Short summary
An altimeter sea level along-track level-3 product with a 5 Hz (~1.2 km) sampling is proposed. It takes advantage of recent advances in radar altimeter processing, and improvements made to different stages of the processing chain. Compared to the conventional 1 Hz (~7 km) product, it significantly improves the observability of the short wavelength signal in open ocean and near coast areas (> 5 km). It also contributes to improving high resolution numerical model outputs via data assimilation.
Rémi Jugier, Michaël Ablain, Robin Fraudeau, Adrien Guerou, and Pierre Féménias
Ocean Sci., 18, 1263–1274, https://doi.org/10.5194/os-18-1263-2022, https://doi.org/10.5194/os-18-1263-2022, 2022
Short summary
Short summary
To ensure that the sea level is measured as accurately as possible by satellite altimeters, we must monitor possible sea level drifts caused by those instruments through comparison with other satellite altimeters or tide gauges. In this paper, we describe a method and estimate the associated uncertainties for detecting altimeter drifts over short time periods (from 2 to 10 years) through cross-comparison with other satellite altimeters and apply it to the recent Sentinel-3 A/B altimeters.
Florence Marti, Alejandro Blazquez, Benoit Meyssignac, Michaël Ablain, Anne Barnoud, Robin Fraudeau, Rémi Jugier, Jonathan Chenal, Gilles Larnicol, Julia Pfeffer, Marco Restano, and Jérôme Benveniste
Earth Syst. Sci. Data, 14, 229–249, https://doi.org/10.5194/essd-14-229-2022, https://doi.org/10.5194/essd-14-229-2022, 2022
Short summary
Short summary
The Earth energy imbalance at the top of the atmosphere due to the increase in greenhouse gases and aerosol concentrations is responsible for the accumulation of energy in the climate system. With its high thermal inertia, the ocean accumulates most of this energy excess in the form of heat. The estimation of the global ocean heat content through space geodetic observations allows monitoring of the energy imbalance with realistic uncertainties to better understand the Earth’s warming climate.
Pierre Prandi, Jean-Christophe Poisson, Yannice Faugère, Amandine Guillot, and Gérald Dibarboure
Earth Syst. Sci. Data, 13, 5469–5482, https://doi.org/10.5194/essd-13-5469-2021, https://doi.org/10.5194/essd-13-5469-2021, 2021
Short summary
Short summary
We investigate how mapping sea level in the Arctic Ocean can benefit from combining data from three satellite radar altimeters: CryoSat-2, Sentinel-3A and SARAL/AltiKa. A dedicated processing for SARAL/AltiKa provides a baseline for the cross-referencing of CryoSat-2 and Sentinel-3A before mapping. We show that by combining measurements coming from three missions, we are able to increase the resolution of gridded sea level fields in the ice-covered Arctic Ocean.
Zacharie Barrou Dumont, Simon Gascoin, Olivier Hagolle, Michaël Ablain, Rémi Jugier, Germain Salgues, Florence Marti, Aurore Dupuis, Marie Dumont, and Samuel Morin
The Cryosphere, 15, 4975–4980, https://doi.org/10.5194/tc-15-4975-2021, https://doi.org/10.5194/tc-15-4975-2021, 2021
Short summary
Short summary
Since 2020, the Copernicus High Resolution Snow & Ice Monitoring Service has distributed snow cover maps at 20 m resolution over Europe in near-real time. These products are derived from the Sentinel-2 Earth observation mission, with a revisit time of 5 d or less (cloud-permitting). Here we show the good accuracy of the snow detection over a wide range of regions in Europe, except in dense forest regions where the snow cover is hidden by the trees.
