Articles | Volume 19, issue 2
https://doi.org/10.5194/os-19-381-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-19-381-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Water mass transformation variability in the Weddell Sea in ocean reanalyses
Department of Earth & Environmental Sciences of Columbia University,
Lamont-Doherty Earth Observatory, Room 106 Geoscience Bldg.,
P.O. Box 1000, Palisades, NY 10964, United States of America
C. Spencer Jones
Department of Oceanography at Texas A&M University, Eller O&M Building, College Station, TX 77843, United States of America
Ryan P. Abernathey
Department of Earth & Environmental Sciences of Columbia University,
Lamont-Doherty Earth Observatory, Room 106 Geoscience Bldg.,
P.O. Box 1000, Palisades, NY 10964, United States of America
Arnold L. Gordon
Department of Earth & Environmental Sciences of Columbia University,
Lamont-Doherty Earth Observatory, Room 106 Geoscience Bldg.,
P.O. Box 1000, Palisades, NY 10964, United States of America
Xiaojun Yuan
Lamont Doherty Earth Observatory, P.O. Box 1000, 61 Route 9W
Palisades, NY 10964, United States of America
Related authors
No articles found.
Tongya Liu and Ryan Abernathey
Earth Syst. Sci. Data, 15, 1765–1778, https://doi.org/10.5194/essd-15-1765-2023, https://doi.org/10.5194/essd-15-1765-2023, 2023
Short summary
Short summary
Nearly all existing datasets of mesoscale eddies are based on the Eulerian method because of its operational simplicity. Using satellite observations and a Lagrangian method, we present a global Lagrangian eddy dataset (GLED v1.0). We conduct the statistical comparison between two types of eddies and the dataset validation. Our dataset offers relief from dilemma that the Eulerian eddy dataset is nearly the only option for studying mesoscale eddies.
Takaya Uchida, Julien Le Sommer, Charles Stern, Ryan P. Abernathey, Chris Holdgraf, Aurélie Albert, Laurent Brodeau, Eric P. Chassignet, Xiaobiao Xu, Jonathan Gula, Guillaume Roullet, Nikolay Koldunov, Sergey Danilov, Qiang Wang, Dimitris Menemenlis, Clément Bricaud, Brian K. Arbic, Jay F. Shriver, Fangli Qiao, Bin Xiao, Arne Biastoch, René Schubert, Baylor Fox-Kemper, William K. Dewar, and Alan Wallcraft
Geosci. Model Dev., 15, 5829–5856, https://doi.org/10.5194/gmd-15-5829-2022, https://doi.org/10.5194/gmd-15-5829-2022, 2022
Short summary
Short summary
Ocean and climate scientists have used numerical simulations as a tool to examine the ocean and climate system since the 1970s. Since then, owing to the continuous increase in computational power and advances in numerical methods, we have been able to simulate increasing complex phenomena. However, the fidelity of the simulations in representing the phenomena remains a core issue in the ocean science community. Here we propose a cloud-based framework to inter-compare and assess such simulations.
Yunhe Wang, Xiaojun Yuan, Haibo Bi, Mitchell Bushuk, Yu Liang, Cuihua Li, and Haijun Huang
The Cryosphere, 16, 1141–1156, https://doi.org/10.5194/tc-16-1141-2022, https://doi.org/10.5194/tc-16-1141-2022, 2022
Short summary
Short summary
We develop a regional linear Markov model consisting of four modules with seasonally dependent variables in the Pacific sector. The model retains skill for detrended sea ice extent predictions for up to 7-month lead times in the Bering Sea and the Sea of Okhotsk. The prediction skill, as measured by the percentage of grid points with significant correlations (PGS), increased by 75 % in the Bering Sea and 16 % in the Sea of Okhotsk relative to the earlier pan-Arctic model.
