Articles | Volume 19, issue 2
https://doi.org/10.5194/os-19-289-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-19-289-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A numerical investigation on the energetics of a current along an ice-covered continental slope
State Key Laboratory of Satellite Ocean Environment Dynamics, Second
Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012,
China
Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth
Institute of Oceanography, Ministry of Natural Resources, Beihai 536000,
China
Hailun He
CORRESPONDING AUTHOR
State Key Laboratory of Satellite Ocean Environment Dynamics, Second
Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012,
China
Michael A. Spall
Department of Physical Oceanography, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
Related authors
No articles found.
Céline Heuzé, Oliver Huhn, Maren Walter, Natalia Sukhikh, Salar Karam, Wiebke Körtke, Myriel Vredenborg, Klaus Bulsiewicz, Jürgen Sültenfuß, Ying-Chih Fang, Christian Mertens, Benjamin Rabe, Sandra Tippenhauer, Jacob Allerholt, Hailun He, David Kuhlmey, Ivan Kuznetsov, and Maria Mallet
Earth Syst. Sci. Data, 15, 5517–5534, https://doi.org/10.5194/essd-15-5517-2023, https://doi.org/10.5194/essd-15-5517-2023, 2023
Short summary
Short summary
Gases dissolved in the ocean water not used by the ecosystem (or "passive tracers") are invaluable to track water over long distances and investigate the processes that modify its properties. Unfortunately, especially so in the ice-covered Arctic Ocean, such gas measurements are sparse. We here present a data set of several passive tracers (anthropogenic gases, noble gases and their isotopes) collected over the full ocean depth, weekly, during the 1-year drift in the Arctic during MOSAiC.
Long Lin, Ruibo Lei, Mario Hoppmann, Donald K. Perovich, and Hailun He
The Cryosphere, 16, 4779–4796, https://doi.org/10.5194/tc-16-4779-2022, https://doi.org/10.5194/tc-16-4779-2022, 2022
Short summary
Short summary
Ice mass balance observations indicated that average basal melt onset was comparable in the central Arctic Ocean and approximately 17 d earlier than surface melt in the Beaufort Gyre. The average onset of basal growth lagged behind the surface of the pan-Arctic Ocean for almost 3 months. In the Beaufort Gyre, both drifting-buoy observations and fixed-point observations exhibit a trend towards earlier basal melt onset, which can be ascribed to the earlier warming of the surface ocean.
Wangwang Ye, Hermann W. Bange, Damian L. Arévalo-Martínez, Hailun He, Yuhong Li, Jianwen Wen, Jiexia Zhang, Jian Liu, Man Wu, and Liyang Zhan
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-334, https://doi.org/10.5194/bg-2021-334, 2022
Manuscript not accepted for further review
Short summary
Short summary
CH4 is the second important greenhouse gas after CO2. We show that CH4 consumption and sea-ice melting influence the CH4 distribution in the Ross Sea (Southern Ocean), causing undersaturation and net uptake of CH4 during summertime. This study confirms the capability of surface water in the high-latitude Southern Ocean regions to take up atmospheric CH4 which, in turn, will help to improve predictions of how CH4 release/uptake from the ocean will develop when sea-ice retreats in the future.
Hailun He, Yuan Wang, Xiqiu Han, Yanzhou Wei, Pengfei Lin, Zhongyan Qiu, and Yejian Wang
Ocean Sci., 16, 895–906, https://doi.org/10.5194/os-16-895-2020, https://doi.org/10.5194/os-16-895-2020, 2020
Short summary
Short summary
Ocean profiling observation in the Indian Ocean is not sufficient. We conducted a hydrographic survey on the Carlsberg Ridge, which is a mid-ocean ridge in the northwest Indian Ocean, to obtain snapshots of sectional temperature, salinity, and density fields by combining the ARGO data. The results show mesoscale eddies located along the specific ridge and the existence of a west-propagating planetary wave. The results provide references in the regional ocean circulation.
Cited articles
Bluhm, B. A., Janout, M. A., Danielson, S. L., Ellingsen, I., Gavrilo, M.,
Grebmeier, J. M., Hopcroft, R. R., Iken, K. B., Ingvaldsen, R. B.,
Jørgensen, L. L., Kosobokova, K. N., Kwok, R., Polyakov, I. V., Renaud,
P. E., and Carmack, E. C.: The pan-Arctic continental slope: sharp gradients
of physical processes affect pelagic and benthic ecosystems, Front. Mar.
Sci., 7, 1–25, https://doi.org/10.3389/fmars.2020.544386,
2020.