Yoann Robin and Aurélien Ribes
Adv. Stat. Clim. Meteorol. Oceanogr., 6, 205–221, https://doi.org/10.5194/ascmo-6-205-2020, https://doi.org/10.5194/ascmo-6-205-2020, 2020
Short summary
Short summary
We have developed a new statistical method to describe how a severe weather event, such as a heat wave, may have been influenced by climate change. Our method incorporates both observations and data from various climate models to reflect climate model uncertainty. Our results show that both the probability and the intensity of the French July 2019 heatwave have increased significantly in response to human influence. We find that this heat wave might not have been possible without climate change.
Michaël Ablain, Benoît Meyssignac, Lionel Zawadzki, Rémi Jugier, Aurélien Ribes, Giorgio Spada, Jerôme Benveniste, Anny Cazenave, and Nicolas Picot
Earth Syst. Sci. Data, 11, 1189–1202, https://doi.org/10.5194/essd-11-1189-2019, https://doi.org/10.5194/essd-11-1189-2019, 2019
Short summary
Short summary
A description of the uncertainties in the Global Mean Sea Level (GMSL) record has been performed; 25 years of satellite altimetry data were used to estimate the error variance–covariance matrix for the GMSL record to derive its confidence envelope. Then a least square approach was used to estimate the GMSL trend and acceleration uncertainties over any time periods. A GMSL trend of 3.35 ± 0.4 mm/yr and a GMSL acceleration of 0.12 ± 0.07 mm/yr² have been found within a 90 % confidence level.
Jean-François Legeais, Pierre Prandi, and Stéphanie Guinehut
Ocean Sci., 12, 647–662, https://doi.org/10.5194/os-12-647-2016, https://doi.org/10.5194/os-12-647-2016, 2016
Short summary
Short summary
Sea level is a key indicator of climate change and has been monitored by satellite altimetry for more than 2 decades. The evaluation of the performances of the altimeter missions can be performed by comparison with in situ-independent measurements from Argo profiling floats. This allows for the detection of altimeter drift and the estimation of the impact of a new altimeter standard. This study aims at characterizing the errors of the method thanks to sensitivity analyses to different parameters.
H. B. Dieng, A. Cazenave, K. von Schuckmann, M. Ablain, and B. Meyssignac
Ocean Sci., 11, 789–802, https://doi.org/10.5194/os-11-789-2015, https://doi.org/10.5194/os-11-789-2015, 2015
M. Ablain, A. Cazenave, G. Larnicol, M. Balmaseda, P. Cipollini, Y. Faugère, M. J. Fernandes, O. Henry, J. A. Johannessen, P. Knudsen, O. Andersen, J. Legeais, B. Meyssignac, N. Picot, M. Roca, S. Rudenko, M. G. Scharffenberg, D. Stammer, G. Timms, and J. Benveniste
Ocean Sci., 11, 67–82, https://doi.org/10.5194/os-11-67-2015, https://doi.org/10.5194/os-11-67-2015, 2015
Short summary
Short summary
This paper presents various respective data improvements achieved within the European Space Agency (ESA) Climate Change Initiative (ESA CCI) project on sea level during its first phase (2010-2013), using multi-mission satellite altimetry data over the 1993-2010 time span.
R. Alkama, L. Marchand, A. Ribes, and B. Decharme
Hydrol. Earth Syst. Sci., 17, 2967–2979, https://doi.org/10.5194/hess-17-2967-2013, https://doi.org/10.5194/hess-17-2967-2013, 2013
Related subject area
Approach: Remote Sensing | Properties and processes: Sea level | Depth range: All Depths | Geographical range: All Geographic Regions | Challenges: Oceans and climate
Revisiting the global mean ocean mass budget over 2005–2020
On the uncertainty associated with detecting global and local mean sea level drifts on Sentinel-3A and Sentinel-3B altimetry missions
Anne Barnoud, Julia Pfeffer, Anny Cazenave, Robin Fraudeau, Victor Rousseau, and Michaël Ablain
Ocean Sci., 19, 321–334, https://doi.org/10.5194/os-19-321-2023, https://doi.org/10.5194/os-19-321-2023, 2023
Short summary
Short summary
The increase in ocean mass due to land ice melting is responsible for about two-thirds of the global mean sea level rise. The ocean mass variations are monitored by GRACE and GRACE Follow-On gravimetry satellites that faced instrumental issues over the last few years. In this work, we assess the robustness of these data by comparing the ocean mass gravimetry estimates to independent observations (other satellite observations, oceanographic measurements and land ice and water models).
