Articles | Volume 19, issue 5
https://doi.org/10.5194/os-19-1483-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-19-1483-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The Mediterranean Forecasting System – Part 1: Evolution and performance
Giovanni Coppini
CORRESPONDING AUTHOR
Ocean Predictions and Applications Division, Fondazione Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC), Lecce and Bologna, Italy
Emanuela Clementi
Ocean Modeling and Data Assimilation Division, Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC), Bologna, Italy
Gianpiero Cossarini
Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS), Trieste, Italy
Stefano Salon
Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS), Trieste, Italy
Gerasimos Korres
Hellenic Centre for Marine Research (HCMR), Anavyssos, Greece
Michalis Ravdas
Hellenic Centre for Marine Research (HCMR), Anavyssos, Greece
Rita Lecci
Ocean Predictions and Applications Division, Fondazione Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC), Lecce and Bologna, Italy
Jenny Pistoia
Ocean Modeling and Data Assimilation Division, Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC), Bologna, Italy
Anna Chiara Goglio
Ocean Modeling and Data Assimilation Division, Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC), Bologna, Italy
Massimiliano Drudi
Ocean Predictions and Applications Division, Fondazione Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC), Lecce and Bologna, Italy
Alessandro Grandi
Ocean Predictions and Applications Division, Fondazione Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC), Lecce and Bologna, Italy
Ali Aydogdu
Ocean Modeling and Data Assimilation Division, Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC), Bologna, Italy
Romain Escudier
Ocean Modeling and Data Assimilation Division, Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC), Bologna, Italy
Mercator Océan International, Toulouse, France
Andrea Cipollone
Ocean Modeling and Data Assimilation Division, Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC), Bologna, Italy
Vladyslav Lyubartsev
Ocean Predictions and Applications Division, Fondazione Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC), Lecce and Bologna, Italy
Antonio Mariani
Ocean Predictions and Applications Division, Fondazione Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC), Lecce and Bologna, Italy
Sergio Cretì
Ocean Predictions and Applications Division, Fondazione Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC), Lecce and Bologna, Italy
Francesco Palermo
Ocean Predictions and Applications Division, Fondazione Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC), Lecce and Bologna, Italy
Matteo Scuro
Ocean Predictions and Applications Division, Fondazione Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC), Lecce and Bologna, Italy
Simona Masina
Ocean Modeling and Data Assimilation Division, Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC), Bologna, Italy
Nadia Pinardi
Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC), Lecce, Italy
Department of Physics and Astronomy, Università di Bologna, Bologna, Italy
Antonio Navarra
Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC), Lecce, Italy
Department of Biological, Geological and Environmental Sciences (BIGEA), Università di Bologna, Bologna, Italy
Damiano Delrosso
Istituto Nazionale di Geofisica e Vulcanologia (INGV), Bologna, Italy
Anna Teruzzi
Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS), Trieste, Italy
Valeria Di Biagio
Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS), Trieste, Italy
Giorgio Bolzon
Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS), Trieste, Italy
Laura Feudale
Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS), Trieste, Italy
Gianluca Coidessa
Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS), Trieste, Italy
Carolina Amadio
Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS), Trieste, Italy
Alberto Brosich
Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS), Trieste, Italy
Arnau Miró
Barcelona Supercomputing Center, Barcelona (BSC), Barcelona, Spain
Eva Alvarez
Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS), Trieste, Italy
Paolo Lazzari
Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS), Trieste, Italy
Cosimo Solidoro
Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS), Trieste, Italy
Charikleia Oikonomou
Hellenic Centre for Marine Research (HCMR), Anavyssos, Greece
Anna Zacharioudaki
Hellenic Centre for Marine Research (HCMR), Anavyssos, Greece
Related authors
Salvatore Causio, Seimur Shirinov, Ivan Federico, Giovanni De Cillis, Emanuela Clementi, Lorenzo Mentaschi, and Giovanni Coppini
EGUsphere, https://doi.org/10.5194/egusphere-2024-3517, https://doi.org/10.5194/egusphere-2024-3517, 2024
Short summary
Short summary
This study examines how waves and ocean currents interact during severe weather, focusing on Medicane Ianos, one of the strongest storms in the Mediterranean. Using advanced modeling, we created a unique system to simulate these interactions, capturing effects like changes in water levels and wind impact on waves. We validated our approach with ideal tests and real data from the storm.
Giorgio Micaletto, Ivano Barletta, Silvia Mocavero, Ivan Federico, Italo Epicoco, Giorgia Verri, Giovanni Coppini, Pasquale Schiano, Giovanni Aloisio, and Nadia Pinardi
Geosci. Model Dev., 15, 6025–6046, https://doi.org/10.5194/gmd-15-6025-2022, https://doi.org/10.5194/gmd-15-6025-2022, 2022
Short summary
Short summary
The full exploitation of supercomputing architectures requires a deep revision of the current climate models. This paper presents the parallelization of the three-dimensional hydrodynamic model SHYFEM (System of HydrodYnamic Finite Element Modules). Optimized numerical libraries were used to partition the model domain and solve the sparse linear system of equations in parallel. The performance assessment demonstrates a good level of scalability with a realistic configuration used as a benchmark.
Giorgia Verri, Nadia Pinardi, David Gochis, Joseph Tribbia, Antonio Navarra, Giovanni Coppini, and Tomislava Vukicevic
Nat. Hazards Earth Syst. Sci., 17, 1741–1761, https://doi.org/10.5194/nhess-17-1741-2017, https://doi.org/10.5194/nhess-17-1741-2017, 2017
Giovanni Coppini, Palmalisa Marra, Rita Lecci, Nadia Pinardi, Sergio Cretì, Mario Scalas, Luca Tedesco, Alessandro D'Anca, Leopoldo Fazioli, Antonio Olita, Giuseppe Turrisi, Cosimo Palazzo, Giovanni Aloisio, Sandro Fiore, Antonio Bonaduce, Yogesh Vittal Kumkar, Stefania Angela Ciliberti, Ivan Federico, Gianandrea Mannarini, Paola Agostini, Roberto Bonarelli, Sara Martinelli, Giorgia Verri, Letizia Lusito, Davide Rollo, Arturo Cavallo, Antonio Tumolo, Tony Monacizzo, Marco Spagnulo, Rorberto Sorgente, Andrea Cucco, Giovanni Quattrocchi, Marina Tonani, Massimiliano Drudi, Paola Nassisi, Laura Conte, Laura Panzera, Antonio Navarra, and Giancarlo Negro
Nat. Hazards Earth Syst. Sci., 17, 533–547, https://doi.org/10.5194/nhess-17-533-2017, https://doi.org/10.5194/nhess-17-533-2017, 2017
Short summary
Short summary
SeaConditions aims to support the users by providing the environmental information in due time and with adequate accuracy in the marine and coastal environments, enforcing users' sea situational awareness. SeaConditions consists of a web and mobile application for the provision of meteorological and oceanographic observation and forecasting products. The iOS/Android apps were downloaded by more than 105 000 users and more than 100 000 users have visited the web version (www.sea-conditions.com).
Alessandro D'Anca, Laura Conte, Paola Nassisi, Cosimo Palazzo, Rita Lecci, Sergio Cretì, Marco Mancini, Alessandra Nuzzo, Maria Mirto, Gianandrea Mannarini, Giovanni Coppini, Sandro Fiore, and Giovanni Aloisio
Nat. Hazards Earth Syst. Sci., 17, 171–184, https://doi.org/10.5194/nhess-17-171-2017, https://doi.org/10.5194/nhess-17-171-2017, 2017
Short summary
Short summary
Updated situational sea awareness requires an advanced technological system to make data available for decision makers, improving the capacity of intervention and supporting users in managing emergency situations due to natural hazards. The TESSA data platform meets the request of near-real-time access to heterogeneous data with different accuracy, resolution or degrees of aggregation providing efficient and secure data access and strong support to operational oceanographic high-level services.
Ivan Federico, Nadia Pinardi, Giovanni Coppini, Paolo Oddo, Rita Lecci, and Michele Mossa
Nat. Hazards Earth Syst. Sci., 17, 45–59, https://doi.org/10.5194/nhess-17-45-2017, https://doi.org/10.5194/nhess-17-45-2017, 2017
Short summary
Short summary
SANIFS (Southern Adriatic Northern Ionian coastal Forecasting System) is a coastal-ocean operational system based on the unstructured grid finite-element three-dimensional hydrodynamic SHYFEM model, which provides short-term forecasts. The operational chain is based on a downscaling approach starting from the large-scale system for the entire Mediterranean Basin (MFS, Mediterranean Forecasting System), which provides initial and boundary condition fields for the nested system.
Giovanni Coppini, Eric Jansen, Giuseppe Turrisi, Sergio Creti, Elena Yurievna Shchekinova, Nadia Pinardi, Rita Lecci, Ivano Carluccio, Yogesh Vittal Kumkar, Alessandro D'Anca, Gianandrea Mannarini, Sara Martinelli, Palmalisa Marra, Tommaso Capodiferro, and Tommaso Gismondi
Nat. Hazards Earth Syst. Sci., 16, 2713–2727, https://doi.org/10.5194/nhess-16-2713-2016, https://doi.org/10.5194/nhess-16-2713-2016, 2016
Short summary
Short summary
A new web-based and mobile Decision Support System (DSS) for Search-And-Rescue (SAR) at sea is presented, and its performance is evaluated using real case scenarios. The system, named OCEAN-SAR, is accessible via the website http://www.ocean-sar.com. OCEAN-SAR simulates drifting objects at sea, using as input ocean currents and wind. The performance of the service is evaluated by comparing simulations to data from the Italian Coast Guard pertaining to actual incidents in the Mediterranean Sea.
Nadia Pinardi, Vladyslav Lyubartsev, Nicola Cardellicchio, Claudio Caporale, Stefania Ciliberti, Giovanni Coppini, Francesca De Pascalis, Lorenzo Dialti, Ivan Federico, Marco Filippone, Alessandro Grandi, Matteo Guideri, Rita Lecci, Lamberto Lamberti, Giuliano Lorenzetti, Paolo Lusiani, Cosimo Damiano Macripo, Francesco Maicu, Michele Mossa, Diego Tartarini, Francesco Trotta, Georg Umgiesser, and Luca Zaggia
Nat. Hazards Earth Syst. Sci., 16, 2623–2639, https://doi.org/10.5194/nhess-16-2623-2016, https://doi.org/10.5194/nhess-16-2623-2016, 2016
Short summary
Short summary
A multiscale sampling experiment was carried out in the Gulf of Taranto (eastern Mediterranean) providing the first synoptic evidence of the large-scale circulation structure and associated mesoscale variability. The circulation is shown to be dominated by an anticyclonic gyre and upwelling areas at the gyre periphery.
Svitlana Liubartseva, Giovanni Coppini, Nadia Pinardi, Michela De Dominicis, Rita Lecci, Giuseppe Turrisi, Sergio Cretì, Sara Martinelli, Paola Agostini, Palmalisa Marra, and Francesco Palermo
Nat. Hazards Earth Syst. Sci., 16, 2009–2020, https://doi.org/10.5194/nhess-16-2009-2016, https://doi.org/10.5194/nhess-16-2009-2016, 2016
Short summary
Short summary
An innovative fully operational 24/7 web-based decision support system, WITOIL (Where Is The Oil), has been developed to support oil pollution response. The system meets the real-time requirements in terms of performance and dynamic service delivery. Comprehensive computational resources and network bandwidth efficiently support the multi-user regime. The eight-language graphical user interface incorporates a great variety of user services, e.g., help and support, tooltips, and video tutorials.
Gianandrea Mannarini, Giuseppe Turrisi, Alessandro D'Anca, Mario Scalas, Nadia Pinardi, Giovanni Coppini, Francesco Palermo, Ivano Carluccio, Matteo Scuro, Sergio Cretì, Rita Lecci, Paola Nassisi, and Luca Tedesco
Nat. Hazards Earth Syst. Sci., 16, 1791–1806, https://doi.org/10.5194/nhess-16-1791-2016, https://doi.org/10.5194/nhess-16-1791-2016, 2016
Short summary
Short summary
Safety and efficiency of navigation can be enhanced through a better situational awareness at sea. We designed and realized an operational infrastructure for providing the navigators with optimal routes through various devices: PC, tablets, and smartphones. Sea-state and wind forecasts are used as inputs. Both motor- and sailboat routes are addressed by VISIR.
Eric Jansen, Giovanni Coppini, and Nadia Pinardi
Nat. Hazards Earth Syst. Sci., 16, 1623–1628, https://doi.org/10.5194/nhess-16-1623-2016, https://doi.org/10.5194/nhess-16-1623-2016, 2016
Short summary
Short summary
In March 2014, a commercial airliner vanished without a trace. The main wreckage of the plane was never recovered, except for some small parts that washed up more than 17 months after the disappearance. In this paper we show a method to model the most likely trajectories of floating debris from the aircraft. The results show that the assumed area of the crash site is compatible with the recovered debris and predict that further debris may be found along the African east coast.
Gianandrea Mannarini, Nadia Pinardi, Giovanni Coppini, Paolo Oddo, and Alessandro Iafrati
Geosci. Model Dev., 9, 1597–1625, https://doi.org/10.5194/gmd-9-1597-2016, https://doi.org/10.5194/gmd-9-1597-2016, 2016
Short summary
Short summary
VISIR is a new numerical model for the computation of optimal ship routes from meteo-marine forecasts. VISIR offers the scientific community an open platform whereby various ideas and methods for ship route optimization can be shared, tested, and compared to each other.
Maher Bouzaiene, Antonio Guarnieri, Damiano Delrosso, Ahmad F. Dilmahamod, Simona Simoncelli, and Claudia Fratianni
EGUsphere, https://doi.org/10.5194/egusphere-2024-3730, https://doi.org/10.5194/egusphere-2024-3730, 2024
Short summary
Short summary
We analyze the geostrophic circulation and tidal effects in the Gulf of Gabès from 30 years of altimetry data (1993–2022) and the outputs of a high resolution ocean model for the year 2022.
Salvatore Causio, Seimur Shirinov, Ivan Federico, Giovanni De Cillis, Emanuela Clementi, Lorenzo Mentaschi, and Giovanni Coppini
EGUsphere, https://doi.org/10.5194/egusphere-2024-3517, https://doi.org/10.5194/egusphere-2024-3517, 2024
Short summary
Short summary
This study examines how waves and ocean currents interact during severe weather, focusing on Medicane Ianos, one of the strongest storms in the Mediterranean. Using advanced modeling, we created a unique system to simulate these interactions, capturing effects like changes in water levels and wind impact on waves. We validated our approach with ideal tests and real data from the storm.
Jennifer Veitch, Enrique Alvarez-Fanjul, Arthur Capet, Stefania Ciliberti, Mauro Cirano, Emanuela Clementi, Fraser Davidson, Ghada el Sarafy, Guilherme Franz, Patrick Hogan, Sudheer Joseph, Svitlana Liubartseva, Yasumasa Miyazawa, Heather Regan, and Katerina Spanoudaki
State Planet Discuss., https://doi.org/10.5194/sp-2024-22, https://doi.org/10.5194/sp-2024-22, 2024
Preprint under review for SP
Short summary
Short summary
Ocean forecast systems provide information about a future state of the ocean. This information is provided in the form of decision support tools, or downstream applications, that can be accessed by various stakeholders to support livelihoods, coastal resilience, as well as the good governance of the marine environment. This manuscript provides an overview of the various downstream applications of ocean forecast systems that are utilised around the world.
Carlos Enmanuel Soto López, Fabio Anselmi, Mirna Gharbi Dit Kacem, and Paolo Lazzari
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-174, https://doi.org/10.5194/gmd-2024-174, 2024
Preprint under review for GMD
Short summary
Short summary
Our goal was to use an analytical expression to estimate the density of optical constituents, allowing us to have an interpretable formulation consistent with the laws of physics. We focused on a probabilistic approach, optimizing the model and retrieving quantities with their respective uncertainty. Considering future application to Big Data, we also explored a Neural Network based method, retrieving computationally efficient estimates, maintaining consistency with the analytical expression.
José A. Jiménez, Gundula Winter, Antonio Bonaduce, Michael Depuydt, Giulia Galluccio, Bart van den Hurk, H. E. Markus Meier, Nadia Pinardi, Lavinia G. Pomarico, and Natalia Vazquez Riveiros
State Planet, 3-slre1, 3, https://doi.org/10.5194/sp-3-slre1-3-2024, https://doi.org/10.5194/sp-3-slre1-3-2024, 2024
Short summary
Short summary
The Knowledge Hub on Sea Level Rise (SLR) has done a scoping study involving stakeholders from government and academia to identify gaps and needs in SLR information, impacts, and policies across Europe. Gaps in regional SLR projections and uncertainties were found, while concerns were raised about shoreline erosion and emerging problems like saltwater intrusion and ineffective adaptation plans. The need for improved communication to make better decisions on SLR adaptation was highlighted.
Nadia Pinardi, Bart van den Hurk, Michael Depuydt, Thorsten Kiefer, Petra Manderscheid, Lavinia Giulia Pomarico, and Kanika Singh
State Planet, 3-slre1, 2, https://doi.org/10.5194/sp-3-slre1-2-2024, https://doi.org/10.5194/sp-3-slre1-2-2024, 2024
Short summary
Short summary
The Knowledge Hub on Sea Level Rise (KH-SLR), a joint effort between JPI Climate and JPI Oceans, addresses the critical need for science-based information on sea level changes in Europe. The KH-SLR actively involves stakeholders through a co-design process discussing the impacts, adaptation planning, and policy requirements related to SLR in Europe. Its primary output is the KH Assessment Report (KH-AR), which is described in this volume.
