Articles | Volume 19, issue 6
https://doi.org/10.5194/os-19-1669-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-19-1669-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Constraining an eddy energy dissipation rate due to relative wind stress for use in energy budget-based eddy parameterisations
School of Environmental Sciences, University of East Anglia, Norwich, UK
National Centre for Atmospheric Science, Department of Meteorology, University of Reading, Reading, UK
Xiaoming Zhai
School of Environmental Sciences, University of East Anglia, Norwich, UK
David Munday
British Antarctic Survey, High Cross, Madingley Road, Cambridge, UK
Manoj Joshi
Climatic Research Unit, University of East Anglia, Norwich, UK
Related authors
No articles found.
Chunhua Qiu, Zhenyang Du, Jiancheng Yu, Huabin Mao, Haibo Tang, Zhenhui Yi, Jiawei Qiao, Dongxiao Wang, Xiaoming Zhai, and Yeqiang Shu
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-338, https://doi.org/10.5194/essd-2024-338, 2024
Revised manuscript under review for ESSD
Short summary
Short summary
The high dense AUVs’ dataset in SCS provides 24498 temperature and salinity profiles and covers 463 days’ experiments, including 83 AUGs’ and 2 AUVs’ experiments. To our knowledge, the resolution and length of this dataset is enough in detecting the asymmetry, vertical tilt, temporal evolution of MEs, and the submesoscale processes. The dataset is expected to improve the accuracy of current and biogeochemistry numerical model. More projects gathering AUVs network will be promoted in future.
Duncan Watson-Parris, Laura J. Wilcox, Camilla W. Stjern, Robert J. Allen, Geeta Persad, Massimo A. Bollasina, Annica M. L. Ekman, Carley E. Iles, Manoj Joshi, Marianne T. Lund, Daniel McCoy, Daniel Westervelt, Andrew Williams, and Bjørn H. Samset
EGUsphere, https://doi.org/10.5194/egusphere-2024-1946, https://doi.org/10.5194/egusphere-2024-1946, 2024
Short summary
Short summary
In 2020, regulations by the International Maritime Organization aimed to reduce aerosol emissions from ships. These aerosols previously had a cooling effect, which the regulations might reduce, revealing more greenhouse gas warming. Here we find that while there is regional warming, the global 2020–2040 temperature rise is only +0.03°C. This small change is difficult to distinguish from natural climate variability, indicating the regulations have had a limited effect on observed warming to date.
William J. Dow, Christine M. McKenna, Manoj M. Joshi, Adam T. Blaker, Richard Rigby, and Amanda C. Maycock
Weather Clim. Dynam., 5, 357–367, https://doi.org/10.5194/wcd-5-357-2024, https://doi.org/10.5194/wcd-5-357-2024, 2024
Short summary
Short summary
Changes to sea surface temperatures in the extratropical North Pacific are driven partly by patterns of local atmospheric circulation, such as the Aleutian Low. We show that an intensification of the Aleutian Low could contribute to small changes in temperatures across the equatorial Pacific via the initiation of two mechanisms. The effect, although significant, is unlikely to explain fully the recently observed multi-year shift of a pattern of climate variability across the wider Pacific.
Manoj Joshi, Robert A. Hall, David P. Stevens, and Ed Hawkins
Earth Syst. Dynam., 14, 443–455, https://doi.org/10.5194/esd-14-443-2023, https://doi.org/10.5194/esd-14-443-2023, 2023
Short summary
Short summary
The 18.6-year lunar nodal cycle arises from variations in the angle of the Moon's orbital plane and affects ocean tides. In this work we use a climate model to examine the effect of this cycle on the ocean, surface, and atmosphere. The timing of anomalies is consistent with the so-called slowdown in global warming and has implications for when global temperatures will exceed 1.5 ℃ above pre-industrial levels. Regional anomalies have implications for seasonal climate areas such as Europe.
Qianjiang Xing, David Munday, Andreas Klocker, Isabel Sauermilch, and Joanne Whittaker
Clim. Past, 18, 2669–2693, https://doi.org/10.5194/cp-18-2669-2022, https://doi.org/10.5194/cp-18-2669-2022, 2022
Short summary
Short summary
A high-resolution ocean model and realistic paleo-bathymetry are applied to obtain accurate simulation results. We firstly propose that the alignment of the maximum wind stress with a deep Tasmanian Gateway and Drake Passage is a trigger for the proto-Antarctic Circumpolar Current (proto-ACC) and the cooling of the Eocene Southern Ocean. We use zonal momentum budget analysis to explore the nature of the proto-ACC and the sensitivity of its transport through gateways to doubled wind stress.
