Articles | Volume 19, issue 2
https://doi.org/10.5194/os-19-229-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-19-229-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
How subsurface and double-core anticyclones intensify the winter mixed-layer deepening in the Mediterranean Sea
Alexandre Barboni
CORRESPONDING AUTHOR
Laboratoire de Météorologie Dynamique/IPSL, École Polytechnique, Institut Polytechnique de Paris, ENS, Université PSL, Sorbonne Université, CNRS, Palaiseau, France
Département de Recherche en Océanographie Physique, Service Hydrographique et Océanographique de la Marine (SHOM), Brest, France
Laboratoire d'Océanographie Physique et Spatiale, UBO, Ifremer, IRD, Plouzané, France
Invited contribution by Alexandre Barboni, recipient of the EGU Ocean Sciences Outstanding Student and PhD candidate Presentation Award 2022.
Solange Coadou-Chaventon
CORRESPONDING AUTHOR
Laboratoire de Météorologie Dynamique/IPSL, École Polytechnique, Institut Polytechnique de Paris, ENS, Université PSL, Sorbonne Université, CNRS, Palaiseau, France
Alexandre Stegner
Laboratoire de Météorologie Dynamique/IPSL, École Polytechnique, Institut Polytechnique de Paris, ENS, Université PSL, Sorbonne Université, CNRS, Palaiseau, France
Briac Le Vu
Laboratoire de Météorologie Dynamique/IPSL, École Polytechnique, Institut Polytechnique de Paris, ENS, Université PSL, Sorbonne Université, CNRS, Palaiseau, France
Franck Dumas
Département de Recherche en Océanographie Physique, Service Hydrographique et Océanographique de la Marine (SHOM), Brest, France
Laboratoire d'Océanographie Physique et Spatiale, UBO, Ifremer, IRD, Plouzané, France
Related authors
Alexandre Barboni, Ayah Lazar, Alexandre Stegner, and Evangelos Moschos
Ocean Sci., 17, 1231–1250, https://doi.org/10.5194/os-17-1231-2021, https://doi.org/10.5194/os-17-1231-2021, 2021
Short summary
Short summary
Mesoscale eddies are an important part of the turbulent motion in the oceans, constituting coherent structures that can live for years and store physical property anomalies. Analysis of anticyclone (clockwise-rotating eddies) tracks in the eastern Levantine Basin revealed statistical patterns over 19 years of data, in particular the presence of an anticyclone attractor above the Eratosthenes Seamount, with a strong heat content signature.
Gaetano Porcile, Anne-Claire Bennis, Martial Boutet, Sophie Le Bot, Franck Dumas, and Swen Jullien
Geosci. Model Dev., 17, 2829–2853, https://doi.org/10.5194/gmd-17-2829-2024, https://doi.org/10.5194/gmd-17-2829-2024, 2024
Short summary
Short summary
Here a new method of modelling the interaction between ocean currents and waves is presented. We developed an advanced coupling of two models, one for ocean currents and one for waves. In previous couplings, some wave-related calculations were based on simplified assumptions. Our method uses more complex calculations to better represent wave–current interactions. We tested it in a macro-tidal coastal area and found that it significantly improves the model accuracy, especially during storms.
Roxane Tzortzis, Andrea M. Doglioli, Monique Messié, Stéphanie Barrillon, Anne A. Petrenko, Lloyd Izard, Yuan Zhao, Francesco d'Ovidio, Franck Dumas, and Gérald Gregori
Biogeosciences, 20, 3491–3508, https://doi.org/10.5194/bg-20-3491-2023, https://doi.org/10.5194/bg-20-3491-2023, 2023
Short summary
Short summary
We studied a finescale frontal structure in order to highlight its influence on the dynamics and distribution of phytoplankton communities. We computed the growth rates of several phytoplankton groups identified by flow cytometry in two water masses separated by the front. We found contrasted phytoplankton dynamics on the two sides of the front, consistent with the distribution of their abundances. Our study gives new insights into the physical and biological coupling on a finescale front.