Bart van den Hurk, Nadia Pinardi, Alexander Bisaro, Giulia Galluccio, José A. Jiménez, Kate Larkin, Angélique Melet, Lavinia Giulia Pomarico, Kristin Richter, Kanika Singh, Roderik van de Wal, and Gundula Winter
State Planet, 3-slre1, 1, https://doi.org/10.5194/sp-3-slre1-1-2024, https://doi.org/10.5194/sp-3-slre1-1-2024, 2024
Short summary
Short summary
The Summary for Policymakers compiles findings from “Sea Level Rise in Europe: 1st Assessment Report of the Knowledge Hub on Sea Level Rise”. It covers knowledge gaps, observations, projections, impacts, adaptation measures, decision-making principles, and governance challenges. It provides information for each European basin (Mediterranean, Black Sea, North Sea, Baltic Sea, Atlantic, and Arctic) and aims to assist policymakers in enhancing the preparedness of European coasts for sea level rise.
Mauro Cirano, Enrique Alvarez-Fanjul, Arthur Capet, Stefania Ciliberti, Emanuela Clementi, Boris Dewitte, Matias Dinápoli, Ghada El Serafy, Patrick Hogan, Sudheer Joseph, Yasumasa Miyazawa, Ivonne Montes, Diego Narvaez, Heather Regan, Claudia G. Simionato, Clemente A. S. Tanajura, Pramod Thupaki, Claudia Urbano-Latorre, and Jennifer Veitch
State Planet Discuss., https://doi.org/10.5194/sp-2024-26, https://doi.org/10.5194/sp-2024-26, 2024
Preprint under review for SP
Short summary
Short summary
Predicting the ocean state in support of human activities, environmental monitoring and policymaking across different regions worldwide is fundamental. The status of operational ocean forecasting systems (OOFS) in 8 key regions worldwide is provided. A discussion follows on the numerical strategy and available OOFS, pointing out the straightness and the ways forward to improve the essential ocean variables predictability from regional to coastal scales, products reliability and accuracy.
Gloria Pietropolli, Luca Manzoni, and Gianpiero Cossarini
Geosci. Model Dev., 17, 7347–7364, https://doi.org/10.5194/gmd-17-7347-2024, https://doi.org/10.5194/gmd-17-7347-2024, 2024
Short summary
Short summary
Monitoring the ocean is essential for studying marine life and human impact. Our new software, PPCon, uses ocean data to predict key factors like nitrate and chlorophyll levels, which are hard to measure directly. By leveraging machine learning, PPCon offers more accurate and efficient predictions.
Ronan McAdam, Giulia Bonino, Emanuela Clementi, and Simona Masina
State Planet, 4-osr8, 13, https://doi.org/10.5194/sp-4-osr8-13-2024, https://doi.org/10.5194/sp-4-osr8-13-2024, 2024
Short summary
Short summary
In the summer of 2022, a regional short-term forecasting system was able to predict the onset, spread, peaks, and decay of a record-breaking marine heatwave in the Mediterranean Sea up to 10 d in advance. Satellite data show that the event was record-breaking in terms of basin-wide intensity and duration. This study demonstrates the potential of state-of-the-art forecasting systems to provide early warning of marine heatwaves for marine activities (e.g. conservation and aquaculture).
Dimitra Denaxa, Gerasimos Korres, Giulia Bonino, Simona Masina, and Maria Hatzaki
State Planet, 4-osr8, 11, https://doi.org/10.5194/sp-4-osr8-11-2024, https://doi.org/10.5194/sp-4-osr8-11-2024, 2024
Short summary
Short summary
We investigate the air–sea heat flux during marine heatwaves (MHWs) in the Mediterranean Sea. Surface heat flux drives 44 % of the onset and only 17 % of the declining MHW phases, suggesting a key role of oceanic processes. Heat flux is more important in warmer months and onset phases, with latent heat dominating. Shorter events show a weaker heat flux contribution. In most cases, mixed layer shoaling occurs over the entire MHW duration, followed by vertical mixing after the MHW end day.
Anna Teruzzi, Ali Aydogdu, Carolina Amadio, Emanuela Clementi, Simone Colella, Valeria Di Biagio, Massimiliano Drudi, Claudia Fanelli, Laura Feudale, Alessandro Grandi, Pietro Miraglio, Andrea Pisano, Jenny Pistoia, Marco Reale, Stefano Salon, Gianluca Volpe, and Gianpiero Cossarini
State Planet, 4-osr8, 15, https://doi.org/10.5194/sp-4-osr8-15-2024, https://doi.org/10.5194/sp-4-osr8-15-2024, 2024
Short summary
Short summary
A noticeable cold spell occurred in Eastern Europe at the beginning of 2022 and was the main driver of intense deep-water formation and the associated transport of nutrients to the surface. Southeast of Crete, the availability of both light and nutrients in the surface layer stimulated an anomalous phytoplankton bloom. In the area, chlorophyll concentration (a proxy for bloom intensity) and primary production were considerably higher than usual, suggesting possible impacts on fishery catches.
Karina von Schuckmann, Lorena Moreira, Mathilde Cancet, Flora Gues, Emmanuelle Autret, Jonathan Baker, Clément Bricaud, Romain Bourdalle-Badie, Lluis Castrillo, Lijing Cheng, Frederic Chevallier, Daniele Ciani, Alvaro de Pascual-Collar, Vincenzo De Toma, Marie Drevillon, Claudia Fanelli, Gilles Garric, Marion Gehlen, Rianne Giesen, Kevin Hodges, Doroteaciro Iovino, Simon Jandt-Scheelke, Eric Jansen, Melanie Juza, Ioanna Karagali, Thomas Lavergne, Simona Masina, Ronan McAdam, Audrey Minière, Helen Morrison, Tabea Rebekka Panteleit, Andrea Pisano, Marie-Isabelle Pujol, Ad Stoffelen, Sulian Thual, Simon Van Gennip, Pierre Veillard, Chunxue Yang, and Hao Zuo
State Planet, 4-osr8, 1, https://doi.org/10.5194/sp-4-osr8-1-2024, https://doi.org/10.5194/sp-4-osr8-1-2024, 2024
Karina von Schuckmann, Lorena Moreira, Mathilde Cancet, Flora Gues, Emmanuelle Autret, Ali Aydogdu, Lluis Castrillo, Daniele Ciani, Andrea Cipollone, Emanuela Clementi, Gianpiero Cossarini, Alvaro de Pascual-Collar, Vincenzo De Toma, Marion Gehlen, Rianne Giesen, Marie Drevillon, Claudia Fanelli, Kevin Hodges, Simon Jandt-Scheelke, Eric Jansen, Melanie Juza, Ioanna Karagali, Priidik Lagemaa, Vidar Lien, Leonardo Lima, Vladyslav Lyubartsev, Ilja Maljutenko, Simona Masina, Ronan McAdam, Pietro Miraglio, Helen Morrison, Tabea Rebekka Panteleit, Andrea Pisano, Marie-Isabelle Pujol, Urmas Raudsepp, Roshin Raj, Ad Stoffelen, Simon Van Gennip, Pierre Veillard, and Chunxue Yang
State Planet, 4-osr8, 2, https://doi.org/10.5194/sp-4-osr8-2-2024, https://doi.org/10.5194/sp-4-osr8-2-2024, 2024
Gianpiero Cossarini, Andy Moore, Stefano Ciavatta, and Katja Fennel
State Planet Discuss., https://doi.org/10.5194/sp-2024-8, https://doi.org/10.5194/sp-2024-8, 2024
Revised manuscript under review for SP
Short summary
Short summary
Marine biogeochemistry refers to the cycling of chemical elements resulting from physical transport, chemical reaction, uptake, and processing by living organisms. Biogeochemical models can have a wide range of complexity, from single parameterizations of processes to fully explicit representations of several nutrients, trophic levels, and functional groups. Uncertainty sources are the lack of knowledge about the parameterizations, initial and boundary conditions and the lack of observations
Dimitra Denaxa, Gerasimos Korres, Sophia Darmaraki, and Maria Hatzaki
State Planet Discuss., https://doi.org/10.5194/sp-2024-4, https://doi.org/10.5194/sp-2024-4, 2024
Preprint under review for SP
Short summary
Short summary
The Mediterranean Sea experiences a basin-wide increase in sea surface temperature (SST) and extreme SST occurrences. Stronger warming trends are found in the eastern basin where a decrease in SST variability is also observed. Our findings on the origin of marine heatwave (MHW) trends in the basin suggest that the mean SST warming drives the long-term trends for most MHW properties across the basin except for mean MHW intensity, where interannual variability emerges as the dominant driver.
Bethany McDonagh, Emanuela Clementi, Anna Chiara Goglio, and Nadia Pinardi
Ocean Sci., 20, 1051–1066, https://doi.org/10.5194/os-20-1051-2024, https://doi.org/10.5194/os-20-1051-2024, 2024
Short summary
Short summary
Tides in the Mediterranean Sea are typically of low amplitude, but twin experiments with and without tides demonstrate that tides affect the circulation directly at scales away from those of the tides. Analysis of the energy changes due to tides shows that they enhance existing oscillations, and internal tides interact with other internal waves. Tides also increase the mixed layer depth and enhance deep water formation in key regions. Internal tides are widespread in the Mediterranean Sea.
Roberta Benincasa, Giovanni Liguori, Nadia Pinardi, and Hans von Storch
Ocean Sci., 20, 1003–1012, https://doi.org/10.5194/os-20-1003-2024, https://doi.org/10.5194/os-20-1003-2024, 2024
Short summary
Short summary
Ocean dynamics result from the interplay of internal processes and external inputs, primarily from the atmosphere. It is crucial to discern between these factors to gauge the ocean's intrinsic predictability and to be able to attribute a signal under study to either external factors or internal variability. Employing a simple analysis, we successfully characterized this variability in the Mediterranean Sea and compared it with the oceanic response induced by atmospheric conditions.
Jorn Bruggeman, Karsten Bolding, Lars Nerger, Anna Teruzzi, Simone Spada, Jozef Skákala, and Stefano Ciavatta
Geosci. Model Dev., 17, 5619–5639, https://doi.org/10.5194/gmd-17-5619-2024, https://doi.org/10.5194/gmd-17-5619-2024, 2024
Short summary
Short summary
To understand and predict the ocean’s capacity for carbon sequestration, its ability to supply food, and its response to climate change, we need the best possible estimate of its physical and biogeochemical properties. This is obtained through data assimilation which blends numerical models and observations. We present the Ensemble and Assimilation Tool (EAT), a flexible and efficient test bed that allows any scientist to explore and further develop the state of the art in data assimilation.
Carolina Amadio, Anna Teruzzi, Gloria Pietropolli, Luca Manzoni, Gianluca Coidessa, and Gianpiero Cossarini
Ocean Sci., 20, 689–710, https://doi.org/10.5194/os-20-689-2024, https://doi.org/10.5194/os-20-689-2024, 2024
Short summary
Short summary
Forecasting of marine biogeochemistry can be improved via the assimilation of observations. Floating buoys provide multivariate information about the status of the ocean interior. Information on the ocean interior can be expanded/augmented by machine learning. In this work, we show the enhanced impact of assimilating new in situ variables (oxygen) and reconstructed variables (nitrate) in the operational forecast system (MedBFM) model of the Mediterranean Sea.
Elena Bianco, Doroteaciro Iovino, Simona Masina, Stefano Materia, and Paolo Ruggieri
The Cryosphere, 18, 2357–2379, https://doi.org/10.5194/tc-18-2357-2024, https://doi.org/10.5194/tc-18-2357-2024, 2024
Short summary
Short summary
Changes in ocean heat transport and surface heat fluxes in recent decades have altered the Arctic Ocean heat budget and caused warming of the upper ocean. Using two eddy-permitting ocean reanalyses, we show that this has important implications for sea ice variability. In the Arctic regional seas, upper-ocean heat content acts as an important precursor for sea ice anomalies on sub-seasonal timescales, and this link has strengthened since the 2000s.
Siren Rühs, Ton van den Bremer, Emanuela Clementi, Michael C. Denes, Aimie Moulin, and Erik van Sebille
EGUsphere, https://doi.org/10.5194/egusphere-2024-1002, https://doi.org/10.5194/egusphere-2024-1002, 2024
Short summary
Short summary
Simulating the transport of floating particles on the ocean surface is crucial for solving many societal issues. Here, we investigate how the representation of wind-generated surface waves impacts particle transport simulations. We find that different wave-driven processes can alter the transport patterns, and that commonly adopted approximations are not always adequate. This implies that ideally coupled ocean-wave models should be used for surface particle transport simulations.
Dimitra Denaxa, Gerasimos Korres, Emmanouil Flaounas, and Maria Hatzaki
Ocean Sci., 20, 433–461, https://doi.org/10.5194/os-20-433-2024, https://doi.org/10.5194/os-20-433-2024, 2024
Short summary
Short summary
This study explores extreme marine summers (EMSs) in the Mediterranean Sea using sea surface temperature (SST) data. EMSs arise mainly due to the warmest summer days being unusually warm. Air–sea heat fluxes drive EMSs in northern regions, where also enhanced marine heatwave conditions are found during EMSs. Long-term SST changes lead to warmer EMSs while not affecting the way daily SST values are organized during EMSs. Findings enhance comprehension of anomalously warm conditions in the basin.
Giulia Bonino, Giuliano Galimberti, Simona Masina, Ronan McAdam, and Emanuela Clementi
Ocean Sci., 20, 417–432, https://doi.org/10.5194/os-20-417-2024, https://doi.org/10.5194/os-20-417-2024, 2024
Short summary
Short summary
This study employs machine learning to predict marine heatwaves (MHWs) in the Mediterranean Sea. MHWs have far-reaching impacts on society and ecosystems. Using data from ESA and ECMWF, the research develops accurate prediction models for sea surface temperature (SST) and MHWs across the region. Notably, machine learning methods outperform existing forecasting systems, showing promise in early MHW predictions. The study also highlights the importance of solar radiation as a predictor of SST.
Skyler Kern, Mary E. McGuinn, Katherine M. Smith, Nadia Pinardi, Kyle E. Niemeyer, Nicole S. Lovenduski, and Peter E. Hamlington
Geosci. Model Dev., 17, 621–649, https://doi.org/10.5194/gmd-17-621-2024, https://doi.org/10.5194/gmd-17-621-2024, 2024
Short summary
Short summary
Computational models are used to simulate the behavior of marine ecosystems. The models often have unknown parameters that need to be calibrated to accurately represent observational data. Here, we propose a novel approach to simultaneously determine a large set of parameters for a one-dimensional model of a marine ecosystem in the surface ocean at two contrasting sites. By utilizing global and local optimization techniques, we estimate many parameters in a computationally efficient manner.
Eva Álvarez, Gianpiero Cossarini, Anna Teruzzi, Jorn Bruggeman, Karsten Bolding, Stefano Ciavatta, Vincenzo Vellucci, Fabrizio D'Ortenzio, David Antoine, and Paolo Lazzari
Biogeosciences, 20, 4591–4624, https://doi.org/10.5194/bg-20-4591-2023, https://doi.org/10.5194/bg-20-4591-2023, 2023
Short summary
Short summary
Chromophoric dissolved organic matter (CDOM) interacts with the ambient light and gives the waters of the Mediterranean Sea their colour. We propose a novel parameterization of the CDOM cycle, whose parameter values have been optimized by using the data of the monitoring site BOUSSOLE. Nutrient and light limitations for locally produced CDOM caused aCDOM(λ) to covary with chlorophyll, while the above-average CDOM concentrations observed at this site were maintained by allochthonous sources.
Simone Spada, Anna Teruzzi, Stefano Maset, Stefano Salon, Cosimo Solidoro, and Gianpiero Cossarini
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-170, https://doi.org/10.5194/gmd-2023-170, 2023
Revised manuscript under review for GMD
Short summary
Short summary
In geosciences, data assimilation (DA) combines modeled dynamics and observations to reduce simulation uncertainties. Uncertainties can be dynamically and effectively estimated in ensemble DA methods. With respect to current techniques, the novel GHOSH ensemble DA scheme is designed to improve accuracy by reaching a higher approximation order, without increasing computational costs, as demonstrated in idealized Lorenz96 tests and in realistic simulations of the Mediterranean Sea biogeochemistry
Doroteaciro Iovino, Pier Giuseppe Fogli, and Simona Masina
Geosci. Model Dev., 16, 6127–6159, https://doi.org/10.5194/gmd-16-6127-2023, https://doi.org/10.5194/gmd-16-6127-2023, 2023
Short summary
Short summary
This paper describes the model performance of three global ocean–sea ice configurations, from non-eddying (1°) to eddy-rich (1/16°) resolutions. Model simulations are obtained following the Ocean Model Intercomparison Project phase 2 (OMIP2) protocol. We compare key global climate variables across the three models and against observations, emphasizing the relative advantages and disadvantages of running forced ocean–sea ice models at higher resolution.