Jack Giddings, Karen J. Heywood, Adrian J. Matthews, Manoj M. Joshi, Benjamin G. M. Webber, Alejandra Sanchez-Franks, Brian A. King, and Puthenveettil N. Vinayachandran
Ocean Sci., 17, 871–890, https://doi.org/10.5194/os-17-871-2021, https://doi.org/10.5194/os-17-871-2021, 2021
Short summary
Short summary
Little is known about the impact of chlorophyll on SST in the Bay of Bengal (BoB). Solar irradiance measured by an ocean glider and three Argo floats is used to determine the effect of chlorophyll on BoB SST during the 2016 summer monsoon. The Southwest Monsoon Current has high chlorophyll concentrations (∼0.5 mg m−3) and shallow solar penetration depths (∼14 m). Ocean mixed layer model simulations show that SST increases by 0.35°C per month, with the potential to influence monsoon rainfall.
Rachel Furner, Peter Haynes, Dave Munday, Brooks Paige, Daniel C. Jones, and Emily Shuckburgh
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2021-132, https://doi.org/10.5194/gmd-2021-132, 2021
Revised manuscript not accepted
Short summary
Short summary
Traditional weather & climate models are built from physics-based equations, while data-driven models are built from patterns found in datasets using Machine Learning or statistics. There is growing interest in using data-driven models for weather & climate prediction, but confidence in their use depends on understanding the patterns they're finding. We look at this with a simple regression model of ocean temperature and see the patterns found by the regression model are similar to the physics.
Adam T. Blaker, Manoj Joshi, Bablu Sinha, David P. Stevens, Robin S. Smith, and Joël J.-M. Hirschi
Geosci. Model Dev., 14, 275–293, https://doi.org/10.5194/gmd-14-275-2021, https://doi.org/10.5194/gmd-14-275-2021, 2021
Short summary
Short summary
FORTE 2.0 is a flexible coupled atmosphere–ocean general circulation model that can be run on modest hardware. We present two 2000-year simulations which show that FORTE 2.0 is capable of producing a stable climate. Earlier versions of FORTE were used for a wide range of studies, ranging from aquaplanet configurations to investigating the cold European winters of 2009–2010. This paper introduces the updated model for which the code and configuration are now publicly available.
Jack Giddings, Adrian J. Matthews, Nicholas P. Klingaman, Karen J. Heywood, Manoj Joshi, and Benjamin G. M. Webber
Weather Clim. Dynam., 1, 635–655, https://doi.org/10.5194/wcd-1-635-2020, https://doi.org/10.5194/wcd-1-635-2020, 2020
Short summary
Short summary
The impact of chlorophyll on the southwest monsoon is unknown. Here, seasonally varying chlorophyll in the Bay of Bengal was imposed in a general circulation model coupled to an ocean mixed layer model. The SST increases by 0.5 °C in response to chlorophyll forcing and shallow mixed layer depths in coastal regions during the inter-monsoon. Precipitation increases significantly to 3 mm d-1 across Myanmar during June and over northeast India and Bangladesh during October, decreasing model bias.
Satyaban B. Ratna, Timothy J. Osborn, Manoj Joshi, Bao Yang, and Jianglin Wang
Clim. Past, 15, 1825–1844, https://doi.org/10.5194/cp-15-1825-2019, https://doi.org/10.5194/cp-15-1825-2019, 2019
Short summary
Short summary
We examine the relationships in models and reconstructions between multidecadal variability of East Asian temperature and two extratropical modes of variability. The relationship between East Asian temperature and Pacific multidecadal variability is largely driven by internal variability, whereas with Atlantic multidecadal variability it is more strongly influenced by the presence or absence of external forcing. We discuss the implications for diagnosing teleconnections from reconstructions.
M. Joshi, M. Stringer, K. van der Wiel, A. O'Callaghan, and S. Fueglistaler
Geosci. Model Dev., 8, 1157–1167, https://doi.org/10.5194/gmd-8-1157-2015, https://doi.org/10.5194/gmd-8-1157-2015, 2015
Related subject area
Approach: Analytic Theory | Properties and processes: Mesoscale to submesoscale dynamics
Study of the role of abyssal ocean stratification in the rearrangement of potential vorticity through the water column
Beatrice Giambenedetti, Nadia Lo Bue, and Vincenzo Artale
Ocean Sci., 20, 1209–1228, https://doi.org/10.5194/os-20-1209-2024, https://doi.org/10.5194/os-20-1209-2024, 2024
Short summary
Short summary
We used a simplified model to investigate how changes in abyssal stratification can impact the propagation of vortices in the ocean. Although abyssal stratification is typically considered stable, observations have shown that this is not always a good approximation. We found that changes in deep stratification can introduce variability into the patterns of the vortices. Despite the assumptions made in our model, our results are supported by seafloor observations in the Ionian Sea.
