Articles | Volume 19, issue 4
https://doi.org/10.5194/os-19-1123-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-19-1123-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Impact of sea level changes on future wave conditions along the coasts of western Europe
Alisée A. Chaigneau
CORRESPONDING AUTHOR
CNRM, Université de Toulouse, Météo-France, CNRS,
Toulouse, France
Mercator Ocean International, 42 Av. Gaspard Coriolis, 31000 Toulouse, France
Stéphane Law-Chune
Mercator Ocean International, 42 Av. Gaspard Coriolis, 31000 Toulouse, France
Angélique Melet
Mercator Ocean International, 42 Av. Gaspard Coriolis, 31000 Toulouse, France
Aurore Voldoire
CNRM, Université de Toulouse, Météo-France, CNRS,
Toulouse, France
Guillaume Reffray
Mercator Ocean International, 42 Av. Gaspard Coriolis, 31000 Toulouse, France
Lotfi Aouf
Météo-France, 42 Av. Gaspard Coriolis, 31000 Toulouse, France
Related authors
Angélique Melet, Roderik van de Wal, Angel Amores, Arne Arns, Alisée A. Chaigneau, Irina Dinu, Ivan D. Haigh, Tim H. J. Hermans, Piero Lionello, Marta Marcos, H. E. Markus Meier, Benoit Meyssignac, Matthew D. Palmer, Ronja Reese, Matthew J. R. Simpson, and Aimée B. A. Slangen
State Planet, 3-slre1, 4, https://doi.org/10.5194/sp-3-slre1-4-2024, https://doi.org/10.5194/sp-3-slre1-4-2024, 2024
Short summary
Short summary
The EU Knowledge Hub on Sea Level Rise’s Assessment Report strives to synthesize the current scientific knowledge on sea level rise and its impacts across local, national, and EU scales to support evidence-based policy and decision-making, primarily targeting coastal areas. This paper complements IPCC reports by documenting the state of knowledge of observed and 21st century projected changes in mean and extreme sea levels with more regional information for EU seas as scoped with stakeholders.
Alisée A. Chaigneau, Melisa Menéndez, Marta Ramírez-Pérez, and Alexandra Toimil
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-100, https://doi.org/10.5194/nhess-2024-100, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
Tropical cyclones drive extreme sea levels, causing large storm surges due to low atmospheric pressure and strong winds. This study explores factors affecting the numerical modelling of storm surges induced by hurricanes in the tropical Atlantic. Two ocean models are compared and used for sensitivity experiments. ERA5 atmospheric reanalysis forcing generally improves storm surge estimates compared to parametric wind models. Including ocean circulations reduces errors in storm surge estimates.
Alisée A. Chaigneau, Angélique Melet, Aurore Voldoire, Guillaume Reffray, Stéphane Law-Chune, and Lotfi Aouf
EGUsphere, https://doi.org/10.5194/egusphere-2024-1061, https://doi.org/10.5194/egusphere-2024-1061, 2024
Short summary
Short summary
Climate change induced sea level rise increases the frequency of extreme sea levels. This paper presents regional projections of extreme sea levels for western Europe produced with high-resolution models (~6 km). Unlike commonly used coarse-scale global climate models, this approach allows to simulate key processes driving coastal sea level variations such as long-term sea level rise, tides, storm surges induced by low atmospheric surface pressure and winds, waves, and their interactions.
Alisée A. Chaigneau, Guillaume Reffray, Aurore Voldoire, and Angélique Melet
Geosci. Model Dev., 15, 2035–2062, https://doi.org/10.5194/gmd-15-2035-2022, https://doi.org/10.5194/gmd-15-2035-2022, 2022
Short summary
Short summary
Climate-change-induced sea level rise is a major threat for coastal and low-lying regions. Projections of coastal sea level changes are thus of great interest for coastal risk assessment and have significantly developed in recent years. In this paper, the objective is to provide high-resolution (6 km) projections of sea level changes in the northeastern Atlantic region bordering western Europe. For that purpose, a regional model is used to refine existing coarse global projections.
Marc Mallet, Aurore Voldoire, Fabien Solmon, Pierre Nabat, Thomas Drugé, and Romain Roehrig
Atmos. Chem. Phys., 24, 12509–12535, https://doi.org/10.5194/acp-24-12509-2024, https://doi.org/10.5194/acp-24-12509-2024, 2024
Short summary
Short summary
This study investigates the interactions between smoke aerosols and climate in tropical Africa using a coupled ocean–atmosphere–aerosol climate model. The work shows that smoke plumes have a significant impact by increasing the low-cloud fraction, decreasing the ocean and continental surface temperature and reducing the precipitation of coastal western Africa. It also highlights the role of the ocean temperature response and its feedbacks for the September–November season.