Tingfeng Dou, Cunde Xiao, Jiping Liu, Qiang Wang, Shifeng Pan, Jie Su, Xiaojun Yuan, Minghu Ding, Feng Zhang, Kai Xue, Peter A. Bieniek, and Hajo Eicken
The Cryosphere, 15, 883–895, https://doi.org/10.5194/tc-15-883-2021, https://doi.org/10.5194/tc-15-883-2021, 2021
Short summary
Short summary
Rain-on-snow (ROS) events can accelerate the surface ablation of sea ice, greatly influencing the ice–albedo feedback. We found that spring ROS events have shifted to earlier dates over the Arctic Ocean in recent decades, which is correlated with sea ice melt onset in the Pacific sector and most Eurasian marginal seas. There has been a clear transition from solid to liquid precipitation, leading to a reduction in spring snow depth on sea ice by more than −0.5 cm per decade since the 1980s.
Amelie Driemel, Eberhard Fahrbach, Gerd Rohardt, Agnieszka Beszczynska-Möller, Antje Boetius, Gereon Budéus, Boris Cisewski, Ralph Engbrodt, Steffen Gauger, Walter Geibert, Patrizia Geprägs, Dieter Gerdes, Rainer Gersonde, Arnold L. Gordon, Hannes Grobe, Hartmut H. Hellmer, Enrique Isla, Stanley S. Jacobs, Markus Janout, Wilfried Jokat, Michael Klages, Gerhard Kuhn, Jens Meincke, Sven Ober, Svein Østerhus, Ray G. Peterson, Benjamin Rabe, Bert Rudels, Ursula Schauer, Michael Schröder, Stefanie Schumacher, Rainer Sieger, Jüri Sildam, Thomas Soltwedel, Elena Stangeew, Manfred Stein, Volker H Strass, Jörn Thiede, Sandra Tippenhauer, Cornelis Veth, Wilken-Jon von Appen, Marie-France Weirig, Andreas Wisotzki, Dieter A. Wolf-Gladrow, and Torsten Kanzow
Earth Syst. Sci. Data, 9, 211–220, https://doi.org/10.5194/essd-9-211-2017, https://doi.org/10.5194/essd-9-211-2017, 2017
Short summary
Short summary
Our oceans are always in motion – huge water masses are circulated by winds and by global seawater density gradients resulting from different water temperatures and salinities. Measuring temperature and salinity of the world's oceans is crucial e.g. to understand our climate. Since 1983, the research icebreaker Polarstern has been the basis of numerous water profile measurements in the Arctic and the Antarctic. We report on a unique collection of 33 years of polar salinity and temperature data.
A. Gnanadesikan, M.-A. Pradal, and R. Abernathey
Ocean Sci., 11, 591–605, https://doi.org/10.5194/os-11-591-2015, https://doi.org/10.5194/os-11-591-2015, 2015
Short summary
Short summary
Many ocean circulation models use representations of lateral mixing based on instability theories that predict weak mixing in the ocean interior, much lower than observed. We show that using more realistic mixing improves the distribution of mantle helium-3. It does not, however, resolve the paradox that models reproduce the relationship between mantle helium and radiocarbon with a flux of helium-3 lower than is consistent with the heat leaving the mantle.