Cited articles
Arbic, B. K. and Flierl, G. R.: Baroclinically Unstable Geostrophic Turbulence in the Limits of Strong and Weak Bottom Ekman Friction: Application to Midocean Eddies, J. Phys. Oceanogr., 34, 2257–2273, https://doi.org/10.1175/1520-0485(2004)034<2257:BUGTIT>2.0.CO;2, 2004. a
Bachman, S. D.: The GM+E Closure: A Framework for Coupling Backscatter with the Gent and McWilliams Parameterization, Ocean Model., 136, 85–106, https://doi.org/10.1016/j.ocemod.2019.02.006, 2019. a
Barkan, R., Winters, K. B., and McWilliams, J. C.: Stimulated Imbalance and the Enhancement of Eddy Kinetic Energy Dissipation by Internal Waves, J. Phys. Oceanogr., 47, 181–198, https://doi.org/10.1175/JPO-D-16-0117.1, 2017. a
Charney, J. G.: Geostrophic Turbulence, J. Atmos. Sci., 28, 1087–1095, https://doi.org/10.1175/1520-0469(1971)028<1087:GT>2.0.CO;2, 1971. a
Chelton, D. B., deSzoeke, R. A., Schlax, M. G., Naggar, K. E., and Siwertz, N.: Geographical Variability of the First Baroclinic Rossby Radius of Deformation, J. Phys. Oceanogr., 28, 433–460, https://doi.org/10.1175/1520-0485(1998)028<0433:GVOTFB>2.0.CO;2, 1998. a, b
Chen, R., Flierl, G. R., and Wunsch, C.: A Description of Local and Nonlocal Eddy – Mean Flow Interaction in a Global Eddy-Permitting State Estimate, J. Phys. Oceanogr., 44, 2336–2352, https://doi.org/10.1175/JPO-D-14-0009.1, 2014. a
de La Lama, M. S., LaCasce, J. H., and Fuhr, H. K.: The Vertical Structure of Ocean Eddies, Dynamics and Statistics of the Climate System, 1, dzw001, https://doi.org/10.1093/climsys/dzw001, 2016. a, b
Danabasoglu, G., McWilliams, J. C., and Gent, P. R.: The Role of Mesoscale Tracer Transports in the Global Ocean Circulation, Science, 264, 1123–1126, https://doi.org/10.1126/science.264.5162.1123, 1994. a, b
Dewar, W. K. and Flierl, G. R.: Some Effects of the Wind on Rings, J. Phys. Oceanogr., 17, 1653–1667, https://doi.org/10.1175/1520-0485(1987)017<1653:SEOTWO>2.0.CO;2, 1987. a
Dewar, W. K., Killworth, P. D., and Blundell, J. R.: Primitive-Equation Instability of Wide Oceanic Rings. Part II: Numerical Studies of Ring Stability, J. Phys. Oceanogr., 29, 1744–1758, https://doi.org/10.1175/1520-0485(1999)029<1744:PEIOWO>2.0.CO;2, 1999. a, b
Dove, L. A., Balwada, D., Thompson, A. F., and Gray, A. R.: Enhanced Ventilation in Energetic Regions of the Antarctic Circumpolar Current, Geophys. Res. Lett., 49, e2021GL097 574, https://doi.org/10.1029/2021GL097574, 2022. a
Duhaut, T. H. A. and Straub, D. N.: Wind Stress Dependence on Ocean Surface Velocity: Implications for Mechanical Energy Input to Ocean Circulation, J. Phys. Oceanogr., 36, 202–211, https://doi.org/10.1175/JPO2842.1, 2006. a, b, c, d
Eden, C. and Greatbatch, R. J.: Towards a Mesoscale Eddy Closure, Ocean Model., 20, 223–239, https://doi.org/10.1016/j.ocemod.2007.09.002, 2008. a
Ferrari, R. and Wunsch, C.: Ocean Circulation Kinetic Energy: Reservoirs, Sources, and Sinks, Annu. Rev. Fluid Mech., 41, 253–282, https://doi.org/10.1146/annurev.fluid.40.111406.102139, 2009. a
Ferreira, D., Marshall, J., and Heimbach, P.: Estimating Eddy Stresses by Fitting Dynamics to Observations Using a Residual-Mean Ocean Circulation Model and Its Adjoint, J. Phys. Oceanogr., 35, 1891–1910, https://doi.org/10.1175/JPO2785.1, 2005. a
Flierl, G. R.: Models of Vertical Structure and the Calibration of Two-Layer Models, Dynam. Atmos. Oceans, 2, 341–381, https://doi.org/10.1016/0377-0265(78)90002-7, 1978. a