Corlett, W. B. and Pickart, R. S.: The Chukchi slope current, Prog.
Oceanogr., 153, 50–65, https://doi.org/10.1016/j.pocean.2017.04.005, 2017.
Dewey, S., Morison, J., Kwok, R., Dickinson, S., Morison, D., and Andersen,
R.: Arctic Ice-Ocean coupling and gyre equilibration observed with remote
sensing, Geophys. Res. Lett., 45, 1499–1508, https://doi.org/10.1002/2017GL076229, 2018.
Doddridge, E., Meneghello, G., Marshall, J., Scott, J., and Lique, C.: A
three-way balance in the Beaufort Gyre: The Ice-Ocean Governor, wind stress,
and eddy diffusivity, J. Geophys. Res.-Ocean., 124, 3107–3124, https://doi.org/10.1029/2018JC014897, 2019.
Frey, K. E., Moore, G. W. K., Cooper, L. W., and Grebmeier, J. M.: Divergent
patterns of recent sea ice cover across the Bering, Chukchi, and Beaufort
seas of the Pacific Arctic Region, Prog. Oceanogr., 136, 32–49, https://doi.org/10.1016/j.pocean.2015.05.009, 2015.
Fox-Kemper, B. and Menemenlis, D.: Can large eddy simulation techniques
improve mesoscale rich ocean models? in: Ocean Modeling in an Eddying
Regime, edited by: Hecht, M. W. and Hasumi, H., American Geophysical Union,
Washington, DC, Wiley, 319–337, https://doi.org/10.1029/177GM19,
2008.
Gill, A. E., Green, J. S. A., and Simmons, A. J.: Energy partition in the
large-scale ocean circulation and the production of mid-ocean eddies,
Deep-Sea Res., 21, 499–528, https://doi.org/10.1016/0011-7471(74)90010-2, 1974.
Jackett, D. R. and McDougall, T. J.: Minimal adjustment of hydrographic
profiles to achieve static stability, J. Atmos. Ocean. Technol., 12,
381–389, https://doi.org/10.1175/1520-0426(1995)012<0381:MAOHPT>2.0.CO;2, 1995.
Kubryakov, A. A., Kozlov, I. E., and Manucharyan, G. E.: Large mesoscale
eddies in the Western Arctic Ocean from satellite altimetry measurements, J.
Geophys. Res.-Ocean., 126, e2020JC016670, https://doi.org/10.1029/2020JC016670, 2021.
Large, W. G., McWilliams, J. C., and Doney, S. C.: Oceanic vertical mixing:
A review and a model with a nonlocal boundary layer parameterization, Rev.
Geophys., 32, 363–403, https://doi.org/10.1029/94RG01872,
1994.
Leith, C. E.: Stochastic models of chaotic systems, Physica D, 98, 481–491,
https://doi.org/10.1016/0167-2789(96)00107-8, 1996.
Leng, H.: Numerical model setup for studying the energetics of the ocean current under sea ice, Zenodo [code], https://doi.org/10.5281/zenodo.7317884, 2022.
Leng, H., Spall, M. A., Pickart, R. S., Lin, P., and Bai, X.: Origin and
fate of the Chukchi slope current using a numerical model and in-situ data,
J. Geophys. Res.-Ocean., 126, e2021JC017291, https://doi.org/10.1029/2021JC017291, 2021.
Leng, H., Spall, M. A., and Bai, X.: Temporal evolution of a geostrophic
current under sea ice: analytical and numerical solutions, J. Phys. Ocean.,
52, 1191–1204, https://doi.org/10.1175/JPO-D-21-0242.1,
2022.
Li, M., Pickart, R. S., Spall, M. A., Weingartner, T. J., Lin, P., Moore, G.
W. K., and Qi, Y.: Circulation of the Chukchi Sea shelfbreak and slope from
moored timeseries, Prog. Oceanogr., 172, 14–33, https://doi.org/10.1016/j.pocean.2019.01.002, 2019.
Locarnini, R. A., Mishonov, A. V., Baranova, O. K., Boyer, T. P., Zweng, M.
M., Garcia, H. E., Reagan, J. R., Seidov, D., Weathers, K., Paver, C. R.,
and Smolyar, I.: World Ocean Atlas 2018, Vol. 1, Temperature, edited by:
Mishonov, A., NOAA Atlas NESDIS 81, 52 pp., https://www.ncei.noaa.gov/access/world-ocean-atlas-2018/ (last access: 12 October 2022), 2019.