Sébastien Petton, Valérie Garnier, Matthieu Caillaud, Laurent Debreu, and Franck Dumas
Geosci. Model Dev., 16, 1191–1211, https://doi.org/10.5194/gmd-16-1191-2023, https://doi.org/10.5194/gmd-16-1191-2023, 2023
Short summary
Short summary
The nesting AGRIF library is implemented in the MARS3D hydrodynamic model, a semi-implicit, free-surface numerical model which uses a time scheme as an alternating-direction implicit (ADI) algorithm. Two applications at the regional and coastal scale are introduced. We compare the two-nesting approach to the classic offline one-way approach, based on an in situ dataset. This method is an efficient means to significantly improve the physical hydrodynamics and unravel ecological challenges.
Oriane Bruyère, Benoit Soulard, Hugues Lemonnier, Thierry Laugier, Morgane Hubert, Sébastien Petton, Térence Desclaux, Simon Van Wynsberge, Eric Le Tesson, Jérôme Lefèvre, Franck Dumas, Jean-François Kayara, Emmanuel Bourassin, Noémie Lalau, Florence Antypas, and Romain Le Gendre
Earth Syst. Sci. Data, 14, 5439–5462, https://doi.org/10.5194/essd-14-5439-2022, https://doi.org/10.5194/essd-14-5439-2022, 2022
Short summary
Short summary
From 2014 to 2021, extensive monitoring of hydrodynamics was deployed within five contrasted lagoons of New Caledonia during austral summers. These coastal physical observations encompassed unmonitored lagoons and captured eight major atmospheric events ranging from tropical depression to category 4 cyclone. The main objectives were to characterize the processes controlling hydrodynamics of these lagoons and record the signature of extreme events on land–lagoon–ocean continuum functioning.
Roxane Tzortzis, Andrea M. Doglioli, Stéphanie Barrillon, Anne A. Petrenko, Francesco d'Ovidio, Lloyd Izard, Melilotus Thyssen, Ananda Pascual, Bàrbara Barceló-Llull, Frédéric Cyr, Marc Tedetti, Nagib Bhairy, Pierre Garreau, Franck Dumas, and Gérald Gregori
Biogeosciences, 18, 6455–6477, https://doi.org/10.5194/bg-18-6455-2021, https://doi.org/10.5194/bg-18-6455-2021, 2021
Short summary
Short summary
This work analyzes an original high-resolution data set collected in the Mediterranean Sea. The major result is the impact of a fine-scale frontal structure on the distribution of phytoplankton groups, in an area of moderate energy with oligotrophic conditions. Our results provide an in situ confirmation of the findings obtained by previous modeling studies and remote sensing about the structuring effect of the fine-scale ocean dynamics on the structure of the phytoplankton community.
Alexandre Barboni, Ayah Lazar, Alexandre Stegner, and Evangelos Moschos
Ocean Sci., 17, 1231–1250, https://doi.org/10.5194/os-17-1231-2021, https://doi.org/10.5194/os-17-1231-2021, 2021
Short summary
Short summary
Mesoscale eddies are an important part of the turbulent motion in the oceans, constituting coherent structures that can live for years and store physical property anomalies. Analysis of anticyclone (clockwise-rotating eddies) tracks in the eastern Levantine Basin revealed statistical patterns over 19 years of data, in particular the presence of an anticyclone attractor above the Eratosthenes Seamount, with a strong heat content signature.
Pierre Garreau, Franck Dumas, Stéphanie Louazel, Stéphanie Correard, Solenn Fercocq, Marc Le Menn, Alain Serpette, Valérie Garnier, Alexandre Stegner, Briac Le Vu, Andrea Doglioli, and Gerald Gregori
Earth Syst. Sci. Data, 12, 441–456, https://doi.org/10.5194/essd-12-441-2020, https://doi.org/10.5194/essd-12-441-2020, 2020
Short summary
Short summary
The oceanic circulation is composed of the main currents, of large eddies and meanders, and of fine motions at a scale of about a few hundreds of metres, rarely observed in situ. PROTEVS-MED experiments were devoted to very high resolution observations of water properties (temperature and salinity) and currents, thanks to an undulating trawled vehicle revealing a patchy, stirred and energetic ocean in the first 400 m depth. These fine-scale dynamics drive the plankton and air–sea exchanges.