Gaube, P., Chelton, D. B., Samelson, R. M., Schlax, M. G., and O'Neill, L. W.: Satellite Observations of Mesoscale Eddy-Induced Ekman Pumping, J. Phys. Oceanogr., 45, 104–132, https://doi.org/10.1175/JPO-D-14-0032.1, 2015. a
Gent, P. R. and McWilliams, J. C.: Isopycnal Mixing in Ocean Circulation Models, J. Phys. Oceanogr., 20, 150–155, https://doi.org/10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2, 1990. a
Gent, P. R., Willebrand, J., McDougall, T. J., and McWilliams, J. C.: Parameterizing Eddy-Induced Tracer Transports in Ocean Circulation Models, J. Phys. Oceanogr., 25, 463–474, https://doi.org/10.1175/1520-0485(1995)025<0463:PEITTI>2.0.CO;2, 1995. a
Gill, A. E., Green, J. S. A., and Simmons, A. J.: Energy Partition in the Large-Scale Ocean Circulation and the Production of Mid-Ocean Eddies, Deep Sea Research and Oceanographic Abstracts, 21, 499–528, https://doi.org/10.1016/0011-7471(74)90010-2, 1974. a
Gordon, C., Cooper, C., Senior, C. A., Banks, H., Gregory, J. M., Johns, T. C., Mitchell, J. F. B., and Wood, R. A.: The Simulation of SST, Sea Ice Extents and Ocean Heat Transports in a Version of the Hadley Centre Coupled Model without Flux Adjustments, Clim. Dynam., 16, 147–168, https://doi.org/10.1007/s003820050010, 2000. a
Graham, R. M., de Boer, A. M., Heywood, K. J., Chapman, M. R., and Stevens, D. P.: Southern Ocean Fronts: Controlled by Wind or Topography?, J. Geophys. Res. Oceans, 117, https://doi.org/10.1029/2012JC007887, 2012. a
Griffies, S. M., Winton, M., Anderson, W. G., Benson, R., Delworth, T. L., Dufour, C. O., Dunne, J. P., Goddard, P., Morrison, A. K., Rosati, A., Wittenberg, A. T., Yin, J., and Zhang, R.: Impacts on Ocean Heat from Transient Mesoscale Eddies in a Hierarchy of Climate Models, J. Clim., 28, 952–977, https://doi.org/10.1175/JCLI-D-14-00353.1, 2015. a
Hallberg, R. and Gnanadesikan, A.: The Role of Eddies in Determining the Structure and Response of the Wind-Driven Southern Hemisphere Overturning: Results from the Modeling Eddies in the Southern Ocean (MESO) Project, J. Phys. Oceanogr., 36, 2232–2252, https://doi.org/10.1175/JPO2980.1, 2006. a
Hirst, A. C. and McDougall, T. J.: Deep-Water Properties and Surface Buoyancy Flux as Simulated by a Z-Coordinate Model Including Eddy-Induced Advection, J. Phys. Oceanogr., https://doi.org/10.1175/1520-0485(1996)026<1320:DWPASB>2.0.CO;2, 1996. a
Holland, W. R.: The Role of Mesoscale Eddies in the General Circulation of the Ocean – Numerical Experiments Using a Wind-Driven Quasi-Geostrophic Model, J. Phys. Oceanogr., 8, 363–392, https://doi.org/10.1175/1520-0485(1978)008<0363:TROMEI>2.0.CO;2, 1978. a
Holland, W. R. and Lin, L. B.: On the Generation of Mesoscale Eddies and Their Contribution to the OceanicGeneral Circulation. I. A Preliminary Numerical Experiment, J. Phys. Oceanogr., 5, 642–657, https://doi.org/10.1175/1520-0485(1975)005<0642:OTGOME>2.0.CO;2, 1975. a
Huang, C. and Xu, Y.: Update on the Global Energy Dissipation Rate of Deep-Ocean Low-Frequency Flows by Bottom Boundary Layer, J. Phys. Oceanogr., 48, 1243–1255, https://doi.org/10.1175/JPO-D-16-0287.1, 2018. a
Hughes, C. W. and Wilson, C.: Wind Work on the Geostrophic Ocean Circulation: An Observational Study of the Effect of Small Scales in the Wind Stress, J. Geophys. Res. Oceans, 113, https://doi.org/10.1029/2007JC004371, 2008. a