Cited articles
Abernathey, R. P., Cerovecki, I., Holland, P. R., Newsom, E., Mazloff, M., and
Talley, L. D.: Water-mass transformation by sea ice in the upper branch of
the Southern Ocean overturning, Nat. Geosci., 9, 596–601,
https://doi.org/10.1038/ngeo2749, 2016. a, b, c
Armitage, T. W. K., Kwok, R., Thompson, A. F., and Cunningham, G.: Dynamic
Topography and Sea Level Anomalies of the Southern Ocean: Variability and
Teleconnections, J. Geophys. Res.-Oceans, 123, 613–630,
https://doi.org/10.1002/2017JC013534, 2018. a
Bailey, S.: Water mass transformation variability in the Weddell
Sea in Ocean Reanalyses, Zenodo [code], https://doi.org/10.5281/zenodo.7776037, 2023. a
Brown, P. J., Jullion, L., Landschützer, P., Bakker, D. C. E.,
Naveira Garabato, A. C., Meredith, M. P., Torres-Valdés, S., Watson, A. J.,
Hoppema, M., Loose, B., Jones, E. M., Telszewski, M., Jones, S. D., and
Wanninkhof, R.: Carbon dynamics of the Weddell Gyre, Southern Ocean, Global
Biogeochem. Cy., 29, 288–306,
https://doi.org/10.1002/2014GB005006, 2015. a
Buckley, M., Campin, J.-M., Chaudhuri, A., Fenty, I., Forget, G., Fukumori, I.,
Heimbach, P., Hill, C., King, C., Liang, X., Nguyen, A., Piecuch, C., Ponte1,
R., Quinn, K., Sonnewald, M., Spiege, D., Vinogradova, N., Wang, O., and
Wunsch, C.: The ECCO Consortium: A Twenty-Year Dynamical Oceanic Climatology:
1994–2013. Part 2: Velocities, Property Transports, Meteorological Variables,
Mixing Coefficients, MIT Libraries [preprint], http://hdl.handle.net/1721.1/109847 (last access: 1 March 2023), 2017. a
Carmack, E. C.: A quantitative characterization of water masses in the Weddell
sea during summer, Deep-Sea Research and Oceanographic Abstracts, 21,
431–443, https://doi.org/10.1016/0011-7471(74)90092-8, 1974. a
Carmack, E. C. and Foster, T. D.: On the flow of water out of the Weddell Sea,
Deep-Sea Research and Oceanographic Abstracts, 22, 711–724,
https://doi.org/10.1016/0011-7471(75)90077-7, 1975. a
Carton, J. A., Chepurin, G. A., and Chen, L.: SODA3: A New Ocean Climate
Reanalysis, J. Climate, 31, 6967–6983,
https://doi.org/10.1175/JCLI-D-18-0149.1, 2018. a, b, c
Carton, J. A., Penny, S. G., and Kalnay, E.: Temperature and Salinity
Variability in the SODA3, ECCO4r3, and ORAS5 Ocean Reanalyses, 1993–2015,
J. Climate, 32, 2277–2293, https://doi.org/10.1175/JCLI-D-18-0605.1, 2019. a
Couldrey, M. P., Jullion, L., Naveira Garabato, A. C., Rye, C.,
Herráiz-Borreguero, L., Brown, P. J., Meredith, M. P., and Speer, K. L.:
Remotely induced warming of Antarctic Bottom Water in the eastern Weddell
gyre, Geophys. Res. Lett., 40, 2755–2760,
https://doi.org/10.1002/grl.50526, 2013. a
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi,
S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P.,
Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C.,
Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B.,
Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M.,
Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park,
B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart,
F.: The ERA-Interim reanalysis: configuration and performance of the data
assimilation system, Q. J. Roy. Meteor. Soc.,
137, 553–597, https://doi.org/10.1002/qj.828, 2011. a, b
Delworth, T. L., Rosati, A., Anderson, W., Adcroft, A. J., Balaji, V., Benson,
R., Dixon, K., Griffies, S. M., Lee, H.-C., Pacanowski, R. C., Vecchi, G. A.,
Wittenberg, A. T., Zeng, F., and Zhang, R.: Simulated Climate and Climate
Change in the GFDL CM2.5 High-Resolution Coupled Climate Model, J.