Jean Rabault, Trygve Halsne, Ana Carrasco, Anton Korosov, Joey Voermans, Patrik Bohlinger, Jens Boldingh Debernard, Malte Müller, Øyvind Breivik, Takehiko Nose, Gaute Hope, Fabrice Collard, Sylvain Herlédan, Tsubasa Kodaira, Nick Hughes, Qin Zhang, Kai Haakon Christensen, Alexander Babanin, Lars Willas Dreyer, Cyril Palerme, Lotfi Aouf, Konstantinos Christakos, Atle Jensen, Johannes Röhrs, Aleksey Marchenko, Graig Sutherland, Trygve Kvåle Løken, and Takuji Waseda
EGUsphere, https://doi.org/10.48550/arXiv.2401.07619, https://doi.org/10.48550/arXiv.2401.07619, 2024
Short summary
Short summary
We observe strongly modulated waves-in-ice significant wave height using buoys deployed East of Svalbard. We show that these observations likely cannot be explained by wave-current interaction or tide-induced modulation alone. We also demonstrate a strong correlation between the waves height modulation, and the rate of sea ice convergence. Therefore, our data suggest that the rate of sea ice convergence and divergence may modulate wave in ice energy dissipation.
Angélique Melet, Roderik van de Wal, Angel Amores, Arne Arns, Alisée A. Chaigneau, Irina Dinu, Ivan D. Haigh, Tim H. J. Hermans, Piero Lionello, Marta Marcos, H. E. Markus Meier, Benoit Meyssignac, Matthew D. Palmer, Ronja Reese, Matthew J. R. Simpson, and Aimée B. A. Slangen
State Planet, 3-slre1, 4, https://doi.org/10.5194/sp-3-slre1-4-2024, https://doi.org/10.5194/sp-3-slre1-4-2024, 2024
Short summary
Short summary
The EU Knowledge Hub on Sea Level Rise’s Assessment Report strives to synthesize the current scientific knowledge on sea level rise and its impacts across local, national, and EU scales to support evidence-based policy and decision-making, primarily targeting coastal areas. This paper complements IPCC reports by documenting the state of knowledge of observed and 21st century projected changes in mean and extreme sea levels with more regional information for EU seas as scoped with stakeholders.
Roderik van de Wal, Angélique Melet, Debora Bellafiore, Paula Camus, Christian Ferrarin, Gualbert Oude Essink, Ivan D. Haigh, Piero Lionello, Arjen Luijendijk, Alexandra Toimil, Joanna Staneva, and Michalis Vousdoukas
State Planet, 3-slre1, 5, https://doi.org/10.5194/sp-3-slre1-5-2024, https://doi.org/10.5194/sp-3-slre1-5-2024, 2024
Short summary
Short summary
Sea level rise has major impacts in Europe, which vary from place to place and in time, depending on the source of the impacts. Flooding, erosion, and saltwater intrusion lead, via different pathways, to various consequences for coastal regions across Europe. This causes damage to assets, the environment, and people for all three categories of impacts discussed in this paper. The paper provides an overview of the various impacts in Europe.
Bart van den Hurk, Nadia Pinardi, Alexander Bisaro, Giulia Galluccio, José A. Jiménez, Kate Larkin, Angélique Melet, Lavinia Giulia Pomarico, Kristin Richter, Kanika Singh, Roderik van de Wal, and Gundula Winter
State Planet, 3-slre1, 1, https://doi.org/10.5194/sp-3-slre1-1-2024, https://doi.org/10.5194/sp-3-slre1-1-2024, 2024
Short summary
Short summary
The Summary for Policymakers compiles findings from “Sea Level Rise in Europe: 1st Assessment Report of the Knowledge Hub on Sea Level Rise”. It covers knowledge gaps, observations, projections, impacts, adaptation measures, decision-making principles, and governance challenges. It provides information for each European basin (Mediterranean, Black Sea, North Sea, Baltic Sea, Atlantic, and Arctic) and aims to assist policymakers in enhancing the preparedness of European coasts for sea level rise.
Fabrice Hernandez, Marcos Garcia Sotillo, and Angelique Melet
State Planet Discuss., https://doi.org/10.5194/sp-2024-39, https://doi.org/10.5194/sp-2024-39, 2024
Preprint under review for SP
Short summary
Short summary
An historical review over the last three decades on intercomparison projects of ocean numerical reanalysis or forecast is first proposed. From this, main issues and lessons learned are discussed in order to propose an overview of best practices and key considerations to facilitate intercomparison activities in operational oceanography.
Alice Laloue, Malek Ghantous, Yannice Faugère, Alice Dalphinet, and Lotfi Aouf
State Planet, 4-osr8, 6, https://doi.org/10.5194/sp-4-osr8-6-2024, https://doi.org/10.5194/sp-4-osr8-6-2024, 2024
Short summary
Short summary
Satellite altimetry shows that daily mean significant wave heights (SWHs) and extreme SWHs have increased in the Southern Ocean, the South Atlantic, and the southern Indian Ocean over the last 2 decades. In winter in the North Atlantic, SWH has increased north of 45°N and decreased south of 45°N. SWHs likely to be exceeded every 100 years have also increased in the North Atlantic and the eastern tropical Pacific. However, this study also revealed the need for longer and more consistent series.