Ikeda, M.: Instability and Splitting of Mesoscale Rings Using a Two-Layer Quasi-Geostrophic Model on an f-Plane, J. Phys. Oceanogr., 11, 987–998, https://doi.org/10.1175/1520-0485(1981)011<0987:IASOMR>2.0.CO;2, 1981. a, b
Jansen, M. F., Adcroft, A., Khani, S., and Kong, H.: Toward an Energetically Consistent, Resolution Aware Parameterization of Ocean Mesoscale Eddies, J. Adv. Model. Earth Syst., 11, 2844–2860, https://doi.org/10.1029/2019MS001750, 2019. a
Jullien, S., Masson, S., Oerder, V., Samson, G., Colas, F., and Renault, L.: Impact of Ocean – Atmosphere Current Feedback on Ocean Mesoscale Activity: Regional Variations and Sensitivity to Model Resolution, J. Clim., 33, 2585–2602, https://doi.org/10.1175/JCLI-D-19-0484.1, 2020. a
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C., Ropelewski, C., Wang, J., Leetmaa, A., Reynolds, R., Jenne, R., and Joseph, D.: The NCEP/NCAR 40-Year Reanalysis Project, Bull. Am. Meteorol. Soc., 77, 437–472, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2, 1996. a
Klinck, J.: MATLAB Function Dynmodes.m, GitHub [Code], 2009. a
LaCasce, J. H.: The Prevalence of Oceanic Surface Modes, Geophys. Res. Lett., 44, 11,097–11,105, https://doi.org/10.1002/2017GL075430, 2017. a
LaCasce, J. H. and Groeskamp, S.: Baroclinic Modes over Rough Bathymetry and the Surface Deformation Radius, J. Phys. Oceanogr., 50, 2835–2847, https://doi.org/10.1175/JPO-D-20-0055.1, 2020. a
Large, W. G. and Pond, S.: Open Ocean Momentum Flux Measurements in Moderate to Strong Winds, J. Phys. Oceanogr., 11, 324–336, https://doi.org/10.1175/1520-0485(1981)011<0324:OOMFMI>2.0.CO;2, 1981. a
Locarnini, R. A., Mishonov, A. V., Baranova, O. K., Boyer, T. P., Zweng, M. M., Garcia, H. E., Reagan, J. R., Seidov, D., Weathers, K., Paver, C. R., and Smolyar, I.: World Ocean Atlas 2018, Volume 1: Temperature. A. Mishonov, Technical Editor., NOAA Atlas NESDIS 81, p. 52pp, 2019. a
Mahdinia, M., Hassanzadeh, P., Marcus, P. S., and Jiang, C.-H.: Stability of Three-Dimensional Gaussian Vortices in an Unbounded, Rotating, Vertically Stratified, Boussinesq Flow: Linear Analysis, J. Fluid Mech., 824, 97–134, https://doi.org/10.1017/jfm.2017.303, 2017. a, b
Mak, J., Marshall, D. P., Maddison, J. R., and Bachman, S. D.: Emergent Eddy Saturation from an Energy Constrained Eddy Parameterisation, Ocean Model., 112, 125–138, https://doi.org/10.1016/j.ocemod.2017.02.007, 2017. a, b
Mak, J., Avdis, A., David, T., Lee, H. S., Na, Y., Wang, Y., and Yan, F. E.: On Constraining the Mesoscale Eddy Energy Dissipation Time-Scale, J. Adv. Model. Earth Syst., 14, e2022MS003 223, https://doi.org/10.1029/2022MS003223, 2022a. a, b, c
Mak, J., Marshall, D. P., Madec, G., and Maddison, J. R.: Acute Sensitivity of Global Ocean Circulation and Heat Content to Eddy Energy Dissipation Timescale, Geophys. Res. Lett., 49, e2021GL097 259, https://doi.org/10.1029/2021GL097259, 2022b. a, b, c
Marshall, D. P., Maddison, J. R., and Berloff, P. S.: A Framework for Parameterizing Eddy Potential Vorticity Fluxes, J. Phys. Oceanogr., 42, 539–557, https://doi.org/10.1175/JPO-D-11-048.1, 2012. a, b
Marshall, D. P., Ambaum, M. H. P., Maddison, J. R., Munday, D. R., and Novak, L.: Eddy Saturation and Frictional Control of the Antarctic Circumpolar Current, Geophys. Res. Lett., 44, 286–292, https://doi.org/10.1002/2016GL071702, 2017. a
Marshall, J., Adcroft, A., Hill, C., Perelman, L., and Heisey, C.: A Finite-Volume, Incompressible Navier Stokes Model for Studies of the Ocean on Parallel Computers, J. Geophys. Res. Oceans, 102, 5753–5766, https://doi.org/10.1029/96JC02775, 1997a. a