Cited articles
Amores, A., Jordà, G., and Monserrat, S.: Ocean eddies in the Mediterranean
Sea from satellite altimetry: Sensitivity to satellite track location,
Front. Mar. Sci., 6, p. 703, 2019. a
Arai, M. and Yamagata, T.: Asymmetric evolution of eddies in rotating shallow
water, Chaos: An Interdisciplinary, J. Nonlinear Sci., 4, 163–175,
1994. a
Aroucha, L. C., Veleda, D., Lopes, F. S., Tyaquiçã, P., Lefèvre, N., and
Araujo, M.: Intra- and Inter-Annual Variability of North Brazil Current Rings
Using Angular Momentum Eddy Detection and Tracking Algorithm: Observations
From 1993 to 2016, J. Geophys. Res.-Ocean., 125,
e2019JC015921, https://doi.org/10.1029/2019JC015921, 2020. a
Ayouche, A., De Marez, C., Morvan, M., L’Hegaret, P., Carton, X., Le Vu, B.,
and Stegner, A.: Structure and dynamics of the Ras al Hadd oceanic dipole in
the Arabian Sea, in: Oceans, Vol. 2, 105–125, MDPI, https://doi.org/10.3390/oceans2010007, 2021. a
Barboni, A., Stegner,
A., Le Vu, B., and Dumas, F.: 2000–2021 In situ profiles colocalized
with AMEDA eddy detections from 1/8 AVISO altimetry in the Mediterranean sea,
SEANOE [data set], https://doi.org/10.17882/93077, 2023. a, b
Belkin, I., Foppert, A., Rossby, T., Fontana, S., and Kincaid, C.: A
Double-Thermostad Warm-Core Ring of the Gulf Stream, J. Phys.
Oceanogr., 50, 489–507, https://doi.org/10.1175/JPO-D-18-0275.1, 2020. a, b
Bevington, P. R., Robinson, D. K., Blair, J. M., Mallinckrodt, A. J., and
McKay, S.: Data reduction and error analysis for the physical sciences,
Comput. Phys., 7, 415–416, 1993. a
Boccaletti, G., Ferrari, R., and Fox-Kemper, B.: Mixed layer instabilities and
restratification, J. Phys. Oceanogr., 37, 2228–2250, 2007. a
Chelton, D. B., Schlax, M. G., and Samelson, R. M.: Global observations of
nonlinear mesoscale eddies, Prog. Oceanogr., 91, 167–216, 2011. a
Chen, Y., Speich, S., and Laxenaire, R.: Formation and Transport of the South
Atlantic Subtropical Mode Water in Eddy-Permitting Observations, J.