Valeria Di Biagio, Riccardo Martellucci, Milena Menna, Anna Teruzzi, Carolina Amadio, Elena Mauri, and Gianpiero Cossarini
State Planet, 1-osr7, 10, https://doi.org/10.5194/sp-1-osr7-10-2023, https://doi.org/10.5194/sp-1-osr7-10-2023, 2023
Short summary
Short summary
Oxygen is essential to all aerobic organisms, and its content in the marine environment is continuously under assessment. By integrating observations with a model, we describe the dissolved oxygen variability in a sensitive Mediterranean area in the period 1999–2021 and ascribe it to multiple acting physical and biological drivers. Moreover, the reduction recognized in 2021, apparently also due to other mechanisms, requires further monitoring in light of its possible impacts.
Ali Aydogdu, Pietro Miraglio, Romain Escudier, Emanuela Clementi, and Simona Masina
State Planet, 1-osr7, 6, https://doi.org/10.5194/sp-1-osr7-6-2023, https://doi.org/10.5194/sp-1-osr7-6-2023, 2023
Short summary
Short summary
This paper investigates the salt content, salinity anomaly and trend in the Mediterranean Sea using observational and reanalysis products. The salt content increases overall, while negative salinity anomalies appear in the western basin, especially around the upwelling regions. There is a large spread in the salinity estimates that is reduced with the emergence of the Argo profilers.
Stefania A. Ciliberti, Enrique Alvarez Fanjul, Jay Pearlman, Kirsten Wilmer-Becker, Pierre Bahurel, Fabrice Ardhuin, Alain Arnaud, Mike Bell, Segolene Berthou, Laurent Bertino, Arthur Capet, Eric Chassignet, Stefano Ciavatta, Mauro Cirano, Emanuela Clementi, Gianpiero Cossarini, Gianpaolo Coro, Stuart Corney, Fraser Davidson, Marie Drevillon, Yann Drillet, Renaud Dussurget, Ghada El Serafy, Katja Fennel, Marcos Garcia Sotillo, Patrick Heimbach, Fabrice Hernandez, Patrick Hogan, Ibrahim Hoteit, Sudheer Joseph, Simon Josey, Pierre-Yves Le Traon, Simone Libralato, Marco Mancini, Pascal Matte, Angelique Melet, Yasumasa Miyazawa, Andrew M. Moore, Antonio Novellino, Andrew Porter, Heather Regan, Laia Romero, Andreas Schiller, John Siddorn, Joanna Staneva, Cecile Thomas-Courcoux, Marina Tonani, Jose Maria Garcia-Valdecasas, Jennifer Veitch, Karina von Schuckmann, Liying Wan, John Wilkin, and Romane Zufic
State Planet, 1-osr7, 2, https://doi.org/10.5194/sp-1-osr7-2-2023, https://doi.org/10.5194/sp-1-osr7-2-2023, 2023
Andrea Cipollone, Deep Sankar Banerjee, Doroteaciro Iovino, Ali Aydogdu, and Simona Masina
Ocean Sci., 19, 1375–1392, https://doi.org/10.5194/os-19-1375-2023, https://doi.org/10.5194/os-19-1375-2023, 2023
Short summary
Short summary
Sea-ice volume is characterized by low predictability compared to the sea ice area or the extent. A joint initialization of the thickness and concentration using satellite data could improve the predictive power, although it is still absent in the present global analysis–reanalysis systems. This study shows a scheme to correct the two features together that can be easily extended to include ocean variables. The impact of such a joint initialization is shown and compared among different set-ups.
Sukun Cheng, Yumeng Chen, Ali Aydoğdu, Laurent Bertino, Alberto Carrassi, Pierre Rampal, and Christopher K. R. T. Jones
The Cryosphere, 17, 1735–1754, https://doi.org/10.5194/tc-17-1735-2023, https://doi.org/10.5194/tc-17-1735-2023, 2023
Short summary
Short summary
This work studies a novel application of combining a Lagrangian sea ice model, neXtSIM, and data assimilation. It uses a deterministic ensemble Kalman filter to incorporate satellite-observed ice concentration and thickness in simulations. The neXtSIM Lagrangian nature is handled using a remapping strategy on a common homogeneous mesh. The ensemble is formed by perturbing air–ocean boundary conditions and ice cohesion. Thanks to data assimilation, winter Arctic sea ice forecasting is enhanced.
Alexandre Mignot, Hervé Claustre, Gianpiero Cossarini, Fabrizio D'Ortenzio, Elodie Gutknecht, Julien Lamouroux, Paolo Lazzari, Coralie Perruche, Stefano Salon, Raphaëlle Sauzède, Vincent Taillandier, and Anna Teruzzi
Biogeosciences, 20, 1405–1422, https://doi.org/10.5194/bg-20-1405-2023, https://doi.org/10.5194/bg-20-1405-2023, 2023
Short summary
Short summary
Numerical models of ocean biogeochemistry are becoming a major tool to detect and predict the impact of climate change on marine resources and monitor ocean health. Here, we demonstrate the use of the global array of BGC-Argo floats for the assessment of biogeochemical models. We first detail the handling of the BGC-Argo data set for model assessment purposes. We then present 23 assessment metrics to quantify the consistency of BGC model simulations with respect to BGC-Argo data.
Juan Pablo Almeida, Lorenzo Menichetti, Alf Ekblad, Nicholas P. Rosenstock, and Håkan Wallander
Biogeosciences, 20, 1443–1458, https://doi.org/10.5194/bg-20-1443-2023, https://doi.org/10.5194/bg-20-1443-2023, 2023
Short summary
Short summary
In forests, trees allocate a significant amount of carbon belowground to support mycorrhizal symbiosis. In northern forests nitrogen normally regulates this allocation and consequently mycorrhizal fungi growth. In this study we demonstrate that in a conifer forest from Sweden, fungal growth is regulated by phosphorus instead of nitrogen. This is probably due to an increase in nitrogen deposition to soils caused by decades of human pollution that has altered the ecosystem nutrient regime.
Giulia Bonino, Simona Masina, Giuliano Galimberti, and Matteo Moretti
Earth Syst. Sci. Data, 15, 1269–1285, https://doi.org/10.5194/essd-15-1269-2023, https://doi.org/10.5194/essd-15-1269-2023, 2023
Short summary
Short summary
We present a unique observational dataset of marine heat wave (MHW) macroevents and their characteristics over southern Europe and western Asian (SEWA) basins in the SEWA-MHW dataset. This dataset is the first effort in the literature to archive extremely hot sea surface temperature macroevents. The advantages of the availability of SEWA-MHWs are avoiding the waste of computational resources to detect MHWs and building a consistent framework which would increase comparability among MHW studies.
Valeria Di Biagio, Stefano Salon, Laura Feudale, and Gianpiero Cossarini
Biogeosciences, 19, 5553–5574, https://doi.org/10.5194/bg-19-5553-2022, https://doi.org/10.5194/bg-19-5553-2022, 2022
Short summary
Short summary
The amount of dissolved oxygen in the ocean is the result of interacting physical and biological processes. Oxygen vertical profiles show a subsurface maximum in a large part of the ocean. We used a numerical model to map this subsurface maximum in the Mediterranean Sea and to link local differences in its properties to the driving processes. This emerging feature can help the marine ecosystem functioning to be better understood, also under the impacts of climate change.
Umesh Pranavam Ayyappan Pillai, Nadia Pinardi, Ivan Federico, Salvatore Causio, Francesco Trotta, Silvia Unguendoli, and Andrea Valentini
Nat. Hazards Earth Syst. Sci., 22, 3413–3433, https://doi.org/10.5194/nhess-22-3413-2022, https://doi.org/10.5194/nhess-22-3413-2022, 2022
Short summary
Short summary
The study presents the application of high-resolution coastal modelling for wave hindcasting on the Emilia-Romagna coastal belt. The generated coastal databases which provide an understanding of the prevailing wind-wave characteristics can aid in predicting coastal impacts.
Charikleia L. G. Oikonomou, Dimitra Denaxa, and Gerasimos Korres
State Planet Discuss., https://doi.org/10.5194/sp-2022-16, https://doi.org/10.5194/sp-2022-16, 2022
Preprint withdrawn
Short summary
Short summary
We explore the wave energy resource within the Mediterranean basin, along with the dominant wave regime. Results suggest that although the basin is not characterised by high energy potential, it could serve as a deployment zone for low-power devices due to low peak period variability and high site accessibility levels. Results suggest that further research is required to determine the dominant wave regime, as the high contribution of swell partitions hints the occurrence of mixed sea states.
Giulia Bonino, Doroteaciro Iovino, Laurent Brodeau, and Simona Masina
Geosci. Model Dev., 15, 6873–6889, https://doi.org/10.5194/gmd-15-6873-2022, https://doi.org/10.5194/gmd-15-6873-2022, 2022
Short summary
Short summary
The sea surface temperature (SST) is highly influenced by the transfer of energy driven by turbulent air–sea fluxes (TASFs). In the NEMO ocean general circulation model, TASFs are computed by means of bulk formulas. Bulk formulas require the choice of a given bulk parameterization, which influences the magnitudes of the TASFs. Our results show that parameterization-related SST differences are primarily sensitive to the wind stress differences across parameterizations.
Marco Reale, Gianpiero Cossarini, Paolo Lazzari, Tomas Lovato, Giorgio Bolzon, Simona Masina, Cosimo Solidoro, and Stefano Salon
Biogeosciences, 19, 4035–4065, https://doi.org/10.5194/bg-19-4035-2022, https://doi.org/10.5194/bg-19-4035-2022, 2022
Short summary
Short summary
Future projections under the RCP8.5 and RCP4.5 emission scenarios of the Mediterranean Sea biogeochemistry at the end of the 21st century show different levels of decline in nutrients, oxygen and biomasses and an acidification of the water column. The signal intensity is stronger under RCP8.5 and in the eastern Mediterranean. Under RCP4.5, after the second half of the 21st century, biogeochemical variables show a recovery of the values observed at the beginning of the investigated period.
Ginevra Rosati, Donata Canu, Paolo Lazzari, and Cosimo Solidoro
Biogeosciences, 19, 3663–3682, https://doi.org/10.5194/bg-19-3663-2022, https://doi.org/10.5194/bg-19-3663-2022, 2022
Short summary
Short summary
Methylmercury (MeHg) is produced and bioaccumulated in marine food webs, posing concerns for human exposure through seafood consumption. We modeled and analyzed the fate of MeHg in the lower food web of the Mediterranean Sea. The modeled spatial–temporal distribution of plankton bioaccumulation differs from the distribution of MeHg in surface water. We also show that MeHg exposure concentrations in temperate waters can be lowered by winter convection, which is declining due to climate change.
Giorgio Micaletto, Ivano Barletta, Silvia Mocavero, Ivan Federico, Italo Epicoco, Giorgia Verri, Giovanni Coppini, Pasquale Schiano, Giovanni Aloisio, and Nadia Pinardi
Geosci. Model Dev., 15, 6025–6046, https://doi.org/10.5194/gmd-15-6025-2022, https://doi.org/10.5194/gmd-15-6025-2022, 2022
Short summary
Short summary
The full exploitation of supercomputing architectures requires a deep revision of the current climate models. This paper presents the parallelization of the three-dimensional hydrodynamic model SHYFEM (System of HydrodYnamic Finite Element Modules). Optimized numerical libraries were used to partition the model domain and solve the sparse linear system of equations in parallel. The performance assessment demonstrates a good level of scalability with a realistic configuration used as a benchmark.
Enrico Scoccimarro, Daniele Peano, Silvio Gualdi, Alessio Bellucci, Tomas Lovato, Pier Giuseppe Fogli, and Antonio Navarra
Geosci. Model Dev., 15, 1841–1854, https://doi.org/10.5194/gmd-15-1841-2022, https://doi.org/10.5194/gmd-15-1841-2022, 2022
Short summary
Short summary
This study evaluated the ability of the CMCC-CM2 climate model participating to the last CMIP6 effort, in representing extreme events of precipitation and temperature at the daily and 6-hourly frequencies. The 1/4° resolution version of the atmospheric model provides better results than the version at 1° resolution for temperature extremes, at both time frequencies. For precipitation extremes, especially at the daily time frequency, the higher resolution does not improve model results.
Emmanouil Flaounas, Silvio Davolio, Shira Raveh-Rubin, Florian Pantillon, Mario Marcello Miglietta, Miguel Angel Gaertner, Maria Hatzaki, Victor Homar, Samira Khodayar, Gerasimos Korres, Vassiliki Kotroni, Jonilda Kushta, Marco Reale, and Didier Ricard
Weather Clim. Dynam., 3, 173–208, https://doi.org/10.5194/wcd-3-173-2022, https://doi.org/10.5194/wcd-3-173-2022, 2022
Short summary
Short summary
This is a collective effort to describe the state of the art in Mediterranean cyclone dynamics, climatology, prediction (weather and climate scales) and impacts. More than that, the paper focuses on the future directions of research that would advance the broader field of Mediterranean cyclones as a whole. Thereby, we propose interdisciplinary cooperation and additional modelling and forecasting strategies, and we highlight the need for new impact-oriented approaches to climate prediction.
Anna Teruzzi, Giorgio Bolzon, Laura Feudale, and Gianpiero Cossarini
Biogeosciences, 18, 6147–6166, https://doi.org/10.5194/bg-18-6147-2021, https://doi.org/10.5194/bg-18-6147-2021, 2021
Short summary
Short summary
During summer, maxima of phytoplankton chlorophyll concentration (DCM) occur in the subsurface of the Mediterranean Sea and can play a relevant role in carbon sequestration into the ocean interior. A numerical model based on in situ and satellite observations provides insights into the range of DCM conditions across the relatively small Mediterranean Sea and shows a western DCM that is 25 % shallower and with a higher phytoplankton chlorophyll concentration than in the eastern Mediterranean.
Paolo Lazzari, Stefano Salon, Elena Terzić, Watson W. Gregg, Fabrizio D'Ortenzio, Vincenzo Vellucci, Emanuele Organelli, and David Antoine
Ocean Sci., 17, 675–697, https://doi.org/10.5194/os-17-675-2021, https://doi.org/10.5194/os-17-675-2021, 2021
Short summary
Short summary
Multispectral optical sensors and models are increasingly adopted to study marine systems. In this work, bio-optical mooring and biogeochemical Argo float optical observations are combined with the Ocean-Atmosphere Spectral Irradiance Model (OASIM) to analyse the variability of sunlight at the sea surface. We show that the model skill in simulating data varies according to the wavelength of light and temporal scale considered and that it is significantly affected by cloud dynamics.
Katherine M. Smith, Skyler Kern, Peter E. Hamlington, Marco Zavatarelli, Nadia Pinardi, Emily F. Klee, and Kyle E. Niemeyer
Geosci. Model Dev., 14, 2419–2442, https://doi.org/10.5194/gmd-14-2419-2021, https://doi.org/10.5194/gmd-14-2419-2021, 2021
Short summary
Short summary
We present a newly developed reduced-order biogeochemical flux model that is complex and flexible enough to capture open-ocean ecosystem dynamics but reduced enough to incorporate into highly resolved numerical simulations with limited additional computational cost. The model provides improved correlations between model output and field data, indicating that significant improvements in the reproduction of real-world data can be achieved with a small number of variables.
Giulia Bonino, Elisa Lovecchio, Nicolas Gruber, Matthias Münnich, Simona Masina, and Doroteaciro Iovino
Biogeosciences, 18, 2429–2448, https://doi.org/10.5194/bg-18-2429-2021, https://doi.org/10.5194/bg-18-2429-2021, 2021
Short summary
Short summary
Seasonal variations of processes such as upwelling and biological production that happen along the northwestern African coast can modulate the temporal variability of the biological activity of the adjacent open North Atlantic hundreds of kilometers away from the coast thanks to the lateral transport of coastal organic carbon. This happens with a temporal delay, which is smaller than a season up to roughly 500 km from the coast due to the intense transport by small-scale filaments.
Elena Terzić, Arnau Miró, Paolo Lazzari, Emanuele Organelli, and Fabrizio D'Ortenzio
Biogeosciences Discuss., https://doi.org/10.5194/bg-2020-473, https://doi.org/10.5194/bg-2020-473, 2021
Preprint withdrawn
Short summary
Short summary
This study integrates numerical simulations (using a multi-spectral optical model) with in-situ measurements of floats and remotely sensed observations from satellites. It aims at improving our current understanding of the impact that different constituents (such as pure water, colored dissolved organic matter, detritus and phytoplankton) have on the in-water light propagation.
Valeria Di Biagio, Gianpiero Cossarini, Stefano Salon, and Cosimo Solidoro
Biogeosciences, 17, 5967–5988, https://doi.org/10.5194/bg-17-5967-2020, https://doi.org/10.5194/bg-17-5967-2020, 2020
Short summary
Short summary
Events that influence the functioning of the Earth’s ecosystems are of interest in relation to a changing climate. We propose a method to identify and characterise
wavesof extreme events affecting marine ecosystems for multi-week periods over wide areas. Our method can be applied to suitable ecosystem variables and has been used to describe different kinds of extreme event waves of phytoplankton chlorophyll in the Mediterranean Sea, by analysing the output from a high-resolution model.