Marshall, J., Hill, C., Perelman, L., and Adcroft, A.: Hydrostatic, Quasi-Hydrostatic, and Nonhydrostatic Ocean Modeling, J. Geophys. Res. Oceans, 102, 5733–5752, https://doi.org/10.1029/96JC02776, 1997b. a
McDougall, T. and Barker, P.: Getting Started with TEOS-10 and the Gibbs Seawater (GSW) Oceanographic Toolbox, Tech. rep., SCOR/IAPSO WG127, ISBN 978-0-646-55621-5, 2011. a
McGillicuddy, D. J., Robinson, A. R., Siegel, D. A., Jannasch, H. W., Johnson, R., Dickey, T. D., McNeil, J., Michaels, A. F., and Knap, A. H.: Influence of Mesoscale Eddies on New Production in the Sargasso Sea, Nature, 394, 263–266, https://doi.org/10.1038/28367, 1998. a
Meijers, A. J., Bindoff, N. L., and Roberts, J. L.: On the Total, Mean, and Eddy Heat and Freshwater Transports in the Southern Hemisphere of a ∘ × ∘ Global Ocean Model, J. Phys. Oceanogr., 37, 277–295, https://doi.org/10.1175/JPO3012.1, 2007. a
Mkhinini, N., Coimbra, A. L. S., Stegner, A., Arsouze, T., Taupier-Letage, I., and Béranger, K.: Long-Lived Mesoscale Eddies in the Eastern Mediterranean Sea: Analysis of 20 Years of AVISO Geostrophic Velocities, J. Geophys. Res. Oceans, 119, 8603–8626, https://doi.org/10.1002/2014JC010176, 2014. a
Munday, D. R. and Zhai, X.: Sensitivity of Southern Ocean Circulation to Wind Stress Changes: Role of Relative Wind Stress, Ocean Model., 95, 15–24, https://doi.org/10.1016/j.ocemod.2015.08.004, 2015. a
Munday, D. R., Johnson, H. L., and Marshall, D. P.: The Role of Ocean Gateways in the Dynamics and Sensitivity to Wind Stress of the Early Antarctic Circumpolar Current, Paleoceanography, 30, 284–302, https://doi.org/10.1002/2014PA002675, 2015. a
Munday, D. R., Zhai, X., Harle, J., Coward, A. C., and Nurser, A. J. G.: Relative vs. Absolute Wind Stress in a Circumpolar Model of the Southern Ocean, Ocean Model., 168, 101 891, https://doi.org/10.1016/j.ocemod.2021.101891, 2021. a
Pacanowski, R. C.: Effect of Equatorial Currents on Surface Stress, J. Phys. Oceanogr., 17, 833–838, https://doi.org/10.1175/1520-0485(1987)017<0833:EOECOS>2.0.CO;2, 1987. a
Pezzi, L. P., de Souza, R. B., Santini, M. F., Miller, A. J., Carvalho, J. T., Parise, C. K., Quadro, M. F., Rosa, E. B., Justino, F., Sutil, U. A., Cabrera, M. J., Babanin, A. V., Voermans, J., Nascimento, E. L., Alves, R. C. M., Munchow, G. B., and Rubert, J.: Oceanic Eddy-Induced Modifications to Air – Sea Heat and CO2 Fluxes in the Brazil-Malvinas Confluence, Sci Rep, 11, 10 648, https://doi.org/10.1038/s41598-021-89985-9, 2021. a
Rai, S., Hecht, M., Maltrud, M., and Aluie, H.: Scale of Oceanic Eddy Killing by Wind from Global Satellite Observations, Sci. Adv., 7, eabf4920, https://doi.org/10.1126/sciadv.abf4920, 2021. a, b, c
Renault, L., Molemaker, M. J., Gula, J., Masson, S., and McWilliams, J. C.: Control and Stabilization of the Gulf Stream by Oceanic Current Interaction with the Atmosphere, J. Phys. Oceanogr., 46, 3439–3453, https://doi.org/10.1175/JPO-D-16-0115.1, 2016a. a
Renault, L., Molemaker, M. J., McWilliams, J. C., Shchepetkin, A. F., Lemarié, F., Chelton, D., Illig, S., and Hall, A.: Modulation of Wind Work by Oceanic Current Interaction with the Atmosphere, J. Phys. Oceanogr., 46, 1685–1704, https://doi.org/10.1175/JPO-D-15-0232.1, 2016b. a, b