Angelique Melet, Begoña Pérez Gómez, and Pascal Matte
State Planet Discuss., https://doi.org/10.5194/sp-2024-27, https://doi.org/10.5194/sp-2024-27, 2024
Preprint under review for SP
Short summary
Short summary
Forecasting the sea level is crucial for supporting coastal management through early warning systems and for adopting adaptation strategies to climate changes impacts. We provide here an overview on models commonly used for sea level forecasting, that can be based on storm surge models or ocean circulation ones, integrated on structured or unstructured grids, including an outlook on new approaches based on ensemble methods.
Alisée A. Chaigneau, Melisa Menéndez, Marta Ramírez-Pérez, and Alexandra Toimil
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-100, https://doi.org/10.5194/nhess-2024-100, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
Tropical cyclones drive extreme sea levels, causing large storm surges due to low atmospheric pressure and strong winds. This study explores factors affecting the numerical modelling of storm surges induced by hurricanes in the tropical Atlantic. Two ocean models are compared and used for sensitivity experiments. ERA5 atmospheric reanalysis forcing generally improves storm surge estimates compared to parametric wind models. Including ocean circulations reduces errors in storm surge estimates.
Alisée A. Chaigneau, Angélique Melet, Aurore Voldoire, Guillaume Reffray, Stéphane Law-Chune, and Lotfi Aouf
EGUsphere, https://doi.org/10.5194/egusphere-2024-1061, https://doi.org/10.5194/egusphere-2024-1061, 2024
Short summary
Short summary
Climate change induced sea level rise increases the frequency of extreme sea levels. This paper presents regional projections of extreme sea levels for western Europe produced with high-resolution models (~6 km). Unlike commonly used coarse-scale global climate models, this approach allows to simulate key processes driving coastal sea level variations such as long-term sea level rise, tides, storm surges induced by low atmospheric surface pressure and winds, waves, and their interactions.
Sylvain Cailleau, Laurent Bessières, Léonel Chiendje, Flavie Dubost, Guillaume Reffray, Jean-Michel Lellouche, Simon van Gennip, Charly Régnier, Marie Drevillon, Marc Tressol, Matthieu Clavier, Julien Temple-Boyer, and Léo Berline
Geosci. Model Dev., 17, 3157–3173, https://doi.org/10.5194/gmd-17-3157-2024, https://doi.org/10.5194/gmd-17-3157-2024, 2024
Short summary
Short summary
In order to improve Sargassum drift forecasting in the Caribbean area, drift models can be forced by higher-resolution ocean currents. To this goal a 3 km resolution regional ocean model has been developed. Its assessment is presented with a particular focus on the reproduction of fine structures representing key features of the Caribbean region dynamics and Sargassum transport. The simulated propagation of a North Brazil Current eddy and its dissipation was found to be quite realistic.
Marie-Noëlle Bouin, Cindy Lebeaupin Brossier, Sylvie Malardel, Aurore Voldoire, and César Sauvage
Geosci. Model Dev., 17, 117–141, https://doi.org/10.5194/gmd-17-117-2024, https://doi.org/10.5194/gmd-17-117-2024, 2024
Short summary
Short summary
In numerical models, the turbulent exchanges of heat and momentum at the air–sea interface are not represented explicitly but with parameterisations depending on the surface parameters. A new parameterisation of turbulent fluxes (WASP) has been implemented in the surface model SURFEX v8.1 and validated on four case studies. It combines a close fit to observations including cyclonic winds, a dependency on the wave growth rate, and the possibility of being used in atmosphere–wave coupled models.
Stefania A. Ciliberti, Enrique Alvarez Fanjul, Jay Pearlman, Kirsten Wilmer-Becker, Pierre Bahurel, Fabrice Ardhuin, Alain Arnaud, Mike Bell, Segolene Berthou, Laurent Bertino, Arthur Capet, Eric Chassignet, Stefano Ciavatta, Mauro Cirano, Emanuela Clementi, Gianpiero Cossarini, Gianpaolo Coro, Stuart Corney, Fraser Davidson, Marie Drevillon, Yann Drillet, Renaud Dussurget, Ghada El Serafy, Katja Fennel, Marcos Garcia Sotillo, Patrick Heimbach, Fabrice Hernandez, Patrick Hogan, Ibrahim Hoteit, Sudheer Joseph, Simon Josey, Pierre-Yves Le Traon, Simone Libralato, Marco Mancini, Pascal Matte, Angelique Melet, Yasumasa Miyazawa, Andrew M. Moore, Antonio Novellino, Andrew Porter, Heather Regan, Laia Romero, Andreas Schiller, John Siddorn, Joanna Staneva, Cecile Thomas-Courcoux, Marina Tonani, Jose Maria Garcia-Valdecasas, Jennifer Veitch, Karina von Schuckmann, Liying Wan, John Wilkin, and Romane Zufic
State Planet, 1-osr7, 2, https://doi.org/10.5194/sp-1-osr7-2-2023, https://doi.org/10.5194/sp-1-osr7-2-2023, 2023
Thibault Guinaldo, Aurore Voldoire, Robin Waldman, Stéphane Saux Picart, and Hervé Roquet
Ocean Sci., 19, 629–647, https://doi.org/10.5194/os-19-629-2023, https://doi.org/10.5194/os-19-629-2023, 2023
Short summary
Short summary
In the summer of 2022, France experienced a series of unprecedented heatwaves. This study is the first to examine the response of sea surface temperatures to these events, using spatial operational data and attributing the observed abnormally warm SSTs to atmospheric forcings. The findings of this study underscore the critical need for an efficient and sustainable operational system to monitor alterations that threaten the oceans in the context of climate change.