Rémi Jugier, Michaël Ablain, Robin Fraudeau, Adrien Guerou, and Pierre Féménias
Ocean Sci., 18, 1263–1274, https://doi.org/10.5194/os-18-1263-2022, https://doi.org/10.5194/os-18-1263-2022, 2022
Short summary
Short summary
To ensure that the sea level is measured as accurately as possible by satellite altimeters, we must monitor possible sea level drifts caused by those instruments through comparison with other satellite altimeters or tide gauges. In this paper, we describe a method and estimate the associated uncertainties for detecting altimeter drifts over short time periods (from 2 to 10 years) through cross-comparison with other satellite altimeters and apply it to the recent Sentinel-3 A/B altimeters.
Cited articles
Ablain, M., Cazenave, A., Valladeau, G., and Guinehut, S.: A new assessment of
the error budget of global mean sea level rate estimated by satellite
altimetry over 1993–2008, Ocean Science, 5, 193–201,
https://doi.org/10.5194/os-5-193-2009, 2009. a, b
Ablain, M., Legeais, J. F., Prandi, P., Marcos, M., Fenoglio-Marc, L., Dieng,
H. B., Benveniste, J., and Cazenave, A.: Satellite Altimetry-Based Sea Level
at Global and Regional Scales, Surv. Geophys., 38, 7–31,
https://doi.org/10.1007/s10712-016-9389-8, 2016. a
Ablain, M., Jugier, R., Zawadzki, L., Taburet, N., Cazenave, A., Meyssignac,
B., and Picot, N.: The TOPEX-A drift and impacts on GMSL time series
Comparison with Poseïdon, p. 2017,
https://meetings.aviso.altimetry.fr/fileadmin/user_upload/tx_ausyclsseminar/files/Poster_OSTST17_GMSL_Drift_TOPEX-A.pdf (last access: 2 November 2022),
2017. a, b, c
Ablain, M., Meyssignac, B., Zawadzki, L., Jugier, R., Ribes, A., Spada, G., Benveniste, J., Cazenave, A., and Picot, N.: Uncertainty in satellite estimates of global mean sea-level changes, trend and acceleration, Earth Syst. Sci. Data, 11, 1189–1202, https://doi.org/10.5194/essd-11-1189-2019, 2019. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q
Ballarotta, M., Ubelmann, C., Pujol, M.-I., Taburet, G., Fournier, F., Legeais, J.-F., Faugère, Y., Delepoulle, A., Chelton, D., Dibarboure, G., and Picot, N.: On the resolutions of ocean altimetry maps, Ocean Sci., 15, 1091–1109, https://doi.org/10.5194/os-15-1091-2019, 2019. a
Barnoud, A., Pfeffer, J., Guérou, A., Frery, M., Siméon, M.,
Cazenave, A., Chen, J., Llovel, W., Thierry, V., Legeais, J., and Ablain, M.:
Contributions of altimetry and Argo to non‐closure of the global mean sea
level budget since 2016, Geophys. Res. Lett., 48
e2021GL092824,
https://doi.org/10.1029/2021GL092824, 2021. a, b
Beckley, B. D., Callahan, P. S., Hancock, D. W., Mitchum, G. T., and Ray,
R. D.: On the “Cal-Mode” Correction to TOPEX Satellite Altimetry and Its
Effect on the Global Mean Sea Level Time Series, J. Geophys.