Climate, 25, 2755–2781, https://doi.org/10.1175/JCLI-D-11-00316.1, 2012. a, b
Evans, D. G., Zika, J. D., Naveira Garabato, A. C., and Nurser, A. J. G.: The
Cold Transit of Southern Ocean Upwelling, Geophys. Res. Lett., 45,
13386–13395, https://doi.org/10.1029/2018GL079986, 2018. a, b
Fahrbach, E., Hoppema, M., Rohardt, G., Schroder, M., and Wisotzki, A.:
Decadal-scale variations of water mass properties in the deep Weddell Sea,
Ocean Dynam., 54, 77–91, 2004. a
Fahrbach, E., Hoppema, M., Rohardt, G., Boebel, O., Klatt, O., and Wisotzki,
A.: Warming of deep and abyssal water masses along the Greenwich meridian on
decadal time scales: The Weddell gyre as a beat buffer, Deep-Sea Res. Pt. II, 58,
2508–2523, 2011. a
Ferrari, R., Jansen, M. F., Adkins, J. F., Burke, A., Stewart, A. L., and
Thompson, A. F.: Antarctic sea ice control on ocean circulation in present
and glacial climates, P. Natl. Acad. Sci. USA, 111, 8753–8758, https://doi.org/10.1073/pnas.1323922111,
2014. a
Forget, G., Campin, J.-M., Heimbach, P., Hill, C. N., Ponte, R. M., and Wunsch, C.: ECCO version 4: an integrated framework for non-linear inverse modeling and global ocean state estimation, Geosci. Model Dev., 8, 3071–3104, https://doi.org/10.5194/gmd-8-3071-2015, 2015. a, b, c, d
Fukumori, I., Fenty, I. Forget, G., Heimbach, P., King, C., Nguyen, A.,
Piecuch, P., Ponte, R., Quinn, K., Vinogradova, N., and Wang, O.: Data sets
used in ECCO Version 4 Release 3, http://hdl.handle.net/1721.1/120472 (last access: 29 March 2023), 2018. a
Gill, A.: Circulation and bottom water production in the Weddell Sea, Deep-Sea
Research and Oceanographic Abstracts, 20, 111–140,
https://doi.org/10.1016/0011-7471(73)90048-X, 1973. a
Gordon, A. L., Visbeck, M., and Huber, B.: Export of Weddell Sea deep and
bottom water, J. Geophys. Res.-Oceans, 106, 9005–9017,
https://doi.org/10.1029/2000JC000281, 2001. a
Gordon, A. L., Visbeck, M., and Comiso, J. C.: A Possible Link between the
Weddell Polynya and the Southern Annular Mode, J. Climate, 20, 2558–2571, https://doi.org/10.1175/JCLI4046.1, 2007. a, b, c
Gordon, A. L., Huber, B., McKee, D., and Visbeck, M.: A seasonal cycle in the
export of bottom water from the Weddell Sea, Nat. Geosci., 3, 551–556,
https://doi.org/10.1038/ngeo916, 2010. a, b
Groeskamp, S., Abernathey, R. P., and Klocker, A.: Water mass transformation by
cabbeling and thermobaricity, Geophys. Res. Lett., 43,
10835–10845, https://doi.org/10.1002/2016GL070860, 2016. a
Groeskamp, S., Griffies, S. M., Iudicone, D., Marsh, R., Nurser, A. G., and
Zika, J. D.: The Water Mass Transformation Framework for Ocean Physics and
Biogeochemistry, Annu. Rev. Mar. Sci., 11, 271–305,
https://doi.org/10.1146/annurev-marine-010318-095421, 2019. a
Hellmer, H. H., Huhn, O., Gomis, D., and Timmermann, R.: On the freshening of the northwestern Weddell Sea continental shelf, Ocean Sci., 7, 305–316, https://doi.org/10.5194/os-7-305-2011, 2011. a
Heuzé, C.: Antarctic Bottom Water and North Atlantic Deep Water in CMIP6 models, Ocean Sci., 17, 59–90, https://doi.org/10.5194/os-17-59-2021, 2021. a
Heuzé, C., Heywood, K. J., Stevens, D. P., and Ridley, J. K.: Southern Ocean
bottom water characteristics in CMIP5 models, Geophys. Res. Lett.,
40, 1409–1414, https://doi.org/10.1002/grl.50287, 2013. a, b
Holmes, R. M., Zika, J. D., Griffies, S. M., Hogg, A. M., Kiss, A. E., and
England, M. H.: The Geography of Numerical Mixing in a Suite of Global Ocean
Models, J. Adv. Model. Earth Sy., 13, e2020MS002333,
https://doi.org/10.1029/2020MS002333, 2021. a
Huang, B., Thorne, P. W., Banzon, V. F., Boyer, T., Chepurin, G., Lawrimore,
J. H., Menne, M. J., Smith, T. M., Vose, R. S., and Zhang, H.-M.: Extended
Reconstructed Sea Surface Temperature, Version 5 (ERSSTv5): Upgrades,
Validations, and Intercomparisons, J. Climate, 30, 8179–8205,
https://doi.org/10.1175/JCLI-D-16-0836.1, 2017. a
Ito, T., Bracco, A., Deutsch, C., Frenzel, H., Long, M., and Takano, Y.:
Sustained growth of the Southern Ocean carbon storage in a warming climate,
Geophys. Res. Lett., 42, 4516–4522,
https://doi.org/10.1002/2015GL064320, 2015. a
Iudicone, D., Madec, G., Blanke, B., and Speich, S.: The Role of Southern Ocean
Surface Forcings and Mixing in the Global Conveyor, J. Phys.