Aurore Voldoire, Romain Roehrig, Hervé Giordani, Robin Waldman, Yunyan Zhang, Shaocheng Xie, and Marie-Nöelle Bouin
Geosci. Model Dev., 15, 3347–3370, https://doi.org/10.5194/gmd-15-3347-2022, https://doi.org/10.5194/gmd-15-3347-2022, 2022
Short summary
Short summary
A single-column version of the global climate model CNRM-CM6-1 has been designed to ease development and validation of the model physics at the air–sea interface in a simplified environment. This model is then used to assess the ability to represent the sea surface temperature diurnal cycle. We conclude that the sea surface temperature diurnal variability is reasonably well represented in CNRM-CM6-1 with a 1 h coupling time step and the upper-ocean model resolution of 1 m.
Alisée A. Chaigneau, Guillaume Reffray, Aurore Voldoire, and Angélique Melet
Geosci. Model Dev., 15, 2035–2062, https://doi.org/10.5194/gmd-15-2035-2022, https://doi.org/10.5194/gmd-15-2035-2022, 2022
Short summary
Short summary
Climate-change-induced sea level rise is a major threat for coastal and low-lying regions. Projections of coastal sea level changes are thus of great interest for coastal risk assessment and have significantly developed in recent years. In this paper, the objective is to provide high-resolution (6 km) projections of sea level changes in the northeastern Atlantic region bordering western Europe. For that purpose, a regional model is used to refine existing coarse global projections.
Marzieh H. Derkani, Alberto Alberello, Filippo Nelli, Luke G. Bennetts, Katrin G. Hessner, Keith MacHutchon, Konny Reichert, Lotfi Aouf, Salman Khan, and Alessandro Toffoli
Earth Syst. Sci. Data, 13, 1189–1209, https://doi.org/10.5194/essd-13-1189-2021, https://doi.org/10.5194/essd-13-1189-2021, 2021
Short summary
Short summary
The Southern Ocean has a profound impact on the Earth's climate system. Its strong winds, intense currents, and fierce waves are critical components of the air–sea interface. The scarcity of observations in this remote region hampers the comprehension of fundamental physics, the accuracy of satellite sensors, and the capabilities of prediction models. To fill this gap, a unique data set of simultaneous observations of winds, surface currents, and ocean waves in the Southern Ocean is presented.
Claudia Tebaldi, Kevin Debeire, Veronika Eyring, Erich Fischer, John Fyfe, Pierre Friedlingstein, Reto Knutti, Jason Lowe, Brian O'Neill, Benjamin Sanderson, Detlef van Vuuren, Keywan Riahi, Malte Meinshausen, Zebedee Nicholls, Katarzyna B. Tokarska, George Hurtt, Elmar Kriegler, Jean-Francois Lamarque, Gerald Meehl, Richard Moss, Susanne E. Bauer, Olivier Boucher, Victor Brovkin, Young-Hwa Byun, Martin Dix, Silvio Gualdi, Huan Guo, Jasmin G. John, Slava Kharin, YoungHo Kim, Tsuyoshi Koshiro, Libin Ma, Dirk Olivié, Swapna Panickal, Fangli Qiao, Xinyao Rong, Nan Rosenbloom, Martin Schupfner, Roland Séférian, Alistair Sellar, Tido Semmler, Xiaoying Shi, Zhenya Song, Christian Steger, Ronald Stouffer, Neil Swart, Kaoru Tachiiri, Qi Tang, Hiroaki Tatebe, Aurore Voldoire, Evgeny Volodin, Klaus Wyser, Xiaoge Xin, Shuting Yang, Yongqiang Yu, and Tilo Ziehn
Earth Syst. Dynam., 12, 253–293, https://doi.org/10.5194/esd-12-253-2021, https://doi.org/10.5194/esd-12-253-2021, 2021
Short summary
Short summary
We present an overview of CMIP6 ScenarioMIP outcomes from up to 38 participating ESMs according to the new SSP-based scenarios. Average temperature and precipitation projections according to a wide range of forcings, spanning a wider range than the CMIP5 projections, are documented as global averages and geographic patterns. Times of crossing various warming levels are computed, together with benefits of mitigation for selected pairs of scenarios. Comparisons with CMIP5 are also discussed.