Giuliana Rossi, Gualtiero Böhm, Angela Saraò, Diego Cotterle, Lorenzo Facchin, Paolo Giurco, Renata Giulia Lucchi, Maria Elena Musco, Francesca Petrera, Stefano Picotti, and Stefano Salon
Geosci. Commun., 3, 381–392, https://doi.org/10.5194/gc-3-381-2020, https://doi.org/10.5194/gc-3-381-2020, 2020
Short summary
Short summary
We organized an exhibition on the climate crisis using high-quality images shot by scientists, who are amateur photographers, during their campaigns in glacier regions. Working-age people, attracted by the gorgeous images, received the message that such beauty is in danger of vanishing. Twice, the visitors could talk directly with the experts to discuss geoscience, photography, and aesthetic choices and, of course, climate change, a problem that each of us has to play a part in to solve.
Hiroyuki Tsujino, L. Shogo Urakawa, Stephen M. Griffies, Gokhan Danabasoglu, Alistair J. Adcroft, Arthur E. Amaral, Thomas Arsouze, Mats Bentsen, Raffaele Bernardello, Claus W. Böning, Alexandra Bozec, Eric P. Chassignet, Sergey Danilov, Raphael Dussin, Eleftheria Exarchou, Pier Giuseppe Fogli, Baylor Fox-Kemper, Chuncheng Guo, Mehmet Ilicak, Doroteaciro Iovino, Who M. Kim, Nikolay Koldunov, Vladimir Lapin, Yiwen Li, Pengfei Lin, Keith Lindsay, Hailong Liu, Matthew C. Long, Yoshiki Komuro, Simon J. Marsland, Simona Masina, Aleksi Nummelin, Jan Klaus Rieck, Yohan Ruprich-Robert, Markus Scheinert, Valentina Sicardi, Dmitry Sidorenko, Tatsuo Suzuki, Hiroaki Tatebe, Qiang Wang, Stephen G. Yeager, and Zipeng Yu
Geosci. Model Dev., 13, 3643–3708, https://doi.org/10.5194/gmd-13-3643-2020, https://doi.org/10.5194/gmd-13-3643-2020, 2020
Short summary
Short summary
The OMIP-2 framework for global ocean–sea-ice model simulations is assessed by comparing multi-model means from 11 CMIP6-class global ocean–sea-ice models calculated separately for the OMIP-1 and OMIP-2 simulations. Many features are very similar between OMIP-1 and OMIP-2 simulations, and yet key improvements in transitioning from OMIP-1 to OMIP-2 are also identified. Thus, the present assessment justifies that future ocean–sea-ice model development and analysis studies use the OMIP-2 framework.
Eric Jansen, Sam Pimentel, Wang-Hung Tse, Dimitra Denaxa, Gerasimos Korres, Isabelle Mirouze, and Andrea Storto
Ocean Sci., 15, 1023–1032, https://doi.org/10.5194/os-15-1023-2019, https://doi.org/10.5194/os-15-1023-2019, 2019
Short summary
Short summary
The assimilation of satellite SST data into ocean models is complex. The temperature of the thin uppermost layer that is measured by satellites may differ from the much thicker upper layer used in numerical models, leading to biased results. This paper shows how canonical correlation analysis can be used to generate observation operators from existing datasets of model states and corresponding observation values. This type of operator can correct for near-surface effects when assimilating SST.
Stefano Salon, Gianpiero Cossarini, Giorgio Bolzon, Laura Feudale, Paolo Lazzari, Anna Teruzzi, Cosimo Solidoro, and Alessandro Crise
Ocean Sci., 15, 997–1022, https://doi.org/10.5194/os-15-997-2019, https://doi.org/10.5194/os-15-997-2019, 2019
Short summary
Short summary
After 10 years of research and development, validated analysis and forecasts of the main parameters of the Mediterranean Sea biogeochemistry (e.g. phytoplankton, nutrients, oxygen, pH, carbon fluxes) at high spatial and temporal resolution are provided in the frame of the EU Copernicus Marine Environment Monitoring Service. Along with a traditional skill performance assessment, novel metrics exploiting the Biogeochemical Argo floats data are designed to estimate the forecasts uncertainty.
Ali Aydoğdu, Alberto Carrassi, Colin T. Guider, Chris K. R. T Jones, and Pierre Rampal
Nonlin. Processes Geophys., 26, 175–193, https://doi.org/10.5194/npg-26-175-2019, https://doi.org/10.5194/npg-26-175-2019, 2019
Short summary
Short summary
Computational models involving adaptive meshes can both evolve dynamically and be remeshed. Remeshing means that the state vector dimension changes in time and across ensemble members, making the ensemble Kalman filter (EnKF) unsuitable for assimilation of observational data. We develop a modification in which analysis is performed on a fixed uniform grid onto which the ensemble is mapped, with resolution relating to the remeshing criteria. The approach is successfully tested on two 1-D models.
Elena Terzić, Paolo Lazzari, Emanuele Organelli, Cosimo Solidoro, Stefano Salon, Fabrizio D'Ortenzio, and Pascal Conan
Biogeosciences, 16, 2527–2542, https://doi.org/10.5194/bg-16-2527-2019, https://doi.org/10.5194/bg-16-2527-2019, 2019
Short summary
Short summary
Measuring ecosystem properties in the ocean is a hard business. Recent availability of data from Biogeochemical-Argo floats can help make this task easier. Numerical models can integrate these new data in a coherent picture and can be used to investigate the functioning of ecosystem processes. Our new approach merges experimental information and model capabilities to quantitatively demonstrate the importance of light and water vertical mixing for algae dynamics in the Mediterranean Sea.
Gerasimos Korres, Dimitra Denaxa, Eric Jansen, Isabelle Mirouze, Sam Pimentel, Wang-Hung Tse, and Andrea Storto
Ocean Sci. Discuss., https://doi.org/10.5194/os-2018-158, https://doi.org/10.5194/os-2018-158, 2019
Preprint withdrawn
Short summary
Short summary
A statistical-dynamical observation operator (SOSSTA) for satellite SST data assimilation able to account for SST diurnal variability, is formulated and implemented into the POSEIDON forecasting system (Aegean Sea). Model experiments where daytime SST retrievals from the SEVIRI infrared radiometer are introduced into the data assimilation procedure through the application of the observation operator, showed an improvement of the POSEIDON modelling system performance.
Michalis Ravdas, Anna Zacharioudaki, and Gerasimos Korres
Nat. Hazards Earth Syst. Sci., 18, 2675–2695, https://doi.org/10.5194/nhess-18-2675-2018, https://doi.org/10.5194/nhess-18-2675-2018, 2018
Short summary
Short summary
A high-resolution operational wave forecasting system for the Mediterranean Sea has been developed within the framework of the Copernicus Marine Environment Monitoring Service, which provides open, cost-free, and quality-controlled products. The system accounts for waves arriving through the Straight of Gibraltar and for the effect of surface currents on waves. It provides accurate results over well-exposed locations and satisfactory results within enclosed basins and near the coast.
George Petihakis, Leonidas Perivoliotis, Gerasimos Korres, Dionysios Ballas, Constantin Frangoulis, Paris Pagonis, Manolis Ntoumas, Manos Pettas, Antonis Chalkiopoulos, Maria Sotiropoulou, Margarita Bekiari, Alkiviadis Kalampokis, Michalis Ravdas, Evi Bourma, Sylvia Christodoulaki, Anna Zacharioudaki, Dimitris Kassis, Emmanuel Potiris, George Triantafyllou, Kostas Tsiaras, Evangelia Krasakopoulou, Spyros Velanas, and Nikos Zisis
Ocean Sci., 14, 1223–1245, https://doi.org/10.5194/os-14-1223-2018, https://doi.org/10.5194/os-14-1223-2018, 2018
Short summary
Short summary
Integrated oceanic observations on multiple processes including biogeochemistry are scarce. In the eastern Mediterranean (Cretan Sea) the spatiotemporal coverage of such observations has increased with the expansion of the POSEIDON observatory. The observatory addresses scientific questions, provides services to policy makers and society, and serves as a technological test bed. It plays a key role in European and international observing programs, in harmonization procedures and data handling.
Ali Aydoğdu, Nadia Pinardi, Emin Özsoy, Gokhan Danabasoglu, Özgür Gürses, and Alicia Karspeck
Ocean Sci., 14, 999–1019, https://doi.org/10.5194/os-14-999-2018, https://doi.org/10.5194/os-14-999-2018, 2018
Short summary
Short summary
A 6-year simulation of the Turkish Straits System is presented. The simulation is performed by a model using unstructured triangular mesh and realistic atmospheric forcing. The dynamics and circulation of the Marmara Sea are analysed and the mean state of the system is discussed on annual averages. Volume fluxes computed throughout the simulation are presented and the response of the model to severe storms is shown. Finally, it was possible to assess the kinetic energy budget in the Marmara Sea.
Ali Aydoğdu, Timothy J. Hoar, Tomislava Vukicevic, Jeffrey L. Anderson, Nadia Pinardi, Alicia Karspeck, Jonathan Hendricks, Nancy Collins, Francesca Macchia, and Emin Özsoy
Nonlin. Processes Geophys., 25, 537–551, https://doi.org/10.5194/npg-25-537-2018, https://doi.org/10.5194/npg-25-537-2018, 2018
Short summary
Short summary
This study presents, to our knowledge, the first data assimilation experiments in the Sea of Marmara. We propose a FerryBox network for monitoring the state of the sea and show that assimilation of the temperature and salinity improves the forecasts in the basin. The flow of the Bosphorus helps to propagate the error reduction. The study can be taken as a step towards a marine forecasting system in the Sea of Marmara that will help to improve the forecasts in the adjacent Black and Aegean seas.
Giorgia Verri, Nadia Pinardi, David Gochis, Joseph Tribbia, Antonio Navarra, Giovanni Coppini, and Tomislava Vukicevic
Nat. Hazards Earth Syst. Sci., 17, 1741–1761, https://doi.org/10.5194/nhess-17-1741-2017, https://doi.org/10.5194/nhess-17-1741-2017, 2017
Verena Haid, Doroteaciro Iovino, and Simona Masina
The Cryosphere, 11, 1387–1402, https://doi.org/10.5194/tc-11-1387-2017, https://doi.org/10.5194/tc-11-1387-2017, 2017
Short summary
Short summary
Since the Antarctic sea ice extent shows a recent increase, we investigate the sea ice response to changed amount and distribution of surface freshwater addition in the Southern Ocean with the ocean–sea ice model NEMO/LIM2. We find that freshwater addition within the range of current estimates increases the ice extent, but higher amounts could have an opposing effect. The freshwater distribution is of great influence on the ice dynamics and the ice thickness is strongly influenced by it.
Giovanni Coppini, Palmalisa Marra, Rita Lecci, Nadia Pinardi, Sergio Cretì, Mario Scalas, Luca Tedesco, Alessandro D'Anca, Leopoldo Fazioli, Antonio Olita, Giuseppe Turrisi, Cosimo Palazzo, Giovanni Aloisio, Sandro Fiore, Antonio Bonaduce, Yogesh Vittal Kumkar, Stefania Angela Ciliberti, Ivan Federico, Gianandrea Mannarini, Paola Agostini, Roberto Bonarelli, Sara Martinelli, Giorgia Verri, Letizia Lusito, Davide Rollo, Arturo Cavallo, Antonio Tumolo, Tony Monacizzo, Marco Spagnulo, Rorberto Sorgente, Andrea Cucco, Giovanni Quattrocchi, Marina Tonani, Massimiliano Drudi, Paola Nassisi, Laura Conte, Laura Panzera, Antonio Navarra, and Giancarlo Negro
Nat. Hazards Earth Syst. Sci., 17, 533–547, https://doi.org/10.5194/nhess-17-533-2017, https://doi.org/10.5194/nhess-17-533-2017, 2017
Short summary
Short summary
SeaConditions aims to support the users by providing the environmental information in due time and with adequate accuracy in the marine and coastal environments, enforcing users' sea situational awareness. SeaConditions consists of a web and mobile application for the provision of meteorological and oceanographic observation and forecasting products. The iOS/Android apps were downloaded by more than 105 000 users and more than 100 000 users have visited the web version (www.sea-conditions.com).
Gianpiero Cossarini, Stefano Querin, Cosimo Solidoro, Gianmaria Sannino, Paolo Lazzari, Valeria Di Biagio, and Giorgio Bolzon
Geosci. Model Dev., 10, 1423–1445, https://doi.org/10.5194/gmd-10-1423-2017, https://doi.org/10.5194/gmd-10-1423-2017, 2017
Short summary
Short summary
The BFMCOUPLER (v1.0) is a coupling scheme that links the MITgcm and BFM models for ocean biogeochemistry simulations. The online coupling is based on an open-source code characterizd by a modular structure. Modularity preserves the potentials of the two models, allowing for a sustainable programming effort to handle future evolutions in the two codes. The BFMCOUPLER code is released along with an idealized problem (a cyclonic gyre in a mid-latitude closed basin).
Alessandro D'Anca, Laura Conte, Paola Nassisi, Cosimo Palazzo, Rita Lecci, Sergio Cretì, Marco Mancini, Alessandra Nuzzo, Maria Mirto, Gianandrea Mannarini, Giovanni Coppini, Sandro Fiore, and Giovanni Aloisio
Nat. Hazards Earth Syst. Sci., 17, 171–184, https://doi.org/10.5194/nhess-17-171-2017, https://doi.org/10.5194/nhess-17-171-2017, 2017
Short summary
Short summary
Updated situational sea awareness requires an advanced technological system to make data available for decision makers, improving the capacity of intervention and supporting users in managing emergency situations due to natural hazards. The TESSA data platform meets the request of near-real-time access to heterogeneous data with different accuracy, resolution or degrees of aggregation providing efficient and secure data access and strong support to operational oceanographic high-level services.
Ivan Federico, Nadia Pinardi, Giovanni Coppini, Paolo Oddo, Rita Lecci, and Michele Mossa
Nat. Hazards Earth Syst. Sci., 17, 45–59, https://doi.org/10.5194/nhess-17-45-2017, https://doi.org/10.5194/nhess-17-45-2017, 2017
Short summary
Short summary
SANIFS (Southern Adriatic Northern Ionian coastal Forecasting System) is a coastal-ocean operational system based on the unstructured grid finite-element three-dimensional hydrodynamic SHYFEM model, which provides short-term forecasts. The operational chain is based on a downscaling approach starting from the large-scale system for the entire Mediterranean Basin (MFS, Mediterranean Forecasting System), which provides initial and boundary condition fields for the nested system.
Zhaoyi Wang, Andrea Storto, Nadia Pinardi, Guimei Liu, and Hui Wang
Nat. Hazards Earth Syst. Sci., 17, 17–30, https://doi.org/10.5194/nhess-17-17-2017, https://doi.org/10.5194/nhess-17-17-2017, 2017
Giovanni Coppini, Eric Jansen, Giuseppe Turrisi, Sergio Creti, Elena Yurievna Shchekinova, Nadia Pinardi, Rita Lecci, Ivano Carluccio, Yogesh Vittal Kumkar, Alessandro D'Anca, Gianandrea Mannarini, Sara Martinelli, Palmalisa Marra, Tommaso Capodiferro, and Tommaso Gismondi
Nat. Hazards Earth Syst. Sci., 16, 2713–2727, https://doi.org/10.5194/nhess-16-2713-2016, https://doi.org/10.5194/nhess-16-2713-2016, 2016
Short summary
Short summary
A new web-based and mobile Decision Support System (DSS) for Search-And-Rescue (SAR) at sea is presented, and its performance is evaluated using real case scenarios. The system, named OCEAN-SAR, is accessible via the website http://www.ocean-sar.com. OCEAN-SAR simulates drifting objects at sea, using as input ocean currents and wind. The performance of the service is evaluated by comparing simulations to data from the Italian Coast Guard pertaining to actual incidents in the Mediterranean Sea.
Nadia Pinardi, Vladyslav Lyubartsev, Nicola Cardellicchio, Claudio Caporale, Stefania Ciliberti, Giovanni Coppini, Francesca De Pascalis, Lorenzo Dialti, Ivan Federico, Marco Filippone, Alessandro Grandi, Matteo Guideri, Rita Lecci, Lamberto Lamberti, Giuliano Lorenzetti, Paolo Lusiani, Cosimo Damiano Macripo, Francesco Maicu, Michele Mossa, Diego Tartarini, Francesco Trotta, Georg Umgiesser, and Luca Zaggia
Nat. Hazards Earth Syst. Sci., 16, 2623–2639, https://doi.org/10.5194/nhess-16-2623-2016, https://doi.org/10.5194/nhess-16-2623-2016, 2016
Short summary
Short summary
A multiscale sampling experiment was carried out in the Gulf of Taranto (eastern Mediterranean) providing the first synoptic evidence of the large-scale circulation structure and associated mesoscale variability. The circulation is shown to be dominated by an anticyclonic gyre and upwelling areas at the gyre periphery.