Res.-Oceans, 122, 8371–8384, https://doi.org/10.1002/2017JC013090, 2017. a, b
Carrère, L. and Lyard, F.: Modeling the barotropic response of the
global ocean to atmospheric wind and pressure forcing - comparisons with
observations, Geophys. Res. Lett., 30, 1997–2000,
https://doi.org/10.1029/2002GL016473, 2003. a
Carrere, L., Lievin, M., Kocha, C., Dagneaux, Q., Lyard, F., Allain, D.,
Faugère, Y., Dibarboure, G., and Picot, N.: Using ERA5 to improve the
Dynamic Atmospheric Correction for altimetry, in: OSTST,
https://meetings.aviso.altimetry.fr/fileadmin/user_upload/tx_ausyclsseminar/files/DAC_ERA5_carrere_et_al.pdf (29 November 2022),
2020. a, b
Carrere, L., Arbic, B. K., Dushaw, B., Egbert, G., Erofeeva, S., Lyard, F., Ray, R. D., Ubelmann, C., Zaron, E., Zhao, Z., Shriver, J. F., Buijsman, M. C., and Picot, N.: Accuracy assessment of global internal-tide models using satellite altimetry, Ocean Sci., 17, 147–180, https://doi.org/10.5194/os-17-147-2021, 2021. a
Cartwright, D. E. and Edden, A. C.: Corrected Tables of Tidal Harmonics,
Geophys. J. Int., 33, 253–264,
https://doi.org/10.1111/j.1365-246X.1973.tb03420.x, 1973. a
Cartwright, D. E. and Tayler, R. J.: New Computations of the Tide-generating
Potential, Geophys. J. Roy. Astro. Soc., 23,
45–73, https://doi.org/10.1111/j.1365-246X.1971.tb01803.x, 1971. a
Cazenave, A. and Moreira, L.: Contemporary sea-level changes from global to
local scales: A review, Philos. T. Roy. Soc. A, 478, 20220049, https://doi.org/10.1098/rspa.2022.0049, 2022. a
CNES/Aviso+, CLS, LEGOS:
Global and Regional MSL products, [data set], https://www.aviso.altimetry.fr/en/data/products/ocean-indicators-products/mean-sea-level/data-acces.html, last access: 28 November 2022. a
Couhert, A., Cerri, L., Legeais, J.-F., Ablain, M., Zelensky, N. P., Haines,
B. J., Lemoine, F. G., Bertiger, W. I., Desai, S. D., and Otten, M.: Towards
the 1 mm/y stability of the radial orbit error at regional scales, Adv. Space Res., 55, 2–23, https://doi.org/10.1016/j.asr.2014.06.041, 2015. a, b
Desai, S., Wahr, J., and Beckley, B.: Revisiting the pole tide for and from
satellite altimetry, J. Geodesy, 89, 1233–1243,
https://doi.org/10.1007/s00190-015-0848-7, 2015. a, b
Dieng, H. B., Cazenave, A., Meyssignac, B., and Ablain, M.: New estimate of
the current rate of sea level rise from a sea level budget approach,
Geophys. Res. Lett., 44, 3744–3751, https://doi.org/10.1002/2017GL073308,
2017. a, b
Dorandeu, J., Ablain, M., Faugère, Y., Mertz, F., Soussi, B., and
Vincent, P.: Jason-1 global statistical evaluation and performance
assessment: Calibration and cross-calibration results, Mar. Geodesy, 27,
345–372, https://doi.org/10.1080/01490410490889094, 2004. a
Fernandes, M. and Lázaro, C.: GPD+ Wet Tropospheric Corrections for
CryoSat-2 and GFO Altimetry Missions, Remote Sens., 8, 851,
https://doi.org/10.3390/rs8100851, 2016. a
Frederikse, T., Riva, R. E. M., and King, M. A.: Ocean Bottom Deformation Due
To Present-Day Mass Redistribution and Its Impact on Sea Level
Observations, Geophys. Res. Lett., 44, 12306–12314, https://doi.org/10.1002/2017GL075419,
2017. a
Fox-Kemper, B., Hewitt, H. T., Xiao, C., Adalgeirsdóttir, G., Drijfhout, S. S., Edwards, T. L., Golledge, N. R., Hemer, M., Kopp, R. E.,