Romain Rainaud, Lotfi Aouf, Alice Dalphinet, Marcos Garcia Sotillo, Enrique Alvarez-Fanjul, Guillaume Reffray, Bruno Levier, Stéphane LawChune, Pablo Lorente, and Cristina Toledano
Ocean Sci. Discuss., https://doi.org/10.5194/os-2018-165, https://doi.org/10.5194/os-2018-165, 2019
Publication in OS not foreseen
Short summary
Short summary
This paper highlight the adjustment of the wave physics in order to improve the surface stress and thus the ocean/wave coupling dedicated to Iberian Biscay and Ireland domain. The validation with altimeters wave data during the year 2014 has shown a slight improvement of the significant wave height. Statistical analysis of the results of the new and old versions of the wave model MFWAM is examined for the three main ocean regions of the IBI domain.
Romain Rainaud, Lotfi Aouf, Alice Dalphinet, Marcos Garcia Sotillo, Enrique Alvarez-Fanjul, Guillaume Reffray, Bruno Levier, Stéphane Law-Chune, Pablo Lorente, and Cristina Toledano
Ocean Sci. Discuss., https://doi.org/10.5194/os-2018-167, https://doi.org/10.5194/os-2018-167, 2019
Publication in OS not foreseen
Short summary
Short summary
This work highlights the relevance of coupling wave model with ocean model in order to improve key surface ocean parameters and in general to better describe the ocean circulation at small and large scale.
The results focus on the Iberian Biscay and Ireland ocean region with fine grid resolution of 2.5 km for the ocean model. The main conclusion is the improvement of wave physics induces a better ocean mixing at the upper layer and a positive impact for sea surface height in storm events.
Daniel T. McCoy, Paul R. Field, Gregory S. Elsaesser, Alejandro Bodas-Salcedo, Brian H. Kahn, Mark D. Zelinka, Chihiro Kodama, Thorsten Mauritsen, Benoit Vanniere, Malcolm Roberts, Pier L. Vidale, David Saint-Martin, Aurore Voldoire, Rein Haarsma, Adrian Hill, Ben Shipway, and Jonathan Wilkinson
Atmos. Chem. Phys., 19, 1147–1172, https://doi.org/10.5194/acp-19-1147-2019, https://doi.org/10.5194/acp-19-1147-2019, 2019
Short summary
Short summary
The largest single source of uncertainty in the climate sensitivity predicted by global climate models is how much low-altitude clouds change as the climate warms. Models predict that the amount of liquid within and the brightness of low-altitude clouds increase in the extratropics with warming. We show that increased fluxes of moisture into extratropical storms in the midlatitudes explain the majority of the observed trend and the modeled increase in liquid water within these storms.
Émilie Bresson, Philippe Arbogast, Lotfi Aouf, Denis Paradis, Anna Kortcheva, Andrey Bogatchev, Vasko Galabov, Marieta Dimitrova, Guillaume Morvan, Patrick Ohl, Boryana Tsenova, and Florence Rabier
Nat. Hazards Earth Syst. Sci., 18, 997–1012, https://doi.org/10.5194/nhess-18-997-2018, https://doi.org/10.5194/nhess-18-997-2018, 2018
Short summary
Short summary
Winds, waves and storm surges can inflict severe damage in coastal areas. To improve adaptability for such events, a better understanding of storm-induced coastal flooding events is necessary. This article is dedicated to evaluating wave and surge reconstruction methods based on available reanalyses data for French and Bulgarian coasts. This study shows that the wave and surge models should be forced by downscaled winds rather than modelled reanalyses.
Aurore Voldoire, Bertrand Decharme, Joris Pianezze, Cindy Lebeaupin Brossier, Florence Sevault, Léo Seyfried, Valérie Garnier, Soline Bielli, Sophie Valcke, Antoinette Alias, Mickael Accensi, Fabrice Ardhuin, Marie-Noëlle Bouin, Véronique Ducrocq, Stéphanie Faroux, Hervé Giordani, Fabien Léger, Patrick Marsaleix, Romain Rainaud, Jean-Luc Redelsperger, Evelyne Richard, and Sébastien Riette
Geosci. Model Dev., 10, 4207–4227, https://doi.org/10.5194/gmd-10-4207-2017, https://doi.org/10.5194/gmd-10-4207-2017, 2017
Short summary
Short summary
This study presents the principles of the new coupling interface based on the SURFEX multi-surface model and the OASIS3-MCT coupler. As SURFEX can be plugged into several atmospheric models, it can be used in a wide range of applications. The objective of this development is to build and share a common structure for the atmosphere–surface coupling of all these applications, involving on the one hand atmospheric models and on the other hand ocean, ice, hydrology, and wave models.