Vasco M. N. C. S. Vieira, Pavel Jurus, Emanuela Clementi, Heidi Pettersson, and Marcos Mateus
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2016-273, https://doi.org/10.5194/gmd-2016-273, 2016
Revised manuscript has not been submitted
Alex C. Ruane, Claas Teichmann, Nigel W. Arnell, Timothy R. Carter, Kristie L. Ebi, Katja Frieler, Clare M. Goodess, Bruce Hewitson, Radley Horton, R. Sari Kovats, Heike K. Lotze, Linda O. Mearns, Antonio Navarra, Dennis S. Ojima, Keywan Riahi, Cynthia Rosenzweig, Matthias Themessl, and Katharine Vincent
Geosci. Model Dev., 9, 3493–3515, https://doi.org/10.5194/gmd-9-3493-2016, https://doi.org/10.5194/gmd-9-3493-2016, 2016
Short summary
Short summary
The Vulnerability, Impacts, Adaptation, and Climate Services (VIACS) Advisory Board for CMIP6 was created to improve communications between communities that apply climate model output for societal benefit and the climate model centers. This manuscript describes the establishment of the VIACS Advisory Board as a coherent avenue for communication utilizing leading networks, experts, and programs; results of initial interactions during the development of CMIP6; and its potential next activities.
Stephen M. Griffies, Gokhan Danabasoglu, Paul J. Durack, Alistair J. Adcroft, V. Balaji, Claus W. Böning, Eric P. Chassignet, Enrique Curchitser, Julie Deshayes, Helge Drange, Baylor Fox-Kemper, Peter J. Gleckler, Jonathan M. Gregory, Helmuth Haak, Robert W. Hallberg, Patrick Heimbach, Helene T. Hewitt, David M. Holland, Tatiana Ilyina, Johann H. Jungclaus, Yoshiki Komuro, John P. Krasting, William G. Large, Simon J. Marsland, Simona Masina, Trevor J. McDougall, A. J. George Nurser, James C. Orr, Anna Pirani, Fangli Qiao, Ronald J. Stouffer, Karl E. Taylor, Anne Marie Treguier, Hiroyuki Tsujino, Petteri Uotila, Maria Valdivieso, Qiang Wang, Michael Winton, and Stephen G. Yeager
Geosci. Model Dev., 9, 3231–3296, https://doi.org/10.5194/gmd-9-3231-2016, https://doi.org/10.5194/gmd-9-3231-2016, 2016
Short summary
Short summary
The Ocean Model Intercomparison Project (OMIP) aims to provide a framework for evaluating, understanding, and improving the ocean and sea-ice components of global climate and earth system models contributing to the Coupled Model Intercomparison Project Phase 6 (CMIP6). This document defines OMIP and details a protocol both for simulating global ocean/sea-ice models and for analysing their output.
Emanuela Fiori, Marco Zavatarelli, Nadia Pinardi, Cristina Mazziotti, and Carla Rita Ferrari
Nat. Hazards Earth Syst. Sci., 16, 2043–2054, https://doi.org/10.5194/nhess-16-2043-2016, https://doi.org/10.5194/nhess-16-2043-2016, 2016
Short summary
Short summary
This study shows the capability of the numerical model in reproducing the trophic index (TRIX) calculated from in situ data. The ecosystem simulations can represent an important support for monitoring activities, allowing the use of TRIX to be extended to larger areas where in situ sampling activities are difficult to implement. The model TRIX was calculated for the whole Adriatic Sea, showing trophic differences across the Adriatic Sea.
Svitlana Liubartseva, Giovanni Coppini, Nadia Pinardi, Michela De Dominicis, Rita Lecci, Giuseppe Turrisi, Sergio Cretì, Sara Martinelli, Paola Agostini, Palmalisa Marra, and Francesco Palermo
Nat. Hazards Earth Syst. Sci., 16, 2009–2020, https://doi.org/10.5194/nhess-16-2009-2016, https://doi.org/10.5194/nhess-16-2009-2016, 2016
Short summary
Short summary
An innovative fully operational 24/7 web-based decision support system, WITOIL (Where Is The Oil), has been developed to support oil pollution response. The system meets the real-time requirements in terms of performance and dynamic service delivery. Comprehensive computational resources and network bandwidth efficiently support the multi-user regime. The eight-language graphical user interface incorporates a great variety of user services, e.g., help and support, tooltips, and video tutorials.
Doroteaciro Iovino, Simona Masina, Andrea Storto, Andrea Cipollone, and Vladimir N. Stepanov
Geosci. Model Dev., 9, 2665–2684, https://doi.org/10.5194/gmd-9-2665-2016, https://doi.org/10.5194/gmd-9-2665-2016, 2016
Short summary
Short summary
An 11-year simulation of a global eddying ocean (1/16) configuration is presented. Model performance is evaluated against observations and a twin 1/4 configuration. The model realistically represents the variability at upper and intermediate depths, the position and strength of the surface circulation, and exchanges of mass through key passages. Sea ice properties are close to satellite observations. This simulation constitutes the groundwork for future applications to short range ocean forecasting.
Jenny Pistoia, Nadia Pinardi, Paolo Oddo, Matthew Collins, Gerasimos Korres, and Yann Drillet
Nat. Hazards Earth Syst. Sci., 16, 1807–1819, https://doi.org/10.5194/nhess-16-1807-2016, https://doi.org/10.5194/nhess-16-1807-2016, 2016
Short summary
Short summary
In this work we developed a new multi-model super-ensemble method to estimate sea surface temperature, an important product of ocean analysis systems. We find that ensemble size, quality, type of members and the training period length are all important elements of the MMSE methodology and require careful calibration. We show that with a rather limited but overconfident data set (with a low bias of the starting ensemble members) the RMSE analysis can be improved.
Gianandrea Mannarini, Giuseppe Turrisi, Alessandro D'Anca, Mario Scalas, Nadia Pinardi, Giovanni Coppini, Francesco Palermo, Ivano Carluccio, Matteo Scuro, Sergio Cretì, Rita Lecci, Paola Nassisi, and Luca Tedesco
Nat. Hazards Earth Syst. Sci., 16, 1791–1806, https://doi.org/10.5194/nhess-16-1791-2016, https://doi.org/10.5194/nhess-16-1791-2016, 2016
Short summary
Short summary
Safety and efficiency of navigation can be enhanced through a better situational awareness at sea. We designed and realized an operational infrastructure for providing the navigators with optimal routes through various devices: PC, tablets, and smartphones. Sea-state and wind forecasts are used as inputs. Both motor- and sailboat routes are addressed by VISIR.
Eric Jansen, Giovanni Coppini, and Nadia Pinardi
Nat. Hazards Earth Syst. Sci., 16, 1623–1628, https://doi.org/10.5194/nhess-16-1623-2016, https://doi.org/10.5194/nhess-16-1623-2016, 2016
Short summary
Short summary
In March 2014, a commercial airliner vanished without a trace. The main wreckage of the plane was never recovered, except for some small parts that washed up more than 17 months after the disappearance. In this paper we show a method to model the most likely trajectories of floating debris from the aircraft. The results show that the assumed area of the crash site is compatible with the recovered debris and predict that further debris may be found along the African east coast.
Jun She, Icarus Allen, Erik Buch, Alessandro Crise, Johnny A. Johannessen, Pierre-Yves Le Traon, Urmas Lips, Glenn Nolan, Nadia Pinardi, Jan H. Reißmann, John Siddorn, Emil Stanev, and Henning Wehde
Ocean Sci., 12, 953–976, https://doi.org/10.5194/os-12-953-2016, https://doi.org/10.5194/os-12-953-2016, 2016
Short summary
Short summary
This white paper addresses key scientific challenges and research priorities for the development of operational oceanography in Europe for the next 5–10 years. Knowledge gaps and deficiencies are identified in relation to common scientific challenges in four EuroGOOS knowledge areas: European ocean observations, modelling and forecasting technology, coastal operational oceanography, and operational ecology.
Italo Epicoco, Silvia Mocavero, Francesca Macchia, Marcello Vichi, Tomas Lovato, Simona Masina, and Giovanni Aloisio
Geosci. Model Dev., 9, 2115–2128, https://doi.org/10.5194/gmd-9-2115-2016, https://doi.org/10.5194/gmd-9-2115-2016, 2016
Short summary
Short summary
The present work aims at evaluating the scalability performance of a high-resolution global ocean biogeochemistry model (PELAGOS025) on massive parallel architectures and the benefits in terms of the time-to-solution reduction. The outcome of the analysis demonstrated that the lack of scalability is due to several factors such as the I/O operations, the memory contention, and the load unbalancing due to the memory structure of the biogeochemistry model component.
Gianandrea Mannarini, Nadia Pinardi, Giovanni Coppini, Paolo Oddo, and Alessandro Iafrati
Geosci. Model Dev., 9, 1597–1625, https://doi.org/10.5194/gmd-9-1597-2016, https://doi.org/10.5194/gmd-9-1597-2016, 2016
Short summary
Short summary
VISIR is a new numerical model for the computation of optimal ship routes from meteo-marine forecasts. VISIR offers the scientific community an open platform whereby various ideas and methods for ship route optimization can be shared, tested, and compared to each other.
P. Katsafados, A. Papadopoulos, G. Korres, and G. Varlas
Geosci. Model Dev., 9, 161–173, https://doi.org/10.5194/gmd-9-161-2016, https://doi.org/10.5194/gmd-9-161-2016, 2016
Short summary
Short summary
This paper includes the entire steps and processes to develop a two-way fully coupled atmosphere-ocean wave model (WEW) aiming a better description and understanding of the exchange processes near the ocean surface. WEW offers a more realistic representation of the extreme weather and sea state events over the ocean bodies and finally leads in an overall improved simulations.
V. M. N. C. S. Vieira, E. Sahlée, P. Jurus, E. Clementi, H. Pettersson, and M. Mateus
Biogeosciences Discuss., https://doi.org/10.5194/bgd-12-15901-2015, https://doi.org/10.5194/bgd-12-15901-2015, 2015
Manuscript not accepted for further review
V. M. N. C. S. Vieira, E. Sahlée, P. Jurus, E. Clementi, H. Pettersson, and M. Mateus
Biogeosciences Discuss., https://doi.org/10.5194/bgd-12-15925-2015, https://doi.org/10.5194/bgd-12-15925-2015, 2015
Manuscript not accepted for further review
E. Akoglu, S. Libralato, B. Salihoglu, T. Oguz, and C. Solidoro
Geosci. Model Dev., 8, 2687–2699, https://doi.org/10.5194/gmd-8-2687-2015, https://doi.org/10.5194/gmd-8-2687-2015, 2015
Short summary
Short summary
Ecosystem-based marine management requires coupling/integrating multiple models in one unified scheme. The widely adopted Ecopath with Ecosim (EwE) is potentially a crucial high trophic level component of such schemes. However, being written in Visual Basic, integration of EwE with physical and/or biogeochemical oceanographic models, which were mostly written in Fortran, is complicated. We release a re-coding of EwE in Fortran (EwE-F) so as to facilitate its coupling/integration in such schemes.
G. Cossarini, P. Lazzari, and C. Solidoro
Biogeosciences, 12, 1647–1658, https://doi.org/10.5194/bg-12-1647-2015, https://doi.org/10.5194/bg-12-1647-2015, 2015
P. Oddo, A. Bonaduce, N. Pinardi, and A. Guarnieri
Geosci. Model Dev., 7, 3001–3015, https://doi.org/10.5194/gmd-7-3001-2014, https://doi.org/10.5194/gmd-7-3001-2014, 2014
A. Guarnieri, A. J. Souza, N. Pinardi, and P. Traykovski
Ocean Sci. Discuss., https://doi.org/10.5194/osd-11-1391-2014, https://doi.org/10.5194/osd-11-1391-2014, 2014
Revised manuscript not accepted
M. De Dominicis, N. Pinardi, G. Zodiatis, and R. Lardner
Geosci. Model Dev., 6, 1851–1869, https://doi.org/10.5194/gmd-6-1851-2013, https://doi.org/10.5194/gmd-6-1851-2013, 2013
M. De Dominicis, N. Pinardi, G. Zodiatis, and R. Archetti
Geosci. Model Dev., 6, 1871–1888, https://doi.org/10.5194/gmd-6-1871-2013, https://doi.org/10.5194/gmd-6-1871-2013, 2013
L. Feudale, A. Manzato, and S. Micheletti
Adv. Sci. Res., 10, 77–84, https://doi.org/10.5194/asr-10-77-2013, https://doi.org/10.5194/asr-10-77-2013, 2013
Related subject area
Approach: Numerical Models | Properties and processes: Climate and modes of variability
Dynamically downscaled seasonal ocean forecasts for North American east coast ecosystems
Exploring variability in climate change projections on the Nemunas River and Curonian Lagoon: coupled SWAT and SHYFEM modeling approach
An assessment of equatorial Atlantic interannual variability in Ocean Model Intercomparison Project (OMIP) simulations
A New Vision of the Adriatic Dense Water Future under Extreme Warming
Twenty-first century marine climate projections for the NW European shelf seas based on a perturbed parameter ensemble
Predictability of marine heatwaves: assessment based on the ECMWF seasonal forecast system
Andrew C. Ross, Charles A. Stock, Vimal Koul, Thomas L. Delworth, Feiyu Lu, Andrew Wittenberg, and Michael A. Alexander
Ocean Sci., 20, 1631–1656, https://doi.org/10.5194/os-20-1631-2024, https://doi.org/10.5194/os-20-1631-2024, 2024
Short summary
Short summary
In this paper, we use a high-resolution regional ocean model to downscale seasonal ocean forecasts from the Seamless System for Prediction and EArth System Research (SPEAR) model of the Geophysical Fluid Dynamics Laboratory (GFDL). We find that the downscaled model has significantly higher prediction skill in many cases.
Natalja Čerkasova, Jovita Mėžinė, Rasa Idzelytė, Jūratė Lesutienė, Ali Ertürk, and Georg Umgiesser
Ocean Sci., 20, 1123–1147, https://doi.org/10.5194/os-20-1123-2024, https://doi.org/10.5194/os-20-1123-2024, 2024
Short summary
Short summary
This study advances the understanding of climate projection variability in the Nemunas River, Curonian Lagoon, and southeastern Baltic Sea continuum by analyzing a subset of climate models with a focus on a coupled ocean and drainage basin model. This study investigates the variability and trends in environmental parameters, such as water fluxes, timing, nutrient load, water temperature, ice cover, and saltwater intrusions in Representative Concentration Pathway 4.5 and 8.5 scenarios.
Arthur Prigent and Riccardo Farneti
Ocean Sci., 20, 1067–1086, https://doi.org/10.5194/os-20-1067-2024, https://doi.org/10.5194/os-20-1067-2024, 2024
Short summary
Short summary
We evaluate the eastern equatorial Atlantic's (EEA's) seasonal cycle and interannual variability in the Ocean Model Intercomparison Project Phases 1 and 2 (OMIP1 and OMIP2) for 1985–2004. While both simulate EEA patterns, biases like a diffusive thermocline and insufficient cooling exist during the development of the Atlantic cold tongue. OMIP1 exhibits 51% (33%) larger interannual sea surface temperature (sea surface height) variability than OMIP2, attributed to differences in wind forcing.
Clea Lumina Denamiel, Iva Tojčić, and Petra Pranić
EGUsphere, https://doi.org/10.5194/egusphere-2024-2524, https://doi.org/10.5194/egusphere-2024-2524, 2024
Short summary
Short summary
We use a high-resolution atmosphere-ocean model to project Adriatic dense water dynamics under extreme warming. We find that a 15 % increase in sea surface evaporation will offset a 25 % decrease in extreme windstorms. As a result, future dense water will form at the same rate as today but will be too light to reach the Adriatic's deepest parts, making deep-water presence reliant on exchanges with the Ionian Sea.
Jonathan Tinker, Matthew D. Palmer, Benjamin J. Harrison, Enda O'Dea, David M. H. Sexton, Kuniko Yamazaki, and John W. Rostron
Ocean Sci., 20, 835–885, https://doi.org/10.5194/os-20-835-2024, https://doi.org/10.5194/os-20-835-2024, 2024
Short summary
Short summary
The northwest European shelf (NWS) seas are economically and environmentally important but poorly represented in global climate models (GCMs). We combine use of a shelf sea model with GCM output to provide improved 21st century projections of the NWS. We project a NWS warming of 3.11 °C and freshening of −1.01, and we provide uncertainty estimates. We calculate the climate signal emergence and consider warming levels. We have released our data for the UK's Climate Change Risk Assessment.
Eric de Boisséson and Magdalena Alonso Balmaseda
Ocean Sci., 20, 265–278, https://doi.org/10.5194/os-20-265-2024, https://doi.org/10.5194/os-20-265-2024, 2024
Short summary
Short summary
Marine heatwaves are long periods of extremely warm ocean surface temperatures. Predicting such events a few months in advance would help decision-making to mitigate their impacts on marine ecosystems. This work investigates how well operational seasonal forecasts can predict marine heatwaves. Results show that such events can be predicted a few months in advance in the tropics but that extending the predictability skill to other regions will require additional work on the forecast models.
Cited articles
Adani, M., Dobricic, S., and Pinardi, N.: Quality Assessment of a 1985–2007 Mediterranean Sea Reanalysis, J. Atmos. Ocean. Tech., 28, 569–589, https://doi.org/10.1175/2010JTECHO798.1, 2011.
Álvarez, M., Sanleón-Bartolomé, H., Tanhua, T., Mintrop, L., Luchetta, A., Cantoni, C., Schroeder, K., and Civitarese, G.: The CO2 system in the Mediterranean Sea: a basin wide perspective, Ocean Sci., 10, 69–92, https://doi.org/10.5194/os-10-69-2014, 2014.
Alvarez Fanjul, E., Ciliberti, S., and Bahurel, P.: Implementing Operational Ocean Monitoring and Forecasting Systems, IOC-UNESCO, Paris, France, 376 pp., Annexes, GOOS-275, https://doi.org/10.48670/ETOOFS, 2022.