Geophys. Res.-Ocean., 127, e2021JC017767, https://doi.org/10.1029/2021JC017767, 2022. a
Copernicus: Global Ocean-In-Situ Near-Real-Time Observations, Copernicus Marine In Situ Tac Data Management [data set], https://doi.org/10.48670/moi-00036, 2021. a, b, c
D'Asaro, E. A.: The energy flux from the wind to near-inertial motions in the
surface mixed layer, J. Phys. Oceanogr., 15, 1043–1059, 1985. a
de Boyer Montégut, C., Madec, G., Fischer, A. S., Lazar, A., and Iudicone,
D.: Mixed layer depth over the global ocean: An examination of profile data
and a profile-based climatology, J. Geophys. Res.-Ocean.,
109, C12, https://doi.org/10.1029/2004JC002378, 2004. a, b
de Marez, C., Le Corre, M., and Gula, J.: The influence of merger and
convection on an anticyclonic eddy trapped in a bowl, Ocean Model., 167,
101874, https://doi.org/10.1016/j.ocemod.2021.101874, 2021. a, b
Dong, S., Sprintall, J., Gille, S. T., and Talley, L.: Southern Ocean
mixed-layer depth from Argo float profiles, J. Geophys. Res.-Ocean., 113, C6, https://doi.org/10.1029/2006JC004051, 2008. a
D'Ortenzio, F. and Ribera d'Alcalà, M.: On the trophic regimes of the Mediterranean Sea: a satellite analysis, Biogeosciences, 6, 139–148, https://doi.org/10.5194/bg-6-139-2009, 2009. a
D'Ortenzio, F., Iudicone, D., de Boyer Montégut, C., Testor, P., Antoine,
D., Marullo, S., Santoleri, R., and Madec, G.: Seasonal variability of the
mixed layer depth in the Mediterranean Sea as derived from in situ profiles,
Geophys. Res. Lett., 32, 12, https://doi.org/10.1029/2005GL022463, 2005. a, b
D'Ortenzio, F., Taillandier, V., Claustre, H., Coppola, L., Conan, P., Dumas,
F., Durrieu du Madron, X., Fourrier, M., Gogou, A., Karageorgis, A., Lefevre, D., Leymarie, E.,
Oviedo, A., Pavlidou, A., Poteau, A., Poulain, P. M., Prieur, L., Psarra, S., Puyo-Pay, M.,
Ribera d'Alcalà, M., Schmechtig, C., Terrats, L., Velaoras, D., Wagener, T., and Wimart-Rousseau, C.:
BGC-Argo Floats Observe Nitrate Injection and Spring Phytoplankton Increase
in the Surface Layer of Levantine Sea (Eastern Mediterranean), Geophys.
Res. Lett., 48, e2020GL091649, https://doi.org/10.1029/2020GL091649, 2021. a, b
Dufois, F., Hardman-Mountford, N. J., Greenwood, J., Richardson, A. J., Feng,
M., and Matear, R. J.: Anticyclonic eddies are more productive than cyclonic
eddies in subtropical gyres because of winter mixing, Sci. Adv., 2,
e1600282, https://doi.org/10.1126/sciadv.1600282, 2016. a
Fox-Kemper, B., Ferrari, R., and Hallberg, R.: Parameterization of mixed layer
eddies, Part I: Theory and diagnosis, J. Phys. Oceanogr., 38,
1145–1165, 2008. a
Frenger, I., Gruber, N., Knutti, R., and Münnich, M.: Imprint of Southern
Ocean eddies on winds, clouds and rainfall, Nat. Geosci., 6, 608–612,
2013. a
Gaube, P., Chelton, D. B., Samelson, R. M., Schlax, M. G., and O’Neill,
L. W.: Satellite observations of mesoscale eddy-induced Ekman pumping,
J. Phys. Oceanogr., 45, 104–132, 2015. a
Graves, L. P., McWilliams, J. C., and Montgomery, M. T.: Vortex evolution due
to straining: A mechanism for dominance of strong, interior anticyclones,
Geophys. Astrophys. Fluid Dynam., 100, 151–183, 2006. a
Hamad, N., Millot, C., and Taupier-Letage, I.: The surface circulation in the
eastern basin of the Mediterranean Sea, Sci. Mar., 70, 457–503, 2006. a
Hayes, D., Zodiatis, G., Konnaris, G., Hannides, A., Solovyov, D., and Testor,
P.: Glider transects in the Levantine Sea: Characteristics of the warm core
Cyprus eddy, in: OCEANS 2011 IEEE-Spain, 1–9, IEEE, https://doi.org/10.1109/Oceans-Spain.2011.6003393, 2011. a, b, c, d
He, Q., Zhan, H., Cai, S., He, Y., Huang, G., and Zhan, W.: A new assessment of
mesoscale eddies in the South China Sea: Surface features, three-dimensional
structures, and thermohaline transports, J. Geophys. Res.-Ocean., 123, 4906–4929, 2018. a
Holte, J. and Talley, L.: A new algorithm for finding mixed layer depths with
applications to Argo data and Subantarctic Mode Water formation, J.