Losch, M., Menemenlis, D., Campin, J.-M., Heimbach, P., and Hill, C.: On the
formulation of sea-ice models, Part 1: Effects of different solver
implementations and parameterizations, Ocean Modell., 33, 129–144,
https://doi.org/10.1016/j.ocemod.2009.12.008, 2010.
Marshall, J., Hill, C., Perelman, L., and Adcroft, A.: Hydrostatic,
quasi-hydrostatic, and nonhydrostatic ocean modelling, J. Geophys. Res.,
102, 5733–5752, https://doi.org/10.1029/96JC02776, 1997.
Meier, W. N., Fetterer, F., Savoie, M., Mallory, S., Duerr, R., and Stroeve,
J.: NOAA/NSIDC climate data record of passive microwave sea ice
concentration, version 3, Boulder, Colorado USA, National Snow and Ice Data
Center [data set], https://doi.org/10.7265/N59P2ZTG, 2017.
Meneghello, G., Marshall, J. C., Campin, J.-M., Doddridge, E., and
Timmermans, M.-L.: The ice-ocean governor: Ice-ocean stress feedback limits
Beaufort Gyre spin-up, Geophys. Res. Lett., 45, 11293–11299, https://doi.org/10.1029/2018GL080171, 2018.
Meneghello, G., Doddridge, E., Marshall, J., Scott, J., and Campin, J.-M.:
Exploring the role of the “ice–ocean governor” and mesoscale eddies in
the equilibration of the Beaufort Gyre: Lessons from observations, J. Phys.
Ocean., 50, 269–277, https://doi.org/10.1175/JPO-D-18-0223.1, 2020.
Meneghello, G., Marshall, J., Lique, C., Isachsen, P. E., Doddridge, E.,
Campin, J.-M., Regan, H., and Talandier, C.: Genesis and decay of mesoscale
baroclinic eddies in the seasonally ice-covered interior Arctic Ocean, J.
Phys. Ocean., 51, 115–129, https://doi.org/10.1175/JPO-D-20-0054.1, 2021.
Munday, D. R., Zhai, X., Harle, J., Coward, A. C., and Nurser, A. J. G.:
Relative vs. absolute wind stress in a circumpolar model of the Southern
Ocean, Ocean Model., 168, 101891, https://doi.org/10.1016/j.ocemod.2021.101891, 2021.
Nguyen, A. T., Menemenlis, D., and Kwok, R.: Improved modeling of the Arctic
halocline with a subgrid-scale brine rejection parameterization, J. Geophys.
Res., 114, C11014, https://doi.org/10.1029/2008jc005121, 2009.
Nurser, A. J. G. and Bacon, S.: The Rossby radius in the Arctic Ocean, Ocean
Sci., 10, 967–975, https://doi.org/10.5194/os-10-967-2014, 2014.
Ou, H. W. and Gordon, A. L.: Spin-down of baroclinic eddies under sea ice,
J. Geophys. Res., 91, 7623, https://doi.org/10.1029/JC091iC06p07623, 1986.
Oziel, L., Schourup-Kristensen, V., Wekerle, C., and Hauck, J.: The
pan-Arctic continental slope as an intensifying conveyer belt for nutrients
in the central Arctic Ocean (1985–2015), Global Biogeochem. Cy., 36,
e2021GB007268, https://doi.org/10.1029/2021GB007268, 2022.
Pedlosky, J.: Friction and Viscous Flow, in: Geophysical Fluid Dynamics,
Springer, New York, 179–253, https://doi.org/10.1007/978-1-4612-4650-3_4, 1987.
Peng, G., Meier, W. N., Scott, D. J., and Savoie, M. H.: A long-term and
reproducible passive microwave sea ice concentration data record for climate
studies and monitoring, Earth Syst. Sci., 5, 311–318, https://doi.org/10.5194/essd-5-311-2013, 2013.
Seo, H., Subramanian, A. C., Song, H., and Chowdary, J. S.: Coupled effects
of ocean current on wind stress in the Bay of Bengal: Eddy energetics and
upper ocean stratification, Deep-Sea Res. Pt. II, 168, 104617, https://doi.org/10.1016/j.dsr2.2019.07.005, 2019.
Shrestha, K. and Manucharyan, G. E.: Parameterization of submesoscale mixed
layer restratification under sea ice, J. Phys. Ocean., 52, 419–435,
https://doi.org/10.1175/JPO-D-21-0024.1, 2022.