Ardhuin, F., Bertotti, L., Bidlot, J. R., Cavaleri, L., Filipetto, V., Lefevre, J. M., and Wittmann, P.: Comparison of wind and wave measurements and models in the Western Mediterranean Sea, Ocean Eng., 34, 526–541, https://doi.org/10.1016/j.oceaneng.2006.02.008, 2007.
Ayoub, N., Le Traon, P.-Y., and De Mey, P.: A description of the Mediterranean surface variable circulation from combined ERS-1 and Topex/Poseidon altimetric data, J. Marine Syst., 18, 3–40, 1998.
Bakker, D. C. E., Pfeil, B., Smith, K., Hankin, S., Olsen, A., Alin, S. R., Cosca, C., Harasawa, S., Kozyr, A., Nojiri, Y., O'Brien, K. M., Schuster, U., Telszewski, M., Tilbrook, B., Wada, C., Akl, J., Barbero, L., Bates, N. R., Boutin, J., Bozec, Y., Cai, W.-J., Castle, R. D., Chavez, F. P., Chen, L., Chierici, M., Currie, K., de Baar, H. J. W., Evans, W., Feely, R. A., Fransson, A., Gao, Z., Hales, B., Hardman-Mountford, N. J., Hoppema, M., Huang, W.-J., Hunt, C. W., Huss, B., Ichikawa, T., Johannessen, T., Jones, E. M., Jones, S. D., Jutterström, S., Kitidis, V., Körtzinger, A., Landschützer, P., Lauvset, S. K., Lefèvre, N., Manke, A. B., Mathis, J. T., Merlivat, L., Metzl, N., Murata, A., Newberger, T., Omar, A. M., Ono, T., Park, G.-H., Paterson, K., Pierrot, D., Ríos, A. F., Sabine, C. L., Saito, S., Salisbury, J., Sarma, V. V. S. S., Schlitzer, R., Sieger, R., Skjelvan, I., Steinhoff, T., Sullivan, K. F., Sun, H., Sutton, A. J., Suzuki, T., Sweeney, C., Takahashi, T., Tjiputra, J., Tsurushima, N., van Heuven, S. M. A. C., Vandemark, D., Vlahos, P., Wallace, D. W. R., Wanninkhof, R., and Watson, A. J.: An update to the Surface Ocean CO2 Atlas (SOCAT version 2), Earth Syst. Sci. Data, 6, 69–90, https://doi.org/10.5194/essd-6-69-2014, 2014.
Bakker, D. C. E., Pfeil, B. Landa, C. S., Metzl, N., O’Brien, K. M., Olsen, A., Smith, K., Cosca, C., Harasawa, S., Jones, S. D., Nakaoka, S., Nojiri, Y., Schuster, U., Steinhoff, T., Sweeney, C., Takahashi, T., Tilbrook, B., Wada, C., Wanninkhof, R., Alin, S. R., Balestrini, C. F., Barbero, L., Bates, N. R., Bianchi, A. A., Bonou, F., Boutin, J., Bozec, Y., Burger, E. F., Cai, W.-J., Castle, R. D., Chen, L., Chierici, M., Currie, K., Evans, W., Featherstone, C., Feely, R. A., Fransson, A., Goyet, C., Greenwood, N., Gregor, L., Hankin, S., Hardman-Mountford, N. J., Harlay, J., Hauck, J., Hoppema, M., Humphreys, M. P., Hunt, C. W., Huss, B., Ibánhez, J. S. P., Johannessen, T., Keeling, R., Kitidis, V., Körtzinger, A., Kozyr, A., Krasakopoulou, E., Kuwata, A., Landschützer, P., Lauvset, S. K., Lefèvre, N., Lo Monaco, C., Manke, A., Mathis, J. T., Merlivat, L., Millero, F. J., Monteiro, P. M. S., Munro, D. R., Murata, A., Newberger, T., Omar, A. M., Ono, T., Paterson, K., Pearce, D., Pierrot, D., Robbins, L. L., Saito, S., Salisbury, J., Schlitzer, R., Schneider, B., Schweitzer, R., Sieger, R., Skjelvan, I., Sullivan, K. F., Sutherland, S. C., Sutton, A. J., Tadokoro, K., Telszewski, M., Tuma, M., Van Heuven, S. M. A. C., Vandemark, D., Ward, B., Watson, A. J., and Xu, S.: A multi-decade record of high quality fCO2 data in version 3 of the Surface Ocean CO2 Atlas (SOCAT), Earth Syst. Sci. Data, 8, 383–413, https://doi.org/10.5194/essd-8-383-2016, 2016.
Barton, N., Metzger, E. J., Reynolds, C. A., Ruston, B., Rowley, C., Smedstad, O. M., Ridout, J. A., Wallcraft, A., Frolov, S., Hogan, P., Janiga, M. A., Shriver, J. F., McLay, J., Thoppil, P., Huang, A., Crawford, W., Whitcomb, T., Bishop, C. H., Zamudio, L., and Phelps, M.: The Navy's Earth System Prediction Capability: A new global coupled atmosphere-ocean-sea ice prediction system designed for daily to subseasonal forecasting, Earth Space Sci., 8, e2020EA001199, https://doi.org/10.1029/2020EA001199, 2021.
Bergamasco, A. and Malanotte-Rizzoli, P.: The circulation of the Mediterranean Sea: a historical review of experimental investigations, Adv. Oceanogr. Limnol., 1, 11–28, https://doi.org/10.1080/19475721.2010.491656, 2010.
Boyer, T. P., García, H. E., Locarnini, R. A., Zweng, M. M., Mishonov, A. V., Reagan, J. R., Weathers, K. A., Baranova, O. K., Paver, C. R., Seidov, D., and Smolyar, I. V.: World Ocean Atlas, NOAA National Centers for Environmental Information [data set], https://www.ncei.noaa.gov/archive/accession/NCEI-WOA18 (last access: 30 November 2022), 2018.
Brassington, G. B.: Forecast Errors, Goodness, and Verification in Ocean Forecasting, J. Mar. Res., 75, 403–433, https://doi.org/10.1357/002224017821836851, 2017.
Bruschi, A., Lisi, I., De Angelis, R., Querin, S., Cossarini, G., Di Biagio, V., et al.: Indexes for the assessment of bacterial pollution in bathing waters from point sources: The northern Adriatic Sea CADEAU service, J. Environ. Manage., 293, 112878, https://doi.org/10.1016/j.jenvman.2021.112878, 2021.
Buga, L., Sarbu, G., Fryberg, L., Magnus, W., Wesslander, K., Gatti, J., D., Leroy, D., Iona, S., Larsen, M., Østrem A.K., Schlitzer, R., Lipizer, M., Molina, E., and Giorgetti, A.: EMODnet Chemistry Eutrophication and Acidity aggregated datasets v2018, https://doi.org/10.6092/EC8207EF-ED81-4EE5-BF48-E26FF16BF02E, 2018.
Buongiorno Nardelli, B., Tronconi, C., Pisano, A., and Santoleri, R.: High and Ultra-High resolution processing of satellite Sea Surface Temperature data over Southern European Seas in the framework of MyOcean project, Remote Sens. Environ., 129, 1–16, https://doi.org/10.1016/j.rse.2012.10.012, 2013.
Byun, D. S. and Pinardi, N.: Comparison of Marine Insolation Estimating methods in the Adriatic Sea, Ocean Sci. J., 42, 211–222, 2007.
Candela, J.: Mediterranean water and global circulation, in: Ocean Circulation and Climate, edited by: Siedler, G., Church, J., and Gould, J., 419–429, Academic Press, San Diego, Ca, 2001.
Canu, D., Solidoro, C., Bandelj, V., Quattrocchi, G., Sorgente, R., Olita, A, Fazioli, L., and Cucco, A.: Assessment of oil slick hazard and risk at vulnerable coastal sites, Mar. Pollut. Bull., 94, https://doi.org/10.1016/j.marpolbul.2015.03.006, 2015.
Carrassi, A., Bocquet, M., Bertino, L., and Evensen, G.: Data assimilation in the geosciences: An overview of methods, issues, and perspectives, WIRes Clim. Change, 9, e535, https://doi.org/DOI:10.1002/wcc.535, 2018.
Cavaleri, L. and Sclavo, M.: The calibration of wind and wave model data in the Mediterranean Sea, Coast. Eng., 53, 613–627, 2006.
Cessi, P., Pinardi, N., and Lyubartsev, V.: Energetics of Semienclosed Basins with Two-Layer Flows at the Strait, J. Phys. Oceanogr., 44, 967–979, https://doi.org/10.1175/JPO-D-13-0129.1, 2014.
Cliberti, S. A., Jansen, E., Coppini, G., Peneva, E., Azevedo, D., Causio, S., Stefanizzi, L., Cretì, S., Lecci, R., Lima L., Ilicak M., Pinardi, N., and Palazov, A.: The Black Sea Physics Analysis and Forecasting System within the Framework of the Copernicus Marine Service, J. Mar. Sci. Eng., 10, 48, https://doi.org/10.3390/jmse10010048, 2022.
Clementi, E., Oddo, P., Drudi, M., Pinardi, N., Korres, G., and Grandi, A.: Coupling hydrodynamic and wave models: first step and sensitivity experiments in the Mediterranean Sea, Ocean Dynam., 67, 1293–1312, https://doi.org/10.1007/s10236-017-1087-7, 2017a.
Clementi, E., Pistoia, J., Delrosso, D., Mattia, G., Fratianni, C., Storto, A., Ciliberti, S., Lemieux, B., Fenu, E., Simoncelli, S., Drudi, M., Grandi, A., Padeletti, D., Di Pietro, P., and Pinardi, N.: A degree resolution Mediterranean analysis and forecast modelling system for the Copernicus Marine Environment Monitoring Service, Extended abstract to the 8th EuroGOOS Conference, Bergen, http://eurogoos.eu/download/publications/EuroGOOS-2017-Conference-Proceedings.pdf (last access: 30 January 2023), 2017b.
Clementi, E., Pistoia, J., Escudier, R., Delrosso, D., Drudi, M., Grandi, A., Lecci, R., Cretí, S., Ciliberti, S., Coppini, G., Masina, S., and Pinardi, N.: Mediterranean Sea Analysis and Forecast (CMEMS MED-Currents EAS5 system, 2017–2020), Copernicus Monitoring Environment Marine Service (CMEMS) [data set], https://doi.org/10.25423/CMCC/MEDSEA_ANALYSIS_FORECAST_PHY_006_013_EAS5, 2019.
Copernicus Marine In-Situ Team and Copernicus In Situ TAC: Real Time Quality Control for WAVES, CMEMS-INS-WAVES-RTQC, Copernicus [data set], https://doi.org/10.13155/46607, 2020.
Copin-Montegut, C.: Alkalinity and carbon budgets in the Mediterranean Sea, Global Biogeochem. Cy., 7, 915–925, 1993.
Cossarini, G., Lazzari, P., and Solidoro, C.: Spatiotemporal variability of alkalinity in the Mediterranean Sea, Biogeosciences, 12, 1647–1658, https://doi.org/10.5194/bg-12-1647-2015, 2015.
Cossarini, G., Querin, S., Solidoro, C., Sannino, G., Lazzari, P., Di Biagio, V., and Bolzon, G.: Development of BFMCOUPLER (v1.0), the coupling scheme that links the MITgcm and BFM models for ocean biogeochemistry simulations, Geosci. Model Dev., 10, 1423–1445, https://doi.org/10.5194/gmd-10-1423-2017, 2017.
Cossarini, G., Mariotti, L., Feudale, L., Teruzzi, A., D'Ortenzio, F., Tallandier, V., and Mignot A.: Towards operational 3D-Var assimilation of chlorophyll Biogeochemical-Argo float data into a biogeochemical model of the Mediterranean Sea, Ocean Model., 133, 112–128, https://doi.org/10.1016/j.ocemod.2018.11.005, 2019.
Cossarini, G., Bretagnon, M., Di Biagio, V., Fanton d'Andon, O., Garnesson, P., Mangin, A., and Solidoro, C.: Primary production, Copernicus Marine Service Ocean State Report, Issue 4, J. Oper. Oceanogr., 12, s88–s91, https://doi.org/10.1080/1755876X.2020.1785097, 2020.
Cossarini, G., Feudale, L., Teruzzi, A., Bolzon, G., Coidessa, G., Solidoro, C., Di Biagio, V., Amadio, C., Lazzari, P., Brosich, A., and Salon, S.: High-resolution reanalysis of the Mediterranean Sea biogeochemistry (1999–2019), Frontiers in Marine Science, 8, 1537, https://doi.org/10.3389/fmars.2021.741486, 2021.
Deliverable of Perseus: Deliverable D4.6, SES land-based runoff and nutrient load data (1980–2000), edited by: Bouwman, L. and van Apeldoorn, D., 2012 PERSEUS H2020 grant agreement n. 287600, European Commission, http://www.perseus-net.eu/assets/media/PDF/deliverables/3321.6_Final.pdf (last access: 30 July 2023), 2012.
Delrosso, D.: Numerical modelling and analysis of riverine influences in the Mediterranean Sea, PhD Thesis, Alma Mater Studiorum Università di Bologna, https://doi.org/10.6092/unibo/amsdottorato/9392, 2020.
Desroziers, G., Berre, L., Chapnik, B., and Poli, P.: Diagnosis of observation, background and analysis-error statistics in observation space, Q. J. Roy. Meteor. Soc., 131, 3385–3396, https://doi.org/10.1256/qj.05.108, 2005.
Dickson, A. G.: Thermodynamics of the dissociation of boric acid in synthetic seawater from 273.15 to 318.15 K, Deep-Sea Res., 37, 755–766, 1990.
Dickson, A. G., Sabine, C. L., and Christian, J. R.: Guide to best practices for ocean CO2 measurements, North Pacific Marine Science Organization, Sidney, British Columbia, 191, https://doi.org/10.25607/OBP-1342, 2007.
Dobricic, S. and Pinardi, N.: An oceanographic three-dimensional variational data assimilation scheme, Ocean Model., 22, 89–105, https://doi.org/10.1016/j.ocemod.2008.01.004, 2008.
Dobricic, S., Pinardi, N., Adani, M., Tonani, M., Fratianni, C., Bonazzi, A., and Fernandez, V.: Daily oceanographic analyses by Mediterranean Forecasting System at the basin scale, Ocean Sci., 3, 149–157, https://doi.org/10.5194/os-3-149-2007, 2007.
Dobricic, S., Pinardi, N., Testor, P., and Send, U.: Impact of data assimilation of glider observations in the Ionian Sea (Eastern Mediterranean), Dynam. Atmos. Oceans, 50, 78–92, https://doi.org/10.1016/j.dynatmoce.2010.01.001, 2010.
Dobricic, S., Dufau, C., Oddo, P., Pinardi, N., Pujol, I., and Rio, M.-H.: Assimilation of SLA along track observations in the Mediterranean with an oceanographic model forced by atmospheric pressure, Ocean Sci., 8, 787–795, https://doi.org/10.5194/os-8-787-2012, 2012.
ECMWF: IFS Documentation CY43R1, Part VII: ECMWF Wave Model, Book chapter, ECMWF, https://doi.org/10.21957/18mel2ooj, 2016.
Escudier, R., Clementi, E., Omar, M., Cipollone, A., Pistoia, J., Aydogdu, A., Drudi, M., Grandi, A., Lyubartsev, V., Lecci, R., Cretí, S., Masina, S., Coppini, G., and Pinardi, N.: Mediterranean Sea Physical Reanalysis (CMEMS MED-Currents) (Version 1), Copernicus Monitoring Environment Marine Service (CMEMS) [data set], https://doi.org/10.25423/CMCC/MEDSEA_MULTIYEAR_PHY_006_004_E3R1, 2020.
Escudier, R., Clementi, E., Cipollone, A., Pistoia, J., Drudi, 50 M., Grandi, A., Lyubartsev, V., Lecci, R., Aydogdu, A., Delrosso, D., Mohamed O., Masina, S. Coppini, G., and Pinardi, N.: A High Resolution Reanalysis for the Mediterranean Sea, Front. Earth Sci., 9, 702285, https://doi.org/10.3389/feart.2021.702285, 2021.
Federico, I., Pinardi, N., Coppini, G., Oddo, P., Lecci, R., and Mossa, M.: Coastal ocean forecasting with an unstructured grid model in the southern Adriatic and northern Ionian seas, Nat. Hazards Earth Syst. Sci., 17, 45–59, https://doi.org/10.5194/nhess-17-45-2017, 2017.
Feudale, L., Bolzon, G., Lazzari, P., Salon, S., Teruzzi, A., Di Biagio, V., Coidessa, G., and Cossarini, G.: Mediterranean Sea Biogeochemical Analysis and Forecast (CMEMS MED-Biogeochemistry, MedBFM3 system) (Version 1), Copernicus Monitoring Environment Marine Service (CMEMS) [data set], https://doi.org/10.25423/CMCC/MEDSEA_ANALYSISFORECAST_BGC_006_014_MEDBFM3, 2021.
Flather, R. A.: A tidal model of the north–west European continental shelf, Mem. Soc. R. Sci. Liege, 10, 141–164, 1976.