Renault, L., Marchesiello, P., Masson, S., and McWilliams, J. C.: Remarkable Control of Western Boundary Currents by Eddy Killing, a Mechanical Air-Sea Coupling Process, Geophys. Res. Lett., 46, 2743–2751, https://doi.org/10.1029/2018GL081211, 2019. a, b
Scott, R. B. and Arbic, B. K.: Spectral Energy Fluxes in Geostrophic Turbulence: Implications for Ocean Energetics, J. Phys. Oceanogr., 37, 673–688, https://doi.org/10.1175/JPO3027.1, 2007. a
Seo, H., Miller, A. J., and Norris, J. R.: Eddy – Wind Interaction in the California Current System: Dynamics and Impacts, J. Phys. Oceanogr., 46, 439–459, https://doi.org/10.1175/JPO-D-15-0086.1, 2016. a
Smith, K. S. and Vallis, G. K.: The Scales and Equilibration of Midocean Eddies: Freely Evolving Flow, J. Phys. Oceanogr., 31, 554–571, https://doi.org/10.1175/1520-0485(2001)031<0554:TSAEOM>2.0.CO;2, 2001. a
Stewart, A. L. and Thompson, A. F.: Eddy-Mediated Transport of Warm Circumpolar Deep Water across the Antarctic Shelf Break, Geophys. Res. Lett., 42, 432–440, https://doi.org/10.1002/2014GL062281, 2015. a
Tandon, A. and Garrett, C.: On a Recent Parameterization of Mesoscale Eddies, J. Phys. Oceanogr., 26, 406–411, https://doi.org/10.1175/1520-0485(1996)026<0406:OARPOM>2.0.CO;2, 1996. a
Treguier, A. M., Held, I. M., and Larichev, V. D.: Parameterization of Quasigeostrophic Eddies in Primitive Equation Ocean Models, J. Phys. Oceanogr., 27, 567–580, https://doi.org/10.1175/1520-0485(1997)027<0567:POQEIP>2.0.CO;2, 1997. a
Vallis, G. K.: Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation, Cambridge University Press, Cambridge, 2 edn., ISBN 978-1-107-06550-5, https://doi.org/10.1017/9781107588417, 2017. a
Villas Bôas, A. B., Sato, O. T., Chaigneau, A., and Castelão, G. P.: The Signature of Mesoscale Eddies on the Air-Sea Turbulent Heat Fluxes in the South Atlantic Ocean, Geophys. Res. Lett., 42, 1856–1862, https://doi.org/10.1002/2015GL063105, 2015. a
Visbeck, M., Marshall, J., Haine, T., and Spall, M.: Specification of Eddy Transfer Coefficients in Coarse-Resolution Ocean Circulation Models, J. Phys. Oceanogr., 27, 381–402, https://doi.org/10.1175/1520-0485(1997)027<0381:SOETCI>2.0.CO;2, 1997. a
von Storch, J.-S., Eden, C., Fast, I., Haak, H., Hernández-Deckers, D., Maier-Reimer, E., Marotzke, J., and Stammer, D.: An Estimate of the Lorenz Energy Cycle for the World Ocean Based on the STORM/NCEP Simulation, J. Phys. Oceanogr., 42, 2185–2205, https://doi.org/10.1175/JPO-D-12-079.1, 2012. a, b
Wang, Y., Claus, M., Greatbatch, R. J., and Sheng, J.: Decomposition of the Mean Barotropic Transport in a High-Resolution Model of the North Atlantic Ocean, Geophys. Res. Lett., 44, 11,537–11,546, https://doi.org/10.1002/2017GL074825, 2017. a
Wilder, T.: Mesoscale Ocean Eddy-Wind Interaction, Doctoral, University of East Anglia. School of Environmental Sciences, 2022. a
Wilder, T., Zhai, X., Munday, D., and Joshi, M.: The Response of a Baroclinic Anticyclonic Eddy to Relative Wind Stress Forcing, J. Phys. Oceanogr., 52, 2129–2142, https://doi.org/10.1175/JPO-D-22-0044.1, 2022. a, b, c, d
Wilder, T., Zhai, X., Munday, D., and Joshi, M.: Constraining an eddy energy dissipation rate due to relative wind stress for use in energy budget-based eddy parameterisations (version 2), Zenodo [data set], https://doi.org/10.5281/zenodo.8341660, 2023. a
Wu, Y., Zhai, X., and Wang, Z.: Decadal-Mean Impact of Including Ocean Surface Currents in Bulk Formulas on Surface Air – Sea Fluxes and Ocean General Circulation, J. Climate, 30, 9511–9525, https://doi.org/10.1175/JCLI-D-17-0001.1, 2017. a, b