Roland Séférian, Christine Delire, Bertrand Decharme, Aurore Voldoire, David Salas y Melia, Matthieu Chevallier, David Saint-Martin, Olivier Aumont, Jean-Christophe Calvet, Dominique Carrer, Hervé Douville, Laurent Franchistéguy, Emilie Joetzjer, and Séphane Sénési
Geosci. Model Dev., 9, 1423–1453, https://doi.org/10.5194/gmd-9-1423-2016, https://doi.org/10.5194/gmd-9-1423-2016, 2016
Short summary
Short summary
This paper presents the first IPCC-class Earth system model developed at Centre National de Recherches Météorologiques (CNRM-ESM1). We detail how the various carbon reservoirs were initialized and analyze the behavior of the carbon cycle and its prominent physical drivers, comparing model results to the most up-to-date climate and carbon cycle dataset over the latest decades.
G. Reffray, R. Bourdalle-Badie, and C. Calone
Geosci. Model Dev., 8, 69–86, https://doi.org/10.5194/gmd-8-69-2015, https://doi.org/10.5194/gmd-8-69-2015, 2015
Y. Drillet, J. M. Lellouche, B. Levier, M. Drévillon, O. Le Galloudec, G. Reffray, C. Regnier, E. Greiner, and M. Clavier
Ocean Sci., 10, 1013–1029, https://doi.org/10.5194/os-10-1013-2014, https://doi.org/10.5194/os-10-1013-2014, 2014
P. Huszar, H. Teyssèdre, M. Michou, A. Voldoire, D. J. L. Olivié, D. Saint-Martin, D. Cariolle, S. Senesi, D. Salas Y Melia, A. Alias, F. Karcher, P. Ricaud, and T. Halenka
Atmos. Chem. Phys., 13, 10027–10048, https://doi.org/10.5194/acp-13-10027-2013, https://doi.org/10.5194/acp-13-10027-2013, 2013
V. Masson, P. Le Moigne, E. Martin, S. Faroux, A. Alias, R. Alkama, S. Belamari, A. Barbu, A. Boone, F. Bouyssel, P. Brousseau, E. Brun, J.-C. Calvet, D. Carrer, B. Decharme, C. Delire, S. Donier, K. Essaouini, A.-L. Gibelin, H. Giordani, F. Habets, M. Jidane, G. Kerdraon, E. Kourzeneva, M. Lafaysse, S. Lafont, C. Lebeaupin Brossier, A. Lemonsu, J.-F. Mahfouf, P. Marguinaud, M. Mokhtari, S. Morin, G. Pigeon, R. Salgado, Y. Seity, F. Taillefer, G. Tanguy, P. Tulet, B. Vincendon, V. Vionnet, and A. Voldoire
Geosci. Model Dev., 6, 929–960, https://doi.org/10.5194/gmd-6-929-2013, https://doi.org/10.5194/gmd-6-929-2013, 2013
Cited articles
Aarnes, O. J., Reistad, M., Breivik, Ø., Bitner-Gregersen, E., Ingolf
Eide, L., Gramstad, O., Magnusson, A. K., Natvig, B., and Vanem, E.:
Projected changes in significant wave height toward the end of the 21st
century: Northeast Atlantic: PROJECTED CHANGES IN WAVE HEIGHT, J. Geophys.
Res.-Oceans, 122, 3394–3403, https://doi.org/10.1002/2016JC012521, 2017.
Alari, V.: Multi-Scale Wind Wave Modeling in the Baltic Sea, PhD thesis, 2013.
Almar, R., Ranasinghe, R., Bergsma, E. W. J., Diaz, H., Melet, A., Papa, F.,
Vousdoukas, M., Athanasiou, P., Dada, O., Almeida, L. P., and Kestenare, E.:
A global analysis of extreme coastal water levels with implications for
potential coastal overtopping, Nat. Commun., 12, 3775,
https://doi.org/10.1038/s41467-021-24008-9, 2021.
Aouf, L. and Lefèvre, J.-M.: On the Impact of the Assimilation of
SARAL/AltiKa Wave Data in the Operational Wave Model MFWAM, Mar. Geod.,
38, 381–395, https://doi.org/10.1080/01490419.2014.1001050, 2015.
Ardhuin, F., Rogers, E., Babanin, A. V., Filipot, J.-F., Magne, R., Roland,
A., Westhuysen, A. van der, Queffeulou, P., Lefevre, J.-M., Aouf, L., and
Collard, F.: Semiempirical Dissipation Source Functions for Ocean Waves.
Part I: Definition, Calibration, and Validation, J. Phys.
Oceanogr., 40, 1917–1941, https://doi.org/10.1175/2010JPO4324.1, 2010.