Foujols, M.-A., Lévy, M., Aumont, O., and Madec, G.: OPA 8.1 Tracer Model Reference Manual Institut Pierre Simon Laplace, p. 39, 2000.
García-Lafuente, J. and Sánchez-Romn, A.: Estimation of the Atlantic inflow through the strait of Gibraltar from climatological and in situ data, J. Geophys. Res.-Ocean., 115, https://doi.org/10.1029/2010JC006302, 2010.
Giesen, R., Clementi, E., Bajo, M., Federico, I., Stoffelen, A., and Santoleri, R.: Copernicus Marine Service Ocean State Report, Issue 5, J. Oper. Oceanogr., 14, s140–s148, https://doi.org/10.1080/1755876X.2021.1946240, 2021.
Guenther, H., Hasselmann, S., and Janssen, P. A. E. M.: The WAM model cycle 4 (DKRZ-TR–4(reved)), Germany, 1992.
Hasselmann, K.: On the spectral dissipation of ocean waves due to whitecapping, Bound.-Lay. Meteorol., 126, 107–127, 1974.
Hasselmann, K., Barnett, T. P., Bouws, E., Carlson, H., Cartwright, D. E., Enke, K., Ewing, J. A., Gienapp, H., Hasselmann, D. E., Kruseman, P., Meerburg, A., Müller, P., Olbers, D. J., Richter, K., Sell, W., and Walden, H.: Measurements of wind–wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP), Dtsch. Hydrogr. Z., 8, 1–95, 1973.
Hasselmann, K., Allender, J. H., and Barnett, T. P.: Computations and parameterizations of the nonlinear energy transfer in a gravity wave spectrum. Part II: Parameterizations of the nonlinear energy transfer for application in wave models, J. Phys. Oceanogr.,15, 1378–1391, 1985.
Hernandez, F., Bertino, L., Brassington, G., Chassignet, E., Cummings, J., Davidson, F., Drévillon, M., Garric, G., Kamachi, M. Lellouche, J.-M., Mahdon, R., Martin, M. J., Ratsimandresy, A., and Regnier, C.: Validation and intercomparison studies within GODAE, Oceanography, 22, 128–143, https://doi.org/10.5670/oceanog.2009.71, 2009.
Hernandez, F., Smith, G., Baetens, K., Cossarini, G., Garcia-Hermosa, I., Drevillon, M., Maksymczuk, J., Melet, A., Regnier, C., and von Schuckman, K.: Measuring Performances, Skill and Accuracy in Operational Oceanography: New Challenges and Approaches, in: New Frontiers in Operational Oceanography, edited by: Chassignet, E., Pascual, A., Tintoré, J., and Verron, J., GODAE OceanView, 759–796, https://doi.org/10.17125/gov2018.ch29, 2018.
Janssen, P. A. E. M.: Wave induced stress and the drag of air flow over sea wave, J. Phys. Oceanogr., 19, 745–754, 1989.
Janssen, P. A. E. M.: Quasi-Linear theory of wind wave generation applied to wave forecasting, J. Phys. Oceanogr., 21, 1631–1642, 1991.
Johnson, K., Pasqueron De Fommervault, O., Serr, R., D'Ortenzio, F., Schmechtig, C., Claustre, H., and Poteau, A.: Processing Bio-Argo nitrate concentration at the DAC Level, Version 1.1, IFREMER for Argo Data Management, 22 pp., https://doi.org/10.13155/46121, 2018.
Katsafados, P., Papadopoulos, A., Korres, G., and Varlas, G.: A fully coupled atmosphere–ocean wave modeling system for the Mediterranean Sea: interactions and sensitivity to the resolved scales and mechanisms, Geosci. Model Dev., 9, 161–173, https://doi.org/10.5194/gmd-9-161-2016, 2016.
Kempe, S., Pettine, M., and Cauwet, G.: Biogeochemistry of european rivers, in: Biogeochemistry of Major World Rivers, edited by: Degens, E. T., Kempe, S., and Richey, J. E., SCOPE, John Wiley, 169–211, 1991.
Komen, G. J., Hasselmann, S., and Hasselmann, K.: On the existence of a fully developed windsea spectrum, J. Phys. Oceanogr., 14, 1271–1285, 1984.
Komen G. J., Cavaleri, L., Donelan, M., Hasselmann, K., Hasselmann, S., and Janssen, P. A. E. M.: Dynamics and Modelling of Ocean Waves, 554 pp., ISBN 0521577810, Cambridge, UK, Cambridge University Press, 1996.
Korres, G., Papadopoulos, A., Katsafados, P., Ballas, D., Perivoliotis, L., and Nittis, K.: A 2-year intercomparison of the WAM-Cycle4 and the WAVEWATCH-III wave models implemented within the Mediterranean Sea, Mediterr. Mar. Sci., 12, 129-152, https://doi.org/10.12681/mms.57, 2011.
Krasakopoulou, E., Souvermezoglou, E., Giannoudi, L., and Goyet, C.: Carbonate system parameters ad anthropogenic CO2 in the North Aegean Sea during October 2013, Cont. Shelf Res., 149, 69–81, 2017.
Lazzari, P., Teruzzi, A., Salon, S., Campagna, S., Calonaci, C., Colella, S., Tonani, M., and Crise, A.: Pre-operational short-term forecasts for Mediterranean Sea biogeochemistry, Ocean Sci., 6, 25–39, https://doi.org/10.5194/os-6-25-2010, 2010.
Lazzari, P., Solidoro, C., Ibello, V., Salon, S., Teruzzi, A., Béranger, K., Colella, S., and Crise, A.: Seasonal and inter-annual variability of plankton chlorophyll and primary production in the Mediterranean Sea: a modelling approach, Biogeosciences, 9, 217–233, https://doi.org/10.5194/bg-9-217-2012, 2012.
Lazzari, P., Solidoro, C., Salon, S., and Bolzon, G.: Spatial variability of phosphate and nitrate in the Mediterranean Sea: a modelling approach, Deep-Sea Res. Pt. I, 108, 39–52, https://doi.org/10.1016/j.dsr.2015.12.006, 2016.
Lazzari, P., Álvarez, E., Terzić, E., Cossarini, G., Chernov, I., D'Ortenzio, F., and Organelli, E.: CDOM Spatiotemporal Variability in the Mediterranean Sea: A Modelling Study, J. Mar. Sci. Eng., 9, 176, https://doi.org/10.3390/jmse9020176, 2021.
Lellouche, J.-M., Greiner, E., Le Galloudec, O., Garric, G., Regnier, C., Drevillon, M., Benkiran, M., Testut, C.-E., Bourdalle-Badie, R., Gasparin, F., Hernandez, O., Levier, B., Drillet, Y., Remy, E., and Le Traon, P.-Y.: Recent updates to the Copernicus Marine Service global ocean monitoring and forecasting real-time ∘ high-resolution system, Ocean Sci., 14, 1093–1126, https://doi.org/10.5194/os-14-1093-2018, 2018.
Lermusiaux, O. F. J.: Evolving the subspace of the three-dimensional multiscale ocean variability: Massachusetts Bay, J. Marine Syst., 29, 385–422, https://doi.org/10.1016/S0924-7963(01)00025-2 2001.
Le Traon, P., Ali, A., Alvarez Fanjul, E., Behrens, A., Stanev, E., and Staneva, J.: The Copernicus Marine Environmental Monitoring Service: Main Scientific Achievements and Future Prospects: Special Issue Mercator Océan Journal, Vol. 56, https://doi.org/10.25575/56, 2017.
Le Traon, P. Y., Reppucci, A., Alvarez Fanjul, E., Aouf, L., Behrens, A., Belmonte, M., Bentamy, A., Bertino, L., Brando, V. E., Kreiner, M. B., Benkiran, M., Carval, T., Ciliberti, S. A., Claustre, H., Clementi, E., Coppini, G., Cossarini, G., De Alfonso Alonso-Muñoyerro, M., Delamarche, A., Dibarboure, G., Dinessen, F., Drevillon, M., Drillet, Y., Faugere, Y., Fernández, V., Fleming, A., Garcia-Hermosa, M. I., Sotillo, M. G., Garric, G., Gasparin, F., Giordan, C., Gehlen, M., Gregoire, M. L., Guinehut, S., Hamon, M., Harris, C., Hernandez, F., Hinkler, J. B., Hoyer, J., Karvonen, J., Kay, S., King, R., Lavergne, T., Lemieux-Dudon, B., Lima, L., Mao, C., Martin, M. J., Masina, S., Melet, A., Buongiorno Nardelli, B., Nolan, G., Pascual, A., Pistoia, J., Palazov, A., Piolle, J. F., Pujol, M. I., Pequignet, A. C., Peneva, E., Pérez Gómez, B., Petit de la Villeon, L., Pinardi, N., Pisano, A., Pouliquen, S., Reid, R., Remy, E., Santoleri, R., Siddorn, J., She, J., Staneva, J., Stoffelen, A., Tonani, M., Vandenbulcke, L., von Schuckmann, K., Volpe, G., Wettre, C., and Zacharioudaki, A.: From Observation to Information and Users: The Copernicus Marine Service Perspective, Front. Mar. Sci., 6, 234, https://doi.org/10.3389/fmars.2019.00234, 2019.
Levy, M., Estubier, A., and Madec, G.: Choice of an advection scheme for biogeochemical models, Geophys. Res. Lett., 28, https://doi.org/10.1029/2001GL012947, 2001.
Lionello, P., Gunther, H., and Janssen, P. A. E. M.: Assimilation of altimeter data in a global third generation wave model, J. Geophys. Res., 97C, 14453–14474, 1992.
Lueker, T. J., Dickson, A. G., and Keeling, C. D.: Ocean pCO2 calculated from dissolved inorganic carbon, alkalinity, and equations for K1 and K2: validation based on laboratory measurements of CO2 in gas and seawater at equilibrium, Mar. Chem., 70, 105–119, 2000.
Madec, G. and the NEMO system Team: NEMO Ocean Engine, Scientific Notes of Climate Modelling Center (27), Institut Pierre-Simon Laplace (IPSL), Zenodo , https://doi.org/10.5281/zenodo.1472492, 2019.
Madec, G., Delecluse, P., Imbard, M., and Levy, C.: OPA8.1 Ocean general Circulation Model reference m anual, Note du Pole de modelisazion, Institut Pierre-Simon Laplace (IPSL), France, 11 pp., 1998.
Maderich, V., Ilyin, Y., and Lemeshko, E.: Seasonal and interannual variability of the water exchange in the Turkish Straits System estimated by modelling, Mediterr. Mar. Sci., 16, 444–459, https://doi.org/10.12681/mms.1103, 2015.
Mannarini, G., Turrisi, G., D'Anca, A., Scalas, M., Pinardi, N., Coppini, G., Palermo, F., Carluccio, I., Scuro, M., Cretì, S., Lecci, R., Nassisi, P., and Tedesco, L.: VISIR: technological infrastructure of an operational service for safe and efficient navigation in the Mediterranean Sea, Nat. Hazard. Earth Syst. Sci., 16, 1791–1806, https://doi.org/10.5194/nhess-16-1791-2016, 2016a.
Mannarini, G., Pinardi, N., Coppini, G., Oddo, P., and Iafrati, A.: VISIR-I: small vessels – least-time nautical routes using wave forecasts, Geosci. Model Dev., 9, 1597–1625, https://doi.org/10.5194/gmd-9-1597-2016, 2016b.
Mannarini, G. and Carelli, L.: VISIR-1.b: ocean surface gravity waves and currents for energy-efficient navigation, Geosci. Model Dev., 12, 3449–3480, https://doi.org/10.5194/gmd-12-3449-2019, 2019.
Marchesiello, P., McWilliams, J. C., and Shchepetkin, A.: Open boundary conditions for long-term integration of regional oceanic models, Ocean Model., 3, 1–20, 2001.
McEwan, R., Kay, S., and Ford, D.: Quality Information Document of NWSHELF_ANALYSISFORECAST_BGC_004_002, Marine Copernicus Service, https://catalogue.marine.copernicus.eu/documents/QUID/CMEMS-NWS-QUID-004-002.pdf (last access: 15 July 2022), 2021.
McGovern, J. V., Dabrowski, T., Pereiro, D., Gutknecht, E., Lorente, P., Reffray, G., Aznar, R., and Sotillo, M. G.: Quality Information Document of IBI_ANALYSISFORECAST_BGC_005_004, Marine Copernicus Service, https://catalogue.marine.copernicus.eu/documents/QUID/CMEMS-IBI-QUID-005-004.pdf (last access: 15 July 2022), 2020.
Melsom, A. and Yumruktepe, Ç.: Quality Information Document of ARTIC_ANALYSIS_FORECAST_BIO_002_004, Marine Copernicus Service, https://catalogue.marine.copernicus.eu/documents/QUID/CMEMS-ARC-QUID-002-004.pdf (last access: 15 July 2022), 2021.
Meybeck, M. and Ragu, A.: River Discarges to the Oceans: An Assessment of suspended solids, major ions and nutrients UNEP STUDY, 1995.
Millero, F. J.: Thermodynamics of the carbon dioxide system in the oceans, Geochim. Cosmochim. Ac., 59, 661–677, 1995.
Millero, F., Schrager, S., and Hansen, L.: Thermometric titration analysis of seawater for chlorinity, sulfate, and alkalinity, Limnol. Oceanogr., 19, 711–715, https://doi.org/10.4319/lo.1974.19.4.0711, 1974.
Milliff, R. F., Bonazzi, A., Wikle, C. K., Pinardi, N., and Berliner, L. M.: Ocean ensemble forecasting, Part I: EnsembleMediterranean winds from a Bayesian hierarchical model, Q. J. R. Meteorol. Soc, 137, 858–878, https://doi.org/10.1002/qj.767, 2011.
Munhoven, G.: Mathematics of the total alkalinity-pH equation-Pathway to robust and universal solution algorithms: The SolveSAPHE package v1.0.1, Geosci. Model Dev., 6, 1367–1388, https://doi.org/10.5194/gmd-6-1367-2013, 2013.
Nagy, H., Lyons, K., Nolan, G., Cure, M., and Dabrowski, T.: A Regional Operational Model for the North East Atlantic: Model Configuration and Validation, J. Mar. Sci. Eng., 8, 673, https://doi.org/10.3390/jmse8090673, 2020.
Napolitano, E., Iacono, R., Palma, M., Sannino, G., Carillo, A., Lombardi, E., Pisacane, G., and Struglia, M. V.: MITO: A new operational model for the forecasting of the Mediterranean sea circulation, Front. Energy Res., 10, 941606, https://doi.org/10.3389/fenrg.2022.941606, 2022.
Nilsson, J., Dobricic, S., Taillandier, V., Poulain, P.-M., and Pinardi, N.: On the Assimilation of Argo Float Trajectories into the Mediterranean Forecasting System, 12, 7002, https://doi.org/10.1007/s10236-011-0437-0, 2010.
NOAA National Centers for Environmental Information: ETOPO 2022 15 Arc-Second Global Relief Model, NOAA National Centers for Environmental Information, https://doi.org/10.25921/fd45-gt74, 2022.
Oddo, P., Adani, M., Pinardi, N., Fratianni, C., Tonani, M., and Pettenuzzo, D.: A nested Atlantic-Mediterranean Sea general circulation model for operational forecasting, Ocean Sci., 5, 461–473, https://doi.org/10.5194/os-5-461-2009, 2009.
Oddo, P., Bonaduce, A., Pinardi, N., and Guarnieri, A.: Sensitivity of the Mediterranean sea level to atmospheric pressure and free surface elevation numerical formulation in NEMO, Geosci. Model Dev., 7, 3001–3015, https://doi.org/10.5194/gmd-7-3001-2014, 2014.
Oreskes, N., Shrader-Frechette, K., and Belitz, K.: Verification, validation, and confirmation of numerical models in the Earth sciences, Science, 263, 641–646, https://doi.org/10.1126/science.263.5147.641, 1994.
Orlanski, I.: A simple boundary condition for unbounded hyperbolic flows, J. Comput. Phys., 21, 251–269, 1976.
Pacanowski, R. C. and Philander, S. G. H.: Parameterization of vertical mixing in numerical models of tropical oceans, J. Phys. Oceanogr., 11, 1443–1451, https://doi.org/10.1175/1520-0485(1981)011<1443:POVMIN>2.0.CO;2, 1981.
Perez, F. F. and Fraga, F.: Association constant of fluoride and hydrogen ions in seawater, Mar. Chem., 21, 161–168, 1987.
Pettenuzzo, D., Large, W. G., and Pinardi, N.: On the corrections of ERA-40 surface flux products consistent with the Mediterranean heat and water budgets and the connection between basin surface total heat flux and NAO, J. Geophys. Res., 115, C06022, https://doi.org/10.1029/2009JC005631, 2010.
Pinardi, N., Allen, I., Demirov, E., De Mey, P., Korres, G., Lascaratos, A., Le Traon, P.-Y., Maillard, C., Manzella, G., and Tziavos, C.: The Mediterranean ocean Forecasting System: first phase of implementation (1998–2001), Ann. Geophys., 21, 3–20, https://doi.org/10.5194/angeo-21-3-2003, 2003.
Pinardi, N. and Coppini, G.: Preface “Operational oceanography in the Mediterranean Sea: the second stage of development”, Ocean Sci., 6, 263–267, https://doi.org/10.5194/os-6-263-2010, 2010.