Wunsch, C. and Stammer, D.: SaTELlite Altimetry, the Marine Geoid, and the Oceanic General Circulation, Annu. Rev. Earth Planet. Sci., 26, 219–253, https://doi.org/10.1146/annurev.earth.26.1.219, 1998. a
Xu, C., Shang, X.-D., and Huang, R. X.: Estimate of Eddy Energy Generation/Dissipation Rate in the World Ocean from Altimetry Data, Ocean Dynamics, 61, 525–541, https://doi.org/10.1007/s10236-011-0377-8, 2011. a, b
Xu, C., Zhai, X., and Shang, X.-D.: Work Done by Atmospheric Winds on Mesoscale Ocean Eddies, Geophys. Res. Lett., 43, 12,174–12,180, https://doi.org/10.1002/2016GL071275, 2016. a
Youngs, M. K., Thompson, A. F., Lazar, A., and Richards, K. J.: ACC Meanders, Energy Transfer, and Mixed Barotropic – Baroclinic Instability, J. Phys. Oceanogr., 47, 1291–1305, https://doi.org/10.1175/JPO-D-16-0160.1, 2017. a
Zhai, X. and Greatbatch, R. J.: Surface Eddy Diffusivity for Heat in a Model of the Northwest Atlantic Ocean, Geophys. Res. Lett., 33, https://doi.org/10.1029/2006GL028712, 2006. a
Zhai, X. and Greatbatch, R. J.: Wind Work in a Model of the Northwest Atlantic Ocean, Geophys. Res. Lett., 34, https://doi.org/10.1029/2006GL028907, 2007. a, b
Zhai, X. and Yang, Z.: Eddy-Induced Meridional Transport Variability at Ocean Western Boundary, Ocean Model., 171, 101 960, https://doi.org/10.1016/j.ocemod.2022.101960, 2022. a
Zhai, X., Johnson, H. L., and Marshall, D. P.: Significant Sink of Ocean-Eddy Energy near Western Boundaries, Nature Geosci, 3, 608–612, https://doi.org/10.1038/ngeo943, 2010. a
Zhai, X., Johnson, H. L., Marshall, D. P., and Wunsch, C.: On the Wind Power Input to the Ocean General Circulation, J. Phys. Oceanogr., 42, 1357–1365, https://doi.org/10.1175/JPO-D-12-09.1, 2012. a
Zhang, Y. and Vallis, G. K.: Ocean Heat Uptake in Eddying and Non-Eddying Ocean Circulation Models in a Warming Climate, J. Phys. Oceanogr., 43, 2211–2229, https://doi.org/10.1175/JPO-D-12-078.1, 2013. a
Zweng, M. M., Reagan, J. R., Seidov, D., Boyer, T. P., Locarnini, R. A., Garcia, H. E., Mishonov, A. V., Baranova, O. K., Weathers, K., Paver, C. R., and Smolyar, I.: World Ocean Atlas 2018, Volume 2: Salinity. A. Mishonov Technical Ed., NOAA Atlas NESDIS 82, p. 50pp, 2019. a
Co-editor-in-chief
This analytical study investigates the eddy energy dissipation rate for relative wind stress. The derived dissipation rate draws on our fundamental understanding of relative wind stress damping, vertical eddy structure, and eddy energy. The study suggests a method to parameterise the damping of total eddy energy in coarse resolution global climate models, and may have implications for a wide range of climate processes.
This analytical study investigates the eddy energy dissipation rate for relative wind stress....
Short summary
The dissipation rate of eddy energy in current energy budget-based eddy parameterisations is still relatively unconstrained, leading to uncertainties in ocean transport and ocean heat uptake. Here, we derive a dissipation rate due to the interaction of surface winds and eddy currents, a process known to significantly damp ocean eddies. The dissipation rate is quantified using seasonal climatology and displays wide spatial variability, with some of the largest values found in the Southern Ocean.
The dissipation rate of eddy energy in current energy budget-based eddy parameterisations is...