Krinner, G., Mix, A., Notz, D., Nowicki, S., Nurhati, I. S., Ruiz, L., Sallée, J.-B., Slangen, A. B. A., and Yu, Y.: Ocean,
Cryosphere and Sea Level Change, in: Climate Change 2021: The Physical Science Basis, Contribution of Working
Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P.,
Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y.,
Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E.,
Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press,
Cambridge, United Kingdom and New York, NY, USA, 1211–1362, https://doi.org/10.1017/9781009157896.011, 2021. a
Gregory, J. M., Griffies, S. M., Hughes, C. W., Lowe, J. A., Church, J. A.,
Fukimori, I., Gomez, N., Kopp, R. E., Landerer, F., Cozannet, G. L., Ponte,
R. M., Stammer, D., Tamisiea, M. E., and van de Wal, R. S.: Concepts and
Terminology for Sea Level: Mean, Variability and Change, Both Local and
Global, Surv. Geophys., 40, 1251–1289, https://doi.org/10.1007/s10712-019-09525-z, 2019. a
Hakuba, M. Z., Frederikse, T., and Landerer, F. W.: Earth's Energy Imbalance
From the Ocean Perspective (2005–2019), Geophys. Res. Lett., 48, e2021GL093624,
https://doi.org/10.1029/2021GL093624, 2021. a
Hartmann, D. L., Klein Tank, A. M., Rusticucci, M., Alexander, L. V.,
Brönnimann, S., Abdul-Rahman Charabi, Y., Dentener, F. J., Adler, R.,
Allan, R., Allan, R., and Blake, D.: Observations: Atmosphere and Surface
Supplementary Material, in: Climate Change 2013: The Physical Science Basis,
Contribution of Working Group I to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change, Tech. Rep.,
http://www.climatechange2013.org (last access: 29 November 2022), 2013. a
Henry, O., Ablain, M., Meyssignac, B., Cazenave, A., Masters, D., Nerem, S.,
and Garric, G.: Effect of the processing methodology on satellite
altimetry-based global mean sea level rise over the Jason-1 operating
period, J. Geodesy, 88, 351–361, https://doi.org/10.1007/s00190-013-0687-3,
2014. a, b, c, d
IPCC, 2019: Technical Summary, in: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, edited by: [Pörtner, H.-O., Roberts, D. C., Masson-Delmotte, V., Zhai, P., Poloczanska, E., Mintenbeck, K., Tignor, M., Alegría, A., Nicolai, M., Okem, A., Petzold, J., Rama, B., Weyer, N. M., Cambridge University Press, Cambridge, UK and New York, NY, USA, 39–69, https://doi.org/10.1017/9781009157964.002, 2019. a
IPCC Working Group III: Climate Change 2022 – Mitigation of Climate Change, https://report.ipcc.ch/ar6/wg3/IPCC_AR6_WGIII_Full_Report.pdf, last access: 20 December 2022. a
Legeais, J.-F., Ablain, M., and Thao, S.: Evaluation of wet troposphere path delays from atmospheric reanalyses and radiometers and their impact on the altimeter sea level, Ocean Sci., 10, 893–905, https://doi.org/10.5194/os-10-893-2014, 2014. a, b
Legeais, J.-F., Meyssignac, B., Faugère, Y., Guerou, A., Ablain, M.,
Pujol, M.-I., Dufau, C., and Dibarboure, G.: Copernicus Sea Level Space
Observations: A Basis for Assessing Mitigation and Developing Adaptation
Strategies to Sea Level Rise, Front. Mar. Sci., 8, 704721,
https://doi.org/10.3389/fmars.2021.704721, 2021. a
Leuliette, E. W., Nerem, R. S., and Mitchum, G. T.: Calibration of