Atmos. Ocean. Technol., 26, 1920–1939, 2009. a
Holte, J., Talley, L. D., Gilson, J., and Roemmich, D.: An Argo mixed layer
climatology and database, Geophys. Res. Lett., 44, 5618–5626, 2017. a
Ioannou, A., Stegner, A., Dumas, F., and Le Vu, B.: Three-dimensional evolution
of mesoscale anticyclones in the lee of Crete, Front. Mar. Sci.,
7, 609156, https://doi.org/10.3389/fmars.2020.609156, 2020. a
Ivanov, V. and Korablev, A.: Formation and regeneration of intrapycnocline
lense in the Norwegian Sea, Russ. Meteor. Hydrol., 9, 62–69, 1995. a
Kunze, E.: Near-inertial wave propagation in geostrophic shear, J.
Phys. Oceanogr., 15, 544–565, 1985. a
Kurkin, A., Kurkina, O., Rybin, A., and Talipova, T.: Comparative analysis of
the first baroclinic Rossby radius in the Baltic, Black, Okhotsk, and
Mediterranean seas, Russ. J. Earth Sci., 20, 8, https://doi.org/10.2205/2020ES000737, 2020. a
Lacour, L., Briggs, N., Claustre, H., Ardyna, M., and Dall'Olmo, G.: The
intraseasonal dynamics of the mixed layer pump in the subpolar North Atlantic
Ocean: A Biogeochemical-Argo float approach, Global Biogeochem. Cy.,
33, 266–281, 2019. a
Large, W. and Yeager, S.: On the observed trends and changes in global sea
surface temperature and air–sea heat fluxes (1984–2006), J.
Clim., 25, 6123–6135, 2012. a
Lascaratos, A. and Tsantilas, S.: Study of the seasonal circle of the
Ierapetra gyra, using satellite imager, in: Proc. Hell. Symp. Oceanogr. Fish,
Vol. 1, 165–168, 1997. a
Lavigne, H., d'Ortenzio, F., Migon, C., Claustre, H., Testor, P., d'Alcalã,
M. R., Lavezza, R., Houpert, L., and Prieur, L.: Enhancing the comprehension
of mixed layer depth control on the Mediterranean phytoplankton phenology,
J. Geophys. Res.-Ocean., 118, 3416–3430, 2013. a
Legg, S. and McWilliams, J. C.: Convective modifications of a geostrophic eddy
field, J. Phys. Oceanogr., 31, 874–891, 2001. a
Legg, S., McWilliams, J., and Gao, J.: Localization of deep ocean convection by
a mesoscale eddy, J. Phys. Oceanogr., 28, 944–970, 1998. a
Le Traon, P. Y.: From satellite altimetry to Argo and operational oceanography: three revolutions in oceanography, Ocean Sci., 9, 901–915, https://doi.org/10.5194/os-9-901-2013, 2013. a
Le Vu, B.: briaclevu/AMEDA: AMEDA v2.2 (v2.2), Zenodo [code], https://doi.org/10.5281/zenodo.7673442, 2023. a
Lévy, M., Ferrari, R., Franks, P. J., Martin, A. P., and Rivière, P.:
Bringing physics to life at the submesoscale, Geophys. Res. Lett.,
39, https://doi.org/10.1029/2012GL052756, 2012. a
Liu, F., Zhou, H., Huang, W., and Wen, B.: Submesoscale Eddies Observation
Using High-Frequency Radars: A Case Study in the Northern South China Sea,
IEEE J. Ocean. Eng., 46, 624–633, 2020. a
L’Hévéder, B., Li, L., Sevault, F., and Somot, S.: Interannual
variability of deep convection in the Northwestern Mediterranean simulated
with a coupled AORCM, Clim. Dynam., 41, 937–960, 2013. a
McDougall, T. J., Feistel, R., and
Pawlowicz, R.: Thermodynamics of seawater, in: International Geophysics, Vol.
