Articles | Volume 19, issue 6
https://doi.org/10.5194/os-19-1595-2023
https://doi.org/10.5194/os-19-1595-2023
Research article
 | Highlight paper
 | 
22 Nov 2023
Research article | Highlight paper |  | 22 Nov 2023

Southern Ocean warming and Antarctic ice shelf melting in conditions plausible by late 23rd century in a high-end scenario

Pierre Mathiot and Nicolas C. Jourdain

Related authors

Resolution dependence of interlinked Southern Ocean biases in global coupled HadGEM3 models
David Storkey, Pierre Mathiot, Michael J. Bell, Dan Copsey, Catherine Guiavarc'h, Helene T. Hewitt, Jeff Ridley, and Malcolm J. Roberts
EGUsphere, https://doi.org/10.5194/egusphere-2024-1414,https://doi.org/10.5194/egusphere-2024-1414, 2024
Short summary
GOSI9: UK Global Ocean and Sea Ice configurations
Catherine Guiavarc'h, Dave Storkey, Adam T. Blaker, Ed Blockley, Alex Megann, Helene T. Hewitt, Michael J. Bell, Daley Calvert, Dan Copsey, Bablu Sinha, Sophia Moreton, Pierre Mathiot, and Bo An
EGUsphere, https://doi.org/10.5194/egusphere-2024-805,https://doi.org/10.5194/egusphere-2024-805, 2024
Short summary
Uncertainty in the projected Antarctic contribution to sea level due to internal climate variability
Justine Caillet, Nicolas C. Jourdain, Pierre Mathiot, Fabien Gillet-Chaulet, Benoit Urruty, Clara Burgard, Charles Amory, Christoph Kittel, and Mondher Chekki
EGUsphere, https://doi.org/10.5194/egusphere-2024-128,https://doi.org/10.5194/egusphere-2024-128, 2024
Short summary
Experimental design for the marine ice sheet and ocean model intercomparison project – phase 2 (MISOMIP2)
Jan De Rydt, Nicolas C. Jourdain, Yoshihiro Nakayama, Mathias van Caspel, Ralph Timmermann, Pierre Mathiot, Xylar S. Asay-Davis, Hélène Seroussi, Pierre Dutrieux, Ben Galton-Fenzi, David Holland, and Ronja Reese
EGUsphere, https://doi.org/10.5194/egusphere-2024-95,https://doi.org/10.5194/egusphere-2024-95, 2024
Short summary
Improving Antarctic Bottom Water precursors in NEMO for climate applications
Katherine Hutchinson, Julie Deshayes, Christian Éthé, Clément Rousset, Casimir de Lavergne, Martin Vancoppenolle, Nicolas C. Jourdain, and Pierre Mathiot
Geosci. Model Dev., 16, 3629–3650, https://doi.org/10.5194/gmd-16-3629-2023,https://doi.org/10.5194/gmd-16-3629-2023, 2023
Short summary

Related subject area

Approach: Numerical Models | Properties and processes: Interactions with the atmosphere or cryosphere
Southern Weddell Sea surface freshwater flux modulated by icescape and atmospheric forcing
Lukrecia Stulic, Ralph Timmermann, Stephan Paul, Rolf Zentek, Günther Heinemann, and Torsten Kanzow
Ocean Sci., 19, 1791–1808, https://doi.org/10.5194/os-19-1791-2023,https://doi.org/10.5194/os-19-1791-2023, 2023
Short summary
Response of the Arctic sea ice–ocean system to meltwater perturbations based on a one-dimensional model study
Haohao Zhang, Xuezhi Bai, and Kaiwen Wang
Ocean Sci., 19, 1649–1668, https://doi.org/10.5194/os-19-1649-2023,https://doi.org/10.5194/os-19-1649-2023, 2023
Short summary
On the drivers of regime shifts in the Antarctic marginal seas, exemplified by the Weddell Sea
Verena Haid, Ralph Timmermann, Özgür Gürses, and Hartmut H. Hellmer
Ocean Sci., 19, 1529–1544, https://doi.org/10.5194/os-19-1529-2023,https://doi.org/10.5194/os-19-1529-2023, 2023
Short summary

Cited articles

Adcroft, A. and Campin, J. M.: Rescaled height coordinates for accurate representation of free-surface flows in ocean circulation models, Ocean Model., 7, 269–284, https://doi.org/10.1016/j.ocemod.2003.09.003, 2004. a
Adusumilli, S., Fricker, H. A., Medley, B., Padman, L., and Siegfried, M. R.: Interannual variations in meltwater input to the Southern Ocean from Antarctic ice shelves, Nat. Geosci., 13, 616–620, 2020. a, b, c
Agosta, C., Fettweis, X., and Datta, R.: Evaluation of the CMIP5 models in the aim of regional modelling of the Antarctic surface mass balance, The Cryosphere, 9, 2311–2321, https://doi.org/10.5194/tc-9-2311-2015, 2015. a
Agosta, C., Amory, C., Kittel, C., Orsi, A., Favier, V., Gallée, H., van den Broeke, M. R., Lenaerts, J. T. M., van Wessem, J. M., van de Berg, W. J., and Fettweis, X.: Estimation of the Antarctic surface mass balance using the regional climate model MAR (1979–2015) and identification of dominant processes, The Cryosphere, 13, 281–296, https://doi.org/10.5194/tc-13-281-2019, 2019. a
Artana, C., Ferrari, R., Bricaud, C., Lellouche, J.-M., Garric, G., Sennéchael, N., Lee, J.-H., Park, Y.-H., and Provost, C.: Twenty-five years of Mercator ocean reanalysis GLORYS12 at Drake Passage: Velocity assessment and total volume transport, Adv. Space Res., 68, 447–466, 2021. a
Download
Co-editor-in-chief
Future climate of the Antarctic is a topic of concern to scientists and to the general public, and has implications for global sea level rise. This paper uses an ocean model driven by high-end atmospheric conditions plausible by late 23rd century to highlight what might happen to the Antarctic ice and its surrounding ocean if our emissions of CO2 continue to rise in an extreme way. The model suggests that the future Antarctic continental shelf would be more like the present day Amundsen Sea – warmer and fresher. This would lead to substantial increases in ice shelf melt rates.
Short summary
How much the Antarctic ice shelf basal melt rate can increase in response to global warming remains an open question. To achieve this, we compared an ocean simulation under present-day atmospheric condition to a one under late 23rd century atmospheric conditions. The ocean response to the perturbation includes a decrease in the production of cold dense water and an increased intrusion of warmer water onto the continental shelves. This induces a substantial increase in ice shelf basal melt rates.