Oceanogr., 38, 1377–1400, https://doi.org/10.1175/2008JPO3519.1,
2008a. a, b
Iudicone, D., Madec, G., and McDougall, T. J.: Water-Mass Transformations in a
Neutral Density Framework and the Key Role of Light Penetration, J.
Phys. Oceanogr., 38, 1357–1376, https://doi.org/10.1175/2007JPO3464.1,
2008b. a, b, c
Jackett, D. R. and Mcdougall, T. J.: Minimal Adjustment of Hydrographic
Profiles to Achieve Static Stability, J. Atmos. Ocean.
Technol., 12, 381–389,
https://doi.org/10.1175/1520-0426(1995)012<0381:MAOHPT>2.0.CO;2, 1995. a
Jackett, D. R. and McDougall, T. J.: A Neutral Density Variable for the
World’s Oceans, J. Phys. Oceanogr., 27, 237–263,
https://doi.org/10.1175/1520-0485(1997)027<0237:ANDVFT>2.0.CO;2, 1997. a
Johnson, G. C.: Quantifying Antarctic Bottom Water and North Atlantic Deep
Water volumes, J. Geophys. Res.-Oceans, 113, C05027,
https://doi.org/10.1029/2007JC004477, 2008. a
Jullion, L., Garabato, A. C. N., Meredith, M. P., Holland, P. R., Courtois, P.,
and King, B. A.: Decadal Freshening of the Antarctic Bottom Water Exported
from the Weddell Sea, J. Climate, 26, 8111–8125,
https://doi.org/10.1175/JCLI-D-12-00765.1, 2013. a
Kerr, R., Dotto, T. S., Mata, M. M., and Hellmer, H. H.: Three decades of deep
water mass investigation in the Weddell Sea (1984–2014): Temporal
variability and changes, Deep Sea Res. Pt. II, 149, 70–83, https://doi.org/10.1016/j.dsr2.2017.12.002, 2018. a
Kiss, A. E., Hogg, A. McC., Hannah, N., Boeira Dias, F., Brassington, G. B., Chamberlain, M. A., Chapman, C., Dobrohotoff, P., Domingues, C. M., Duran, E. R., England, M. H., Fiedler, R., Griffies, S. M., Heerdegen, A., Heil, P., Holmes, R. M., Klocker, A., Marsland, S. J., Morrison, A. K., Munroe, J., Nikurashin, M., Oke, P. R., Pilo, G. S., Richet, O., Savita, A., Spence, P., Stewart, K. D., Ward, M. L., Wu, F., and Zhang, X.: ACCESS-OM2 v1.0: a global ocean–sea ice model at three resolutions, Geosci. Model Dev., 13, 401–442, https://doi.org/10.5194/gmd-13-401-2020, 2020. a
Locarnini, R. A., Mishonov, A.
V., Antonov, J. I., Boyer, T. P., Garcia, H.
E., Baranova, O. K., Zweng, M. M., Paver, C.