Pinardi, N., Arneri, E., Crise, A., Ravaioli, M., and Zavatarelli, M.: The physical, sedimentary and ecological structure and variability of shelf areas in the Mediterranean Sea, in: The Sea, edited by: Robinson, A. R. and Brink, K., Vol. 14, Harvard University Press, Cambridge, USA, 1243–1330, 2006.
Pinardi, N., Bonazzi, A., Dobricic, S., Milliff, R. F., Wikle, C. K., and Berliner, L. M.: Ocean ensemble forecasting, Part II: Mediterranean Forecast System response, Q. J. R. Meteorol. Soc., 137, 879–893, https://doi.org/10.1002/qj.816, 2011.
Pinardi, N., Zavatarelli, M., Adani, M., Coppini, G., Fratianni, C., Oddo, P., Simoncelli, S., Tonani, M., Lyubartsev, V., Dobricic, S., and Bonaduce, A.: Mediterranean Sea large-scale low-frequency ocean variability and water mass formation rates from 1987 to 2007: A retrospective analysis, Prog. Oceanogr., 132, 318–332, https://doi.org/10.1016/j.pocean.2013.11.003, 2015.
Pinardi, N., Lermusiaux, P. F. J., Brink, K. H., and Preller, R. H.: The Sea: The science of ocean predictions, J. Marine Res., 75, 101–102, https://doi.org/10.1357/002224017821836833, 2017.
Pinardi, N., Cessi, P., Borile, F., and Wolfe, C. L.: The Mediterranean Sea Overturning Circulation, J. Phys. Oceanogr., 49, 1699–1721, https://doi.org/10.1175/JPO-D-18-0254.1, 2019.
Pineau-Guillou, L., Ardhuin, F., Bouin, M.-N., Redelsperger, J.-L., Chapron, B., Bidlot, J.-R., and Quilfen Y.: Strong winds in a coupled wave-atmosphere model during a North Atlantic storm event: evaluation against observations, Q. J. Roy. Meteor. Soc., 144, 317–332, https://doi.org/10.1002/qj.3205, 2018.
Pistoia, J., Clementi, E., Delrosso, D., Mattia, G., Fratianni, C., Drudi, M., Grandi, A., Paleletti, D., Di Pietro, P., Storto, A., and Pinardi, N.: Last improvements in the data assimilation scheme for the Mediterranean Analysis and Forecast system of the Copernicus Marine Service, Extended abstract to the 8th EuroGOOS Conference 2017, Bergen, http://eurogoos.eu/download/publications/EuroGOOS-2017-Conference-Proceedings.pdf (last access: 1 June 2023), 2017.
Ravdas, M., Zacharioudaki, A., and Korres, G.: Implementation and validation of a new operational wave forecasting system of the Mediterranean Monitoring and Forecasting Centre in the framework of the Copernicus Marine Environment Monitoring Service, Nat. Hazards Earth Syst. Sci., 18, 2675–2695, https://doi.org/10.5194/nhess-18-2675-2018, 2018.
Reed, R. K.: On estimating insolation over the ocean, J. Phys. Oceanogr., 7, 482–485, 1977.
Ribera d'Alcalà, M., Civitarese, G., Conversano, F., and Lavezza, R.: Nutrient ratios and fluxes hint at overlooked processes in the Mediterranean Sea, J. Geophys. Res., 108, 8106, https://doi.org/10.1029/2002JC001650, 2003.
Robinson, A. R., Leslie, W. G., Theocharis, A., and Lascartos, A.: Mediterranean Sea Circulation, Encyclopedia of Ocean Sciences, 2001, 1689–1705, https://doi.org/10.1006/rwos.2001.0376, 2001.
Salon, S., Cossarini, G., Bolzon, G., Feudale, L., Lazzari, P., Teruzzi, A., Solidoro, C., and Crise, A.: Novel metrics based on Biogeochemical Argo data to improve the model uncertainty evaluation of the CMEMS Mediterranean marine ecosystem forecasts, Ocean Sci., 15, 997–1022, https://doi.org/10.5194/os-15-997-2019, 2019.
Schneider, A., Wallace, D. W. R., and Kortzinger, A.: Alkalinity of the Mediterranean Sea, Geophys. Res. Lett., 34, L15608, https://doi.org/10.1029/2006GL028842, 2007.
Schmechtig, C., Poteau, A., Claustre, H., D'Ortenzio, F., Dall'Olmo, G., and Boss, E.: Processing Bio-Argo particle backscattering at the DAC level, Argo, https://doi.org/10.13155/39468, 2018.
Simoncelli, S., Fratianni, C., Pinardi, N., Grandi, A., Drudi, M., Oddo, P., and Dobricic, S.: Mediterranean Sea Physical Reanalysis (CMEMS MED-Physics) (Version 1), Copernicus Monitoring Environment Marine Service (CMEMS) [data set], https://doi.org/10.25423/MEDSEA_REANALYSIS_PHYS_006_004, 2019.
Siokou-Frangou, I., Christaki, U., Mazzocchi, M. G., Montresor, M., Ribera d'Alcalá, M., Vaqué, D., and Zingone, A.: Plankton in the open Mediterranean Sea: a review, Biogeosciences, 7, 1543–1586, https://doi.org/10.5194/bg-7-1543-2010, 2010.
Snyder, R. L., Dobson, F. W., Elliot, J. A., and Long, R. B.: Array measurements of atmospheric pressure fluctuations above surface gravity waves, J. Fluid Mech., 102, 1–59, 1981.
Sotillo, M. G., Garcia-Hermosa, I., Drévillon, M., Régnier, C., Szczypta, C., Hernandez, F., Melet, A., and Le Traon, P. Y.: Communicating CMEMS Product Quality: evolution & achievements along Copernicus-1 (2015–2021), Mercator Ocean J., no. 57, https://marine.copernicus.eu/it/node/19306 (last access: 1 July 2023), 2021.
Soto-Navarro, J., Criado-Aldeanueva F.,, García-Lafuente, J., and Sánchez-Romn, A.: Estimation of the Atlantic inflow through the strait of Gibraltar from climatological and in situ data, J. Geophys. Res.-Ocean., 115, https://doi.org/10.1029/2010JC006302, 2010.
Souvermezoglou, E., Krasakopoulou, E., and Pavlidou, A.: Temporal and spatial variability of nutrients and oxygen in the North Aegean Sea during the last thirty years, Mediterr. Mar. Sci., 15, 805–822, 2014.
Spruch L., Verjovkina, S., Jandt, S., Schwichtenberg, F., Huess, V., Lorkowski, I., and Lagemaa, P.: Quality Information Document of BALTICSEA_ANALYSIS_FORECAST_BIO_003_007, Marine Copernicus Service, https://catalogue.marine.copernicus.eu/documents/QUID/CMEMS-BAL-QUID-003-007.pdf (last access: 15 July 2022), 2020.
Storto, A., Dobricic, S., Masina, S., and Di Pietro,P.: Assimilating Along-track Altimetric Observations through Local Hydrostatic Adjustment in a Global Ocean Variational Assimilation System, Mon. Weather Rev., 3, 139, 2011.
Storto, A., Masina, S., and Dobricic, S.: Estimation and impact of nonuniform horizontal correlation length scales for global ocean physical analyses, J. Atmos. Ocean Technol. 31, 2330–2349, https://doi.org/10.1175/JTECH-D-14-00042.1, 2014.
Storto, A., Masina, S., and Navarra, A.: Evaluation of the CMCC eddy-permitting global ocean physical reanalysis system (C-GLORS, 1982–2012) and its assimilation components, Q. J. Roy. Meteor. Soc., 142, 738–758, https://doi.org/10.1002/qj.2673, 2015.
Taburet, G., Sanchez-Roman, A., Ballarotta, M., Pujol, M.-I., Legeais, J.-F., Fournier, F., Faugere, Y., and Dibarboure, G.: DUACS DT2018: 25 years of reprocessed sea level altimetry products, Ocean Sci., 15, 1207–1224, https://doi.org/10.5194/os-15-1207-2019, 2019.
Terzic, E., Salon, S., Solidoro, C., Cossarini, G., Teruzzi, A., Miro, A., and Lazzari, P.: Impact of interannually variable diffuse attenuation coefficients for downwelling irradiance on biogeochemical modelling, Ocean Model., OCEMOD-D-20-00012R2, https://doi.org/10.1016/j.ocemod.2021.101793, 2021.
Teruzzi, A., Dobricic, S., Solidoro, C., and Cossarini, G.: A 3D variational assimilation scheme in coupled transport biogeochemical models: Forecast of Mediterranean biogeochemical properties, J. Geophys. Res.-Oceans, 119, 200–217, https://doi.org/10.1002/2013JC009277, 2014.
Teruzzi, A., Bolzon, G., Salon, S., Lazzari, P., Solidoro, C., and Cossarini, G.: Assimilation of coastal and open sea biogeochemical data to improve phytoplankton modelling in the Mediterranean Sea, Ocean Model., 132, 46–60, https://doi.org/10.1016/j.ocemod.2018.09.007, 2018.
Teruzzi, A., Di Cerbo, P., Cossarini, G., Pascolo, E., and Salon, S.: Parallel implementation of a data assimilation scheme for operational oceanography: the case of the OGSTM-BFM model system, Comput. Geosci., 124, 103–114, https://doi.org/10.1016/j.cageo.2019.01.003, 2019.
Teruzzi, A., Bolzon, G., Feudale, L., and Cossarini, G.: Deep chlorophyll maximum and nutricline in the Mediterranean Sea: emerging properties from a multi-platform assimilated biogeochemical model experiment, Biogeosciences, 18, 6147–6166, https://doi.org/10.5194/bg-18-6147-2021, 2021.
Thoppil, P., G., Frolov, S., Rowley, C. D., Reynolds, C. A., Jacobs, G. A., Metzger, E. J., Hogan, P. J., Barton, N., Wallcraft, A. J., Smedstad, O. M., and Shriver, J. F.: Ensemble forecasting greatly expands the prediction horizon for ocean mesoscale variability, Commun. Earth Environ., 2, 89, https://doi.org/10.1038/s43247-021-00151-5, 2021.
Toledano, C., Ghantous, M., Lorente, P., Dalphinet, A., Aouf, L., and Sotillo, M. G.: Impacts of an Altimetric Wave Data Assimilation Scheme and Currents-Wave Coupling in an Operational Wave System: The New Copernicus Marine IBI Wave Forecast Service, J. Mar. Sci. Eng., 10, 457, https://doi.org/10.3390/jmse10040457, 2022.
Tonani, M., Pinardi, N., Dobricic, S., Pujol, I., and Fratianni, C.: A high-resolution free-surface model of the Mediterranean Sea, Ocean Sci., 4, 1–14, https://doi.org/10.5194/os-4-1-2008, 2008.
Tonani, M., Balmaseda, M., Bertino, L., Blockley, E., Brassington, G., Davidson, F., Drillet, Y., Hogan, P., Kuragano, T., Lee,T., Mehra, A., Paranathara, F., Tanajura, C. A. S., and Wang, H.: Status and future of global and regional ocean prediction systems, J Oper. Oceanogr., 8, 201–220, https://doi.org/10.1080/1755876X.2015.1049892, 2015.
Trisolino, P., di Sarra, A., Sferlazzo, D., Piacentino, S., Monteleone, F., Di Iorio, T., Apadula, F., Heltai, D., Lanza, A., Vocino, A., Caracciolo di Torchiarolo, L., Bonasoni, P., Calzolari, F., Busetto, M., and Cristofanelli, P.: Application of a Common Methodology to Select in Situ CO2 Observations Representative of the Atmospheric Background to an Italian Collaborative Network, Atmosphere, 12, 246, https://doi.org/10.3390/atmos12020246, 2021.
Trotta, F., Federico, I., Pinardi, N., Coppini, G., Causio, S., Jansen, E., Iovino, D. and Masina, S.: A Relocatable Ocean Modeling Platform for Downscaling to Shelf-Coastal Areas to Support Disaster Risk Reduction, Front. Mar. Sci., 8, 642815, https://doi.org/10.3389/fmars.2021.642815, 2021.
Tugrul, S., Besiktepe, T., and Salihoglu, I.: Nutrient exchange fluxes between the Aegean ad tBlack Seas through the Marmara Sea, Mediterr. Mar. Sci., 3, 33–42, 2002.
Vandenbulcke L., Capet A., and Grégoire M.: Quality Information Document of BLKSEA_ANALYSIS_FORECAST_BIO_007_010, Marine Copernicus Service, https://catalogue.marine.copernicus.eu/documents/QUID/CMEMS-BS-QUID-007-010.pdf (last access: 15 July 2022), 2021.
Verri, G., Pinardi, N., Bryan, F., Tseng, Y., Coppini, G., and Clementi, E.: A box model to represent estuarine dynamics in mesoscale resolution ocean models, Ocean Model., 148, 101587, https://doi.org/10.1016/j.ocemod.2020.101587, 2020.
Vichi, M., Lovato, T., Butenschön, M., Tedesco, L., Lazzari, P., Cossarini, G., Masina, S., Pinardi, N., Solidoro, C., and Zavatarelli, M.: The Biogeochemical Flux Model (BFM): Equation Description and User Manual, BFM version 5.2, BFM Report series No. 1, Release 1.2, 104 pp., June 2020, Bologna, Italy, http://bfm-community.eu (last access: 30 June 2023), 2020.
Volpe, G., Colella, S., Brando, V. E., Forneris, V., La Padula, F., Di Cicco, A., Sammartino, M., Bracaglia, M., Artuso, F., and Santoleri, R.: Mediterranean ocean colour Level 3 operational multi-sensor processing, Ocean Sci., 15, 127–146, https://doi.org/10.5194/os-15-127-2019, 2019.
von Schuckmann, K., Le Traon, P.-Y., Alvarez-Fanjul, E., Axell, L., Balmaseda, M., Breivik, L.-A., Brewin, R. J. W., Bricaud, C., Drevillon, M., Drillet, Y., Dubois, C., Embury, O., Etienne, H., García Sotillo, M., Garric, G., Gasparin, F., Gutknecht, E., Guinehut, S., Hernandez, F., Juza, M., Karlson, B., Korres, G., Legeais, J.-F., Levier, B., Lien, V. S., Morrow, R., Notarstefano, G., Parent, L., Pascual, Á., Pérez-Gómez, B., Perruche, C., Pinardi, N., Pisano, A., Poulain, P.-M., Pujol, I. M., Raj, R. P., Raudsepp, U., Roquet, H., Samuelsen, A., Sathyendranath, S., She, J., Simoncelli, S., Solidoro, C., Tinker, J., Tintoré, J., Viktorsson, L., Ablain, M., Almroth-Rosell, E., Bonaduce, A., Clementi, E., Cossarini, G., Dagneaux, Q., Desportes, C., Dye, S., Fratianni, C., Good, S., Greiner, E., Gourrion, J., Hamon, M., Holt, J., Hyder, P., Kennedy, J., Manzano-Muñoz, F., Melet, A., Meyssignac, B., Mulet, S., Buongiorno Nardelli, B., O’Dea, E., Olason, E., Paulmier, A., Pérez-González, I., Reid, R., Racault, M.-F., Raitsos, D. E., Ramos, A., Sykes, P., Szekely, T., and Verbrugge, N.: The Copernicus Marine Environment Monitoring Service Ocean State Report, J. Oper. Oceanogr., 9, s235–s320, https://doi.org/10.1080/1755876X.2016.1273446, 2016.
WAMDI Group: The WAM model – a third generation ocean wave prediction model, J. Phys. Oceanogr., 18, 1775–1810, https://doi.org/10.1175/1520-0485(1988)018<1775:TWMTGO>2.0.CO;2, 1988.
Wanninkhof, R.: Relationship between wind speed and gas exchange over the ocean revisited, Limnol. Oceanogr. Meth., 12, 351–362, https://doi.org/10.4319/lom.2014.12.351, 2014.
Weatherall, P., Marks, K. M., Jakobsson, M., Schmitt, T., Tani, S., Arndt, J. E., Rovere, M., Chayes, D., Ferrini, V., and Wigley, R.: A new digital bathymetric model of the world's oceans, Earth Space Sci., 2, 331–345, 2015.
Mehrbach, C., Culberson, C. H., Hawley, J. E., and Pytkowicz, R. M.: Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure, Limnol. Oceanogr., 18, 897–907, 1973.
Weiss, R. F.: Carbon dioxide in water and seawater: the solubility of a non-ideal gas, Mar. Chem., 2, 203–215, 1974.
Yalcin, B., Artuz, M. L., Pavlidou, A., Cubuk, S., and Dassenakis, M.: Nutrient dynamics and eutrophication in the Sea of Marmara: data from recent oceanographic research, Sci. Total Environ., 601–602, 405–424, 2017.
Zodiatis, G., Lardner, R., Lascaratos, A., Georgiou, G., Korres, G., and Syrimis, M.: High resolution nested model for the Cyprus, NE Levantine Basin, eastern Mediterranean Sea: implementation and climatological runs, Ann. Geophys., 21, 221–236, https://doi.org/10.5194/angeo-21-221-2003, 2003.
Short summary
The paper presents the Mediterranean Forecasting System evolution and performance developed in the framework of the Copernicus Marine Service.
The paper presents the Mediterranean Forecasting System evolution and performance developed in...