Smith, K. S.: The geography of linear baroclinic instability in Earth's
oceans, J. Mar. Res., 65, 655–683, https://doi.org/10.1357/002224007783649484, 2007.
Spall, M. A., Pickart, R. S., Li, M., Itoh, M., Lin, P., Kikuchi, T., and
Qi, Y.: Transport of Pacific water into the Canada basin and the formation
of the Chukchi slope current, J. Geophys. Res.-Ocean., 123, 7453–7471,
https://doi.org/10.1029/2018JC013825, 2018.
Stabeno, P. J. and McCabe, R. M.: Vertical structure and temporal
variability of currents over the Chukchi Sea continental slope, Deep-Sea
Res. Pt. II, 177, 104805, https://doi.org/10.1016/j.dsr2.2020.104805, 2020.
Steiner, N., Harder, M., and Lemke, P.: Sea-ice roughness and drag
coefficients in a dynamic–thermodynamic sea-ice model for the Arctic,
Tellus A, 51, 964–978, https://doi.org/10.3402/tellusa.v51i5.14505, 1999.
Tulloch, R., Marshall, J., Hill, C., and Smith, K. S.: Scales, growth rates,
and spectral fluxes of baroclinic instability in the ocean, J. Phys. Ocean.,
41, 1057–1076, https://doi.org/10.1175/2011JPO4404.1, 2011.
Wang, Q., Koldunov, N. V., Danilov, S., Sidorenko, D., Wekerle, C., Scholz,
P., Bashmachnikov, I. L., and Jung, T.: Eddy kinetic energy in the Arctic
Ocean from a global simulation with a 1-km Arctic, Geophys. Res. Lett., 47,
e2020GL088550, https://doi.org/10.1029/2020GL088550, 2020.
Watanabe, E., Onodera, J., Itoh, M., Nishino, S., and Kikuchi, T.: Winter
transport of subsurface warm water toward the Arctic Chukchi Borderland,
Deep-Sea Res. Pt. I, 128, 115–130, https://doi.org/10.1016/j.dsr.2017.08.009, 2017.
Williams, G. P. and Robinson, J. B.: Generalized Eady waves with Ekman
pumping, J. Atmos. Sci., 31, 1768–1776, 1974.
Wunsch, C.: The work done by the wind on the oceanic general circulation, J.
Phys. Ocean., 28, 2332–2340, https://doi.org/10.1175/1520-0485(1998)028<2332:TWDBTW>2.0.CO;2, 1998.
Zhai, X., Johnson, H. L., Marshall, D. P., and Wunsch, C.: On the wind power
input to the ocean general circulation, J. Phys. Ocean., 42, 1357–1365,
2012.
Zhang, J. and Hibler, W. D.: On an efficient numerical method for modeling
sea ice dynamics, J. Geophys. Res., 102, 8691–8702, https://doi.org/10.1029/96JC03744, 1997.
Zhong, W., Steele, M., Zhang, J., and Zhao, J.: Greater role of geostrophic
currents in Ekman dynamics in the western Arctic Ocean as a mechanism for
Beaufort Gyre stabilization, J. Geophys. Res.-Ocean., 123, 149–165,
https://doi.org/10.1002/2017JC013282, 2018.
Zhong, W., Zhang, J., Steele, M., Zhao, J., and Wang, T.: Episodic extrema
of surface stress energy input to the western Arctic Ocean contributed to
step changes of freshwater content in the Beaufort Gyre, Geophys. Res.
Lett., 46, 12173–12182, https://doi.org/10.1029/2019GL084652,
2019.
Zweng, M. M., Reagan, J. R., Seidov, D., Boyer, T. P., Locarnini, R. A.,
Garcia, H. E., Mishonov, A. V., Baranova, O. K., Weathers, K. W., Paver, C.
R., and Smolyar, I. V.: World Ocean Atlas 2018, Vol. 2, Salinity, edited
by: Mishonov, A., NOAA Atlas NESDIS 82, 50 pp., https://www.ncei.noaa.gov/access/world-ocean-atlas-2018/ (last access: 12 October 2022), 2019.
Short summary
The Chukchi continental slope is one of the most energetic regions in the western Arctic Ocean as it is populated with strong boundary currents and mesoscale eddies. Using a set of experiments with an idealized primitive equation numerical model, we find that the ice friction can cause the loss of energy of both the Chukchi Slope Current and mesoscale eddies over a vertical scale of 100 m through Ekman pumping. Some scales for measuring the effects of ice friction are also provided.
The Chukchi continental slope is one of the most energetic regions in the western Arctic Ocean...