R., Reagan, J. R., Johnson, D. R., Hamilton,
M., and Seidov, D.: World
Ocean Atlas 2013, Volume 1: Temperature, S. Levitus, Ed.; A. Mishonov, Technical Ed.;
NOAA Atlas NESDIS 73, 40 pp., https://doi.org/10.7289/V55X26VD, 2013. a, b
Mackensen, A., Hubberten, H. W., Scheele, N., and Schlitzer, R.: Decoupling of
δ13CΣCO2 and phosphate in recent Weddell Sea deep and bottom water:
Implications for glacial Southern Ocean paleoceanography, Paleoceanography,
11, 203–215, https://doi.org/10.1029/95PA03840, 1996. a
Marshall, G. and National Center for Atmospheric Research Staff: The
Climate Data Guide: Marshall Southern Annular Mode (SAM) Index
(Station-based),
https://climatedataguide.ucar.edu/climate-data/marshall-southern-annular-mode-sam-index-station-based, last access: 20 February 2021. a
Mazloff, M. and National Center for Atmospheric Research Staff: The Climate
Data Guide: Southern Ocean State Estimate (SOSE),
https://climatedataguide.ucar.edu/climate-data/southern-ocean-state-estimate-sose, last access: 2 June 2021. a
Mazloff, M. R.: The dynamics of the Southern Ocean meridional overturning
circulation as diagnosed from an eddy permitting state estimate, PhD thesis, Massachusetts Institute of
Technology and the Woods Hole Oceanographic Institution, 127
pp., 2008. a
Mazloff, M. R., Heimbach, P., and Wunsch, C.: An Eddy-Permitting Southern Ocean
State Estimate, J. Phys. Oceanogr., 40, 880–899,
https://doi.org/10.1175/2009JPO4236.1, 2010. a, b
McKee, D. C., Yuan, X., Gordon, A. L., Huber, B. A., and Dong, Z.: Climate
impact on interannual variability of Weddell Sea Bottom Water, J.
Geophys. Res.-Oceans, 116, C05020,
https://doi.org/10.1029/2010JC006484, 2011. a, b
Meredith, M. P., Locarnini, R. A., Van Scoy, K. A., Watson, A. J., Heywood,
K. J., and King, B. A.: On the sources of Weddell Gyre Antarctic Bottom
Water, J. Geophys. Res.-Oceans, 105, 1093–1104,
https://doi.org/10.1029/1999JC900263, 2000. a
Meredith, M. P., Garabato, A. C. N., Gordon, A. L., and Johnson, G. C.:
Evolution of the Deep and Bottom Waters of the Scotia Sea, Southern Ocean,
during 1995–2005, J. Climate, 21, 3327–3343,
https://doi.org/10.1175/2007JCLI2238.1, 2008. a, b
Meredith, M. P., Gordon, A. L., Naveira Garabato, A. C., Abrahamsen, E. P.,
Huber, B. A., Jullion, L., and Venables, H. J.: Synchronous intensification
and warming of Antarctic Bottom Water outflow from the Weddell Gyre,
Geophys. Res. Lett., 38, L03603, https://doi.org/10.1029/2010GL046265,
2011. a
Mohrmann, M., Heuzé, C., and Swart, S.: Southern Ocean polynyas in CMIP6 models, The Cryosphere, 15, 4281–4313, https://doi.org/10.5194/tc-15-4281-2021, 2021. a
Mohrmann, M., Swart, S., and Heuzé, C.: Observed Mixing at the Flanks of Maud
Rise in the Weddell Sea, Geophys. Res. Lett., 49, e2022GL098036,
https://doi.org/10.1029/2022GL098036, 2022. a