103, 141–158, Academic Press, 2013. a
Millot, C. and Taupier-Letage, I.: Circulation in the Mediterranean Sea, in: The Mediterranean Sea, edited by: Saliot,
A., Handbook of Environmental Chemistry, Vol. 5,
Springer, Berlin, Heidelberg, https://doi.org/10.1007/b107143, 2005. a, b
Moschos, E., Barboni, A., and Stegner, A.: Why do inverse eddy surface
temperature anomalies emerge? The case of the Mediterranean Sea, Remote
Sens., 14, 3807, https://doi.org/10.3390/rs14153807, 2022. a, b
Nilsson, C. and Cresswell, G.: The formation and evolution of East Australian
Current warm-core eddies, Prog. Oceanogr., 9, 133–183, 1980. a
Nof, D. and Dewar, W.: Alignment of lenses: Laboratory and numerical
experiments, Deep-Sea Res. Pt. I, 41,
1207–1229, 1994. a
Ozer, T., Gertman, I., Kress, N., Silverman, J., and Herut, B.: Interannual
thermohaline (1979–2014) and nutrient (2002–2014) dynamics in the Levantine
surface and intermediate water masses, SE Mediterranean Sea, Glob.
Planet. Change, 151, 60–67, 2017. a
Parras-Berrocal, I. M., Vazquez, R., Cabos, W., Sein, D., Mañanes, R., Perez-Sanz, J., and Izquierdo, A.: The climate change signal in the Mediterranean Sea in a regionally coupled atmosphere–ocean model, Ocean Sci., 16, 743–765, https://doi.org/10.5194/os-16-743-2020, 2020. a
Pastor, F., Valiente, J. A., and Khodayar, S.: A warming
Mediterranean: 38 years of increasing sea surface temperature, Remote Sens.,
12, 2687, https://doi.org/10.3390/rs12172687, 2020.
Pegliasco, C., Delepoulle, A., Mason, E., Morrow, R., Faugère, Y., and Dibarboure, G.: META3.1exp: a new global mesoscale eddy trajectory atlas derived from altimetry, Earth Syst. Sci. Data, 14, 1087–1107, https://doi.org/10.5194/essd-14-1087-2022, 2022. a
Pettenuzzo, D., Large, W., and Pinardi, N.: On the corrections of ERA-40
surface flux products consistent with the Mediterranean heat and water
budgets and the connection between basin surface total heat flux and NAO,
J. Geophys. Res.-Ocean., 115, C6, https://doi.org/10.1029/2009JC005631, 2010. a
Pujol, M.-I.: Europeans Seas gridded L4 Sea Surface Height and derived
variables NRT, Copernicus Marine In Situ Tac Data Management [data set], https://doi.org/10.48670/moi-00142, 2021. a, b
Somot, S., Sevault, F., and Déqué, M.: Transient climate change
scenario simulation of the Mediterranean Sea for the twenty-first century
using a high-resolution ocean circulation model, Clim. Dynam., 27,
851–879, 2006. a
Stegner, A. and Le Vu, B.: Atlas of 3D Eddies in the Mediterranean Sea from 2000 to 2017, ESPRI/IPSL, https://doi.org/10.14768/2019130201.2, 2019. a, b, c
Stegner, A., Le Vu, B., Dumas, F., Ghannami, M. A., Nicolle, A., Durand, C.,
and Faugere, Y.: Cyclone-Anticyclone Asymmetry of Eddy Detection on Gridded
Altimetry Product in the Mediterranean Sea, J. Geophys. Res.-Ocean., 126, e2021JC017475, https://doi.org//10.1029/2021JC017475, 2021. a, b, c
Stern, M. E.: Interaction of a uniform wind stress with a geostrophic vortex,
in: Deep Sea Research and Oceanographic Abstracts, Vol. 12, 355–367,
Elsevier, https://doi.org/10.1016/0011-7471(65)90007-0, 1965. a