Ardhuin, F., Roland, A., Dumas, F., Bennis, A.-C., Sentchev, A., Forget, P.,
Wolf, J., Girard, F., Osuna, P., and Benoit, M.: Numerical Wave Modeling in
Conditions with Strong Currents: Dissipation, Refraction, and Relative Wind,
J. Phys. Oceanogr., 42, 2101–2120,
https://doi.org/10.1175/JPO-D-11-0220.1, 2012.
Arns, A., Dangendorf, S., Jensen, J., Talke, S., Bender, J., and
Pattiaratchi, C.: Sea-level rise induced amplification of coastal protection
design heights, Sci. Rep., 7, 40171, https://doi.org/10.1038/srep40171, 2017.
Battjes, J. A. and Janssen, J. P. F. M.: Energy loss and set-up due to
breaking random waves, in: Proceedings of 16th Conference on Coastal
Engineering, Hamburg, Germany, 27 August–3 September, 569–587,
https://doi.org/10.1061/9780872621909.034, 1978.
Bergsma, E. W. J., Almar, R., Anthony, E. J., Garlan, T., and Kestenare, E.:
Wave variability along the world's continental shelves and coasts:
Monitoring opportunities from satellite Earth observation, Adv. Space
Res., 69, 3236–3244, https://doi.org/10.1016/j.asr.2022.02.047, 2022.
Bidlot, J.: Present status of wave forecasting at ECMWF, in: Workshop on
Ocean Waves. ECMWF, Reading, United Kingdom, https://www.ecmwf.int/sites/default/files/elibrary/2012/8234-present-status-wave-forecasting-ecmwf.pdf (last access: 11 July 2023), 2012.
Bidlot, J., Janssen, P., and Abdalla, S.: A revised formulation of ocean
wave dissipation and its model impact, Technical report, 27, https://doi.org/10.21957/m97gmhqze, 2007.
Bonaduce, A., Staneva, J., Grayek, S., Bidlot, J.-R., and Breivik, Ø.:
Sea-state contributions to sea-level variability in the European Seas, Ocean
Dynam., 70, 1547–1569, https://doi.org/10.1007/s10236-020-01404-1, 2020.
Bruciaferri, D., Tonani, M., Lewis, H. W., Siddorn, J. R., Saulter, A.,
Castillo Sanchez, J. M., Valiente, N. G., Conley, D., Sykes, P., Ascione,
I., and McConnell, N.: The Impact of Ocean-Wave Coupling on the Upper Ocean
Circulation During Storm Events, J. Geophys. Res.-Oceans,
126, e2021JC017343, https://doi.org/10.1029/2021JC017343, 2021.
Calvino, C., Dabrowski, T., and Dias, F.: A study of the wave effects on the
current circulation in Galway Bay, using the numerical model COAWST, Coast.
Eng., 180, 104251, https://doi.org/10.1016/j.coastaleng.2022.104251,
2022.
Carvalho, D., Rocha, A., Costoya, X., deCastro, M., and Gómez-Gesteira,
M.: Wind energy resource over Europe under CMIP6 future climate projections:
What changes from CMIP5 to CMIP6, Renew. Sust. Energ. Rev.,
151, 111594, https://doi.org/10.1016/j.rser.2021.111594, 2021.
Casas-Prat, M., Wang, X. L., and Swart, N.: CMIP5-based global wave climate
projections including the entire Arctic Ocean, Ocean Model., 123, 66–85,
https://doi.org/10.1016/j.ocemod.2017.12.003, 2018.
Chaigneau, A. A., Reffray, G., Voldoire, A., and Melet, A.: IBI-CCS: a regional high-resolution model to simulate sea level in western Europe, Geosci. Model Dev., 15, 2035–2062, https://doi.org/10.5194/gmd-15-2035-2022, 2022.
Chen, G., Chapron, B., Ezraty, R., and Vandemark, D.: A Global View of Swell
and Wind Sea Climate in the Ocean by Satellite Altimeter and Scatterometer,
J. Atmos. Ocean. Tech., 19, 1849–1859,
https://doi.org/10.1175/1520-0426(2002)019<1849:AGVOSA>2.0.CO;2, 2002.
Chini, N., Stansby, P., Leake, J., Wolf, J., Roberts-Jones, J., and Lowe,
J.: The impact of sea level rise and climate change on inshore wave climate:
A case study for East Anglia (UK), Coast. Eng., 57, 973–984,
https://doi.org/10.1016/j.coastaleng.2010.05.009, 2010.
Copernicus: Reanalysis data, Marine Data Store [data set], https://doi.org/10.48670/moi-00030, 2022a.
Copernicus: Observational data, Marine Data Store [data set], https://doi.org/10.13155/53381, 2022b.