Morrison, A. K., Griffies, S. M., Winton, M., Anderson, W. G., and Sarmiento,
J. L.: Mechanisms of Southern Ocean Heat Uptake and Transport in a Global
Eddying Climate Model, J. Climate, 29, 2059–2075,
https://doi.org/10.1175/JCLI-D-15-0579.1, 2016. a
Nakata, K., Ohshima, K. I., and Nihashi, S.: Mapping of Active Frazil for
Antarctic Coastal Polynyas, With an Estimation of Sea-Ice Production,
Geophys. Res. Lett., 48, e2020GL091353,
https://doi.org/10.1029/2020GL091353, 2021. a
Naveira Garabato, A. C., McDonagh, E. L., Stevens, D. P., Heywood, K. J., and
Sanders, R. J.: On the export of Antarctic Bottom Water from the Weddell Sea,
Deep-Sea Res. Pt. II, 49, 4715–4742,
https://doi.org/10.1016/S0967-0645(02)00156-X, 2002. a
Neme, J., England, M. H., and Hogg, A. M.: Seasonal and Interannual Variability
of the Weddell Gyre From a High-Resolution Global Ocean-Sea Ice Simulation
During 1958–2018, J. Geophys. Res.-Oceans, 126,
e2021JC017662, https://doi.org/10.1029/2021JC017662, 2021. a
Nikurashin, M. and Vallis, G.: A Theory of Deep Stratification and Overturning
Circulation in the Ocean, J. Phys. Oceanogr., 41, 485–502,
https://doi.org/10.1175/2010JPO4529.1, 2011. a, b
Nikurashin, M. and Vallis, G.: A Theory of the Interhemispheric Meridional
Overturning Circulation and Associated Stratification, J. Phys.
Oceanogr., 42, 1652–1667, https://doi.org/10.1175/JPO-D-11-0189.1, 2012. a, b
Nycander, J., Hieronymus, M., and Roquet, F.: The nonlinear equation of state
of sea water and the global water mass distribution, Geophys. Res.
Lett., 42, 7714–7721, https://doi.org/10.1002/2015GL065525, 2015. a
Orsi, A., Johnson, G., and Bullister, J.: Circulation, mixing, and production
of Antarctic Bottom Water, Prog. Oceanogr., 43, 55–109,
https://doi.org/10.1016/S0079-6611(99)00004-X, 1999. a
Pangeo Catalog: Ocean, Pangeo Oceanography Dataset Catalog [data set], https://catalog.pangeo.io/browse/master/ocean/, last access: 1 March 2023. a
Purkey, S. G. and Johnson, G. C.: Global Contraction of Antarctic Bottom Water
between the 1980s and 2000s, J. Climate, 25, 5830–5844,
https://doi.org/10.1175/JCLI-D-11-00612.1, 2012. a, b
Purkey, S. G. and Johnson, G. C.: Antarctic Bottom Water Warming and
Freshening: Contributions to Sea Level Rise, Ocean Freshwater Budgets, and
Global Heat Gain, J. Climate, 26, 6105–6122,
https://doi.org/10.1175/JCLI-D-12-00834.1, 2013. a
Purkey, S. G., Smethie, W. M., Gebbie, G., Gordon, A. L., Sonnerup, R. E.,
Warner, M. J., and Bullister, J. L.: A Synoptic View of the Ventilation and
Circulation of Antarctic Bottom Water from Chlorofluorocarbons and Natural
Tracers, Annu. Rev. Mar. Sci., 10, 503–527,
https://doi.org/10.1146/annurev-marine-121916-063414, 2018. a
Robertson, R., Visbeck, M., Gordon, A. L., and Fahrbach, E.: Long-term
temperature trends in the deep waters of the Weddell Sea, Deep-Sea Res.