Szekely, T., Gourrion, J., Pouliquen, S., and Reverdin, G.: The CORA 5.2 dataset for global in situ temperature and salinity measurements: data description and validation, Ocean Sci., 15, 1601–1614, https://doi.org/10.5194/os-15-1601-2019, 2019a. a
Szekely, T., Gourrion, J., Pouliquen, S., Reverdin, G., and Merceur, F.: CORA, Coriolis Ocean Dataset for Reanalysis, SEANOE [data set], https://doi.org/10.17882/46219,
2019b. a, b, c
Taillandier, V., D’ortenzio, F., Prieur, L., Conan, P., Coppola, L., Cornec,
M., Dumas, F., Durrieu de Madron, X., Fach, B., Fourrier, M., Gentil, M., Hayes, D., Husrevoglu, S.,
Legoff, H., Le Ster, L., Örek, H., Ozer, T., Poulain, P. M., Pujo-Pay, M., Ribera d’Alcalà, M.,
Salihoglu, B., Testor, P., Velaoras, D., Wagener, T., and Wimart-Rousseau, C.: Sources
of the Levantine Intermediate Water in winter 2019, J. Geophys. Res.-Ocean., 127, e2021JC017506, https://doi.org/10.1029/2021JC017506, 2022. a
Takahashi, T., Sutherland, S. C., Wanninkhof, R., Sweeney, C., Feely, R. A.,
Chipman, D. W., Hales, B., Friederich, G., Chavez, F., Sabine, C., Watson, A., Bakker, D. C. E., Schuster, U.,
Metzl, N., Yoshikawa-Inoue, H., Ishii, M., Midorikawa, T., Nojiri, Y.,
Körtzinger, A., Steinhoff, T.,
Hoppema, M., Olafsson, J., Arnarson, T. S., Tilbrook, B.,
Johannessen, T., Olsen, A., Bellerby, R., Wong, C. S., Delille, B., Bates, N. R., and de Baar, H.
J. W.:
Climatological mean and decadal change in surface ocean pCO2, and net
sea–air CO2 flux over the global oceans, Deep-Sea Res. Pt. II, 56, 554–577, 2009.
a
Taupier-Letage, I., Millot, C., Fuda, J., Rougier, G., Gerin, R., Poulain, P., Pennel, R.,
Beranger, K., Emelinaov, M., Font, J., Ben Ismail, S., and Sammari, C.: The
surface circulation in the eastern basin oh the Mediterranean and the impact of the
mesoscale eddies, Rapp. Comm. Int. Mer. Medit., 39, 189, 2010. a
Theocharis, A., Georgopoulos, D., Lascaratos, A., and Nittis, K.: Water masses
and circulation in the central region of the Eastern Mediterranean: Eastern
Ionian, South Aegean and Northwest Levantine, 1986–1987, Deep-sea Res.
Pt. II, 40, 1121–1142, 1993. a
Williams, R. G.: Modification of ocean eddies by air-sea interaction, J. Geophys. Res.-Ocean., 93, 15523–15533, 1988. a
Wimart-Rousseau, C., Wagener, T., Álvarez, M., Moutin, T., Fourrier, M., Coppola, L., Niclas-Chirurgien, L., Raimbault, P., D’Ortenzio, F., Durrieu de Madron, X., Taillandier, V., Dumas,
F., Conan, P., Pujo-Pay, M., and Lefèvre, D.: Seasonal and Interannual Variability of
the CO2 System in the Eastern Mediterranean Sea: A Case Study in the North
Western Levantine Basin, Front. Mar. Sci., 8, 649246, https://doi.org/10.3389/fmars.2021.649246, 2021. a
Short summary
Mesoscale eddies are ubiquitous turbulent structures in the ocean, influencing the upper mixed layer. The mixed layer is the ocean surface layer mixed through air–sea exchanges. Using Argo profiling floats inside large Mediterranean anticyclones, we investigate the induced winter mixed-layer depth anomalies. Mixed-layer depth was observed to be greatly influenced by the eddy preexisting subsurface structure to which it possibly connects and can also create double-core anticyclones.
Mesoscale eddies are ubiquitous turbulent structures in the ocean, influencing the upper mixed...