TOPEX/Poseidon and Jason Altimeter Data to Construct a Continuous Record of
Mean Sea Level Change, Mar. Geodesy, 27, 79–94,
https://doi.org/10.1080/01490410490465193, 2004. a
Lickley, M. J., Hay, C. C., Tamisiea, M. E., and Mitrovica, J. X.: Bias in
Estimates of Global Mean Sea Level Change Inferred from Satellite Altimetry,
J. Climate, 31, 5263–5271, https://doi.org/10.1175/JCLI-D-18-0024.1, 2018. a
Lyard, F. H., Allain, D. J., Cancet, M., Carrère, L., and Picot, N.: FES2014 global ocean tide atlas: design and performance, Ocean Sci., 17, 615–649, https://doi.org/10.5194/os-17-615-2021, 2021. a
Masters, D., Nerem, R. S., Choe, C., Leuliette, E., Beckley, B., White, N., and
Ablain, M.: Comparison of Global Mean Sea Level Time Series from
TOPEX/Poseidon, Jason-1, and Jason-2, Mar. Geodesy, 35, 20–41,
https://doi.org/10.1080/01490419.2012.717862, 2012. a
Mittaz, J., Merchant, C. J., and Woolliams, E. R.: Applying principles of
metrology to historical Earth observations from satellites, Metrologia, 56,
032002, https://doi.org/10.1088/1681-7575/ab1705, 2019. a
Nencioli, F.: Filtering ionospheric correction from altimetry dual-frequencies
solution From SLOOP project to integration in L2 products, Tech. Rep.,
https://www.aviso.altimetry.fr/fileadmin/documents/data/tools/NT-Nencioli_FilteredIonosphericCorrection.pdf (last access: 29 November 2022),
2021. a
Nerem, R. S., Beckley, B. D., Fasullo, J. T., Hamlington, B. D., Masters, D.,
and Mitchum, G. T.: Climate-change–driven accelerated sea-level rise
detected in the altimeter era, P. Natl. Acad. Sci. USA, 115, 2022–2025,
https://doi.org/10.1073/pnas.1717312115, 2018. a, b
Oppenheimer, M., Glavovic, B. C., Hinkel, J., van de Wal, R., Magnan, A. K., Abd-Elgawad, A., Cai, R., Cifuentes-Jara, M., DeConto, R. M.,
Ghosh, T., Hay, J., Isla, F., Marzeion, B., Meyssignac, B., and Sebesvari, Z.: Sea Level Rise and Implications
for Low-Lying Islands, Coasts and Communities, in: IPCC Special Report on the Ocean and Cryosphere in a Changing
Climate, edited by: Pörtner, H.-O., Roberts, D. C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A.,
Nicolai, M., Okem, A., Petzold, J., Rama, B., and Weyer, N. M., Cambridge University Press, Cambridge, UK and New
York, NY, USA, 321–445, https://doi.org/10.1017/9781009157964.006, 2019. a
Prandi, P., Meyssignac, B., Ablain, M., Spada, G., Ribes, A., and Benveniste,
J.: Local sea level trends, accelerations and uncertainties over
1993–2019, Sci. Data, 8, 1, https://doi.org/10.1038/s41597-020-00786-7, 2021. a, b, c, d
Ribes, A., Corre, L., Gibelin, A. L., and Dubuisson, B.: Issues in estimating
observed change at the local scale – a case study: the recent warming over
France, International J. Climatol., 36, 3794–3806,
https://doi.org/10.1002/joc.4593, 2016. a
Ries, J. C. and Desai, S.: Update to the conventional model for rotational
deformation, in: American Geophysical Union, Fall Meeting 2017, Abstract
#G14A-07, 2017. a
Rudenko, S., Neumayer, K.-H., Dettmering, D., Esselborn, S., Schone, T., and
Raimondo, J.-C.: Improvements in Precise Orbits of Altimetry Satellites and
Their Impact on Mean Sea Level Monitoring, IEEE T. Geosci. Remote, 55, 3382–3395, https://doi.org/10.1109/TGRS.2017.2670061, 2017.