Pt. II, 49, 4791–4806,
https://doi.org/10.1016/S0967-0645(02)00159-5, 2002. a
Small, R. J., Bacmeister, J., Bailey, D., Baker, A., Bishop, S., Bryan, F.,
Caron, J., Dennis, J., Gent, P., Hsu, H.-M., Jochum, M., Lawrence, D.,
Muñoz, E., diNezio, P., Scheitlin, T., Tomas, R., Tribbia, J., Tseng, Y.-H.,
and Vertenstein, M.: A new synoptic scale resolving global climate simulation
using the Community Earth System Model, J. Adv. Model. Earth
Sy., 6, 1065–1094, https://doi.org/10.1002/2014MS000363, 2014. a
Stewart, A. L.: Mesoscale, tidal and seasonal/interannual drivers of the
Weddell Sea overturning circulation, J. Phys. Oceanogr., 51, 3695–3722,
https://doi.org/10.1175/JPO-D-20-0320.1, 2021. a, b
Talley, L. D.: Closure of the Global Overturning Circulation Through the
Indian, Pacific, and Southern Oceans: Schematics and Transports,
Oceanography, 26, 80–97, https://doi.org/10.5670/oceanog.2013.07, 2013. a
Talley, L. D., Reid, J. L., and Robbins, P. E.: Data-Based Meridional
Overturning Streamfunctions for the Global Ocean, J. Climate, 16,
3213–3226, https://doi.org/10.1175/1520-0442(2003)016<3213:DMOSFT>2.0.CO;2, 2003. a
Tesdal, J.-E. and Abernathey, R. P.: Drivers of Local Ocean Heat Content
Variability in ECCOv4, J. Climate, 34, 2941–2956,
https://doi.org/10.1175/JCLI-D-20-0058.1, 2021. a
Vernet, M., Geibert, W., Hoppema, M., Brown, P. J., Haas, C., Hellmer, H. H.,
Jokat, W., Jullion, L., Mazloff, M., Bakker, D. C. E., Brearley, J. A.,
Croot, P., Hattermann, T., Hauck, J., Hillenbrand, C.-D., Hoppe, C. J. M.,
Huhn, O., Koch, B. P., Lechtenfeld, O. J., Meredith, M. P., Naveira Garabato,
A. C., Nöthig, E.-M., Peeken, I., Rutgers van der Loeff, M. M., Schmidtko,
S., Schröder, M., Strass, V. H., Torres-Valdés, S., and Verdy, A.: The
Weddell Gyre, Southern Ocean: Present Knowledge and Future Challenges,
Rev. Geophys., 57, 623–708,
https://doi.org/10.1029/2018RG000604, 2019. a, b
Walin, G.: On the relation between sea-surface heat flow and thermal
circulation in the ocean, Tellus, 34, 187–195,
https://doi.org/10.1111/j.2153-3490.1982.tb01806.x, 1982. a, b, c
Williams, R.: Ocean Subduction, edited by: Steele, J. H., Academic Press, Oxford, 2nd Edn.,
https://doi.org/10.1016/B978-012374473-9.00109-0, 2001. a
Wunsch, C. and Heimbach, P.: Practical global ocean state estimation, Physica
D, 230, 197–208, https://doi.org/10.1016/j.physd.2006.09.040,
2007. a
Wunsch, C. and Heimbach, P.: Dynamically and Kinematically Consistent Global
Ocean Circulation and Ice State Estimates, Int. Geophys., 103, 553–579,
https://doi.org/10.1016/B978-0-12-391851-2.00021-0, 2013. a
Zweng, M. M., Reagan, J.
R., Antonov, J. I., Locarnini, R. A., Mishonov, A.
V., Boyer, T. P., Garcia, H. E., Baranova, O.
K., Johnson, D. R., Seidov, D., and Biddle, M. M.: World Ocean Atlas 2013, Volume 2: Salinity, S. Levitus, Ed.; A. Mishonov, Technical Ed.;
NOAA Atlas NESDIS 74, 39 pp., https://doi.org/10.7289/V5251G4D, 2013. a, b
Short summary
This study explores the variability of water mass transformation within the Weddell Gyre (WG). The WG is the largest source of Antarctic Bottom Water (AABW). Changes to our climate can modify the mechanisms that transform waters to become AABW. In this study, we computed water mass transformation volume budgets by using three ocean models and a mathematical framework developed by Walin. Out of the three models, we found one to be most useful in studying the interannual variability of AABW.
This study explores the variability of water mass transformation within the Weddell Gyre (WG)....