Dodet, G., Bertin, X., Bouchette, F., Gravelle, M., Testut, L., and
Wöppelmann, G.: Characterization of Sea-level Variations Along the
Metropolitan Coasts of France: Waves, Tides, Storm Surges and Long-term
Changes, J. Coast. Res., 88, 10–24,
https://doi.org/10.2112/SI88-003.1, 2019.
ECMWF: IFS Documentation CY40R1, ECMWF, https://doi.org/10.21957/f56vvey1x,
2014.
ESGF: historical
data, http://esgf-data.dkrz.de/search/cmip6-dkrz/?mip_era= 35CMIP6&activity_id=CMIP&institution_id=CNRM-CERFACS&source_id=CNRM-CM6-1-HR&experiment_id=historical (last access: 11 July 2023), 2022a.
ESGF: piControl data, http://esgf-data.dkrz.de/search/cmip6-dkrz/?mip_era=CMIP6&activity_id=CMIP&institution_id=CNRM-CERFACS&source_id=CNRM-CM6-1-HR&experiment_id=piControl (last access: 11 July 2023), 2022b.
ESGF: ssp585 data, http://esgf-data.dkrz.de/search/cmip6-dkrz/?mip_era=CMIP6&activity_id=ScenarioMIP&institution_id=CNRM-CERFACS&source_id=CNRM-CM6-1-HR&experiment_id=ssp585 (last access: 11 July 2023), 2022c.
Fortunato, A. B., Oliveira, A., Rogeiro, J., Tavares da Costa, R., Gomes, J.
L., Li, K., de Jesus, G., Freire, P., Rilo, A., Mendes, A., Rodrigues, M.,
and Azevedo, A.: Operational forecast framework applied to extreme sea
levels at regional and local scales, J. Oper. Oceanogr.,
10, 1–15, https://doi.org/10.1080/1755876X.2016.1255471, 2017.
Fox-Kemper, B., Hewitt, H. T., Xiao, C., Aðalgeirsdóttir, G.,
Drijfhout, S. S., Edwards, T. L., Golledge, N. R., Hemer, M., Kopp, R. E.,
Krinner, G., Mix, A., Notz, D., Nowicki, S., Nurhati, I. S., Ruiz, L.,
Sallée, J.-B., Slangen, A. B. A., and Yu, Y.: Ocean, Cryosphere and Sea
Level Change, in: Climate Change 2021: The Physical Science Basis.
Contribution of Working Group I to the Sixth Assessment Report of the
Intergovernmental Panel on Climate Change, edited by: MassonDelmotte, V., Zhai, P.,
Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y.,
Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews,
J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press,
Cambridge, United Kingdom and New York, NY, USA, 1211–1362, https://doi.org/10.1017/9781009157896.011, 2021.
García San Martín, L., Barrera, E., Toledano, C., Amo, A., Aouf, L., and
Sotillo, M.: Product User Manual (CMEMS-IBI-PUM-005-006), available
at: https://catalogue.marine.copernicus.eu/documents/PUM/CMEMS-IBI-PUM-005-006.pdf
(last access: 16 December 2022), 2021.
Haigh, I. D., Pickering, M. D., Green, J. A. M., Arbic, B. K., Arns, A., Dangendorf, S., Hill, D. F., Horsburgh, K., Howard, T., Idier, D., Jay, D. A., Jänicke, L., Lee, S. B., Müller, M., Schindelegger, M., Talke, S. A., Wilmes, S.-B., and Woodworth, P. L.: The tides they are a-changin': A comprehensive review of past and future nonastronomical changes in tides, their driving mechanisms and future implications, Rev. Geophys., 57, e2018RG000636, https://doi.org/10.1029/2018RG000636, 2020.
Hasselmann, S., Hasselmann, K., Allender, J. H., and Barnett, T. P.:
Computations and parameterizations of the nonlinear energy transfer in a
gravity-wave spectrum. Part II: Parameterizations of the nonlinear energy
transfer for application in wave models, J. Phys. Oceanogr.,
15, 1378–1391, https://doi.org/10.1175/1520-0485(1985)015<1378:CAPOTN>2.0.CO;2, 1985.
Hemer, M. A., Fan, Y., Mori, N., Semedo, A., and Wang, X. L.: Projected
changes in wave climate from a multi-model ensemble, Nat. Clim. Change, 3,
471–476, https://doi.org/10.1038/nclimate1791, 2013.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D.,
Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P.,
Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková,
M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay,
P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5
global reanalysis, Q. J. Roy. Meteor. Soc.,
146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.
Hoeke, R. K., McInnes, K. L., and O'Grady, J. G.: Wind and Wave Setup
Contributions to Extreme Sea Levels at a Tropical High Island: A Stochastic
Cyclone Simulation Study for Apia, Samoa, J. Mar. Sci.
Eng., 3, 1117–1135, https://doi.org/10.3390/jmse3031117, 2015.
Idier, D., Bertin, X., Thompson, P., and Pickering, M. D.: Interactions
Between Mean Sea