a
Scharffenberg, M. G. and Stammer, D.: Time‐Space Sampling‐Related
Uncertainties of Altimetric Global Mean Sea Level Estimates, J. Geophys. Res.-Oceans, 124, 7743–7755, https://doi.org/10.1029/2018JC014785,
2019. a
Spada, G.: Glacial Isostatic Adjustment and Contemporary Sea Level Rise: An
Overview, Surv. Geophys., 38, 153–185,
https://doi.org/10.1007/s10712-016-9379-x, 2017. a, b
Thao, S., Eymard, L., Obligis, E., and Picard, B.: Trend and Variability of
the Atmospheric Water Vapor: A Mean Sea Level Issue, J. Atmos. Ocean. Technol., 31, 1881–1901, https://doi.org/10.1175/JTECH-D-13-00157.1,
2014. a, b
Tran, N., Labroue, S., Philipps, S., Bronner, E., and Picot, N.: Overview and
Update of the Sea State Bias Corrections for the Jason-2, Jason-1 and TOPEX
Missions, Mar. Geodesy, 33, 348–362, https://doi.org/10.1080/01490419.2010.487788,
2010. a
Tran, N., Philipps, S., Poisson, J.-C., Urien, S., Bronner, E., and Picot, N.:
OSTST 2012, Venice Splinter : Instrument Processing Impact of GDR-D
standards on SSB corrections, Tech. Rep.,
https://www.aviso.altimetry.fr/fileadmin/documents/OSTST/2012/oral/02_friday_28/01_instr_processing_I/01_IP1_Tran.pdf (last access: 29 November 2022),
2012. a, b
Valladeau, G., Legeais, J. F., Ablain, M., Guinehut, S., and Picot, N.:
Comparing Altimetry with Tide Gauges and Argo Profiling Floats for Data
Quality Assessment and Mean Sea Level Studies, Mar. Geodesy, 35, 42–60,
https://doi.org/10.1080/01490419.2012.718226, 2012. a
Veng, T. and Andersen, O. B.: Consolidating Sea Level Acceleration Estimates
from Satellite Altimetry, Adv. Space Res., 68, 1–8,
https://doi.org/10.1016/j.asr.2020.01.016, 2020. a
von Storch, H. and Zwiers, F. W.: Statistical Analysis in Climate Research,
Cambridge University Press, https://doi.org/10.1017/CBO9780511612336, 1999. a
Watson, C. S., White, N. J., Church, J. A., King, M. A., Burgette, R. J., and
Legresy, B.: Unabated global mean sea-level rise over the satellite
altimeter era, Nat. Clim. Change, 5, 565–568,
https://doi.org/10.1038/nclimate2635, 2015. a, b
WCRP Global Sea Level Budget Group: Global sea-level budget 1993–present, Earth Syst. Sci. Data, 10, 1551–1590, https://doi.org/10.5194/essd-10-1551-2018, 2018. a, b
Zaron, E. D.: Baroclinic Tidal Sea Level from Exact-Repeat Mission Altimetry,
J. Phys. Ocean., 49, 193–210,
https://doi.org/10.1175/JPO-D-18-0127.1, 2019. a, b
Zawadzki, L. and Ablain, M.: Accuracy of the mean sea level continuous record with future altimetric missions: Jason-3 vs. Sentinel-3a, Ocean Sci., 12, 9–18, https://doi.org/10.5194/os-12-9-2016, 2016. a, b
Short summary
Based on the latest satellite observations published by the French space agency CNES, we present the current state of the sea level at the scale of the planet and assess its rise and acceleration over the past 29 years. To support scientific research we provide updated estimations of our confidence in our estimations and highlight key technological and scientific fields. Making progress on that will help to better characterize the sea level in the future.
Based on the latest satellite observations published by the French space agency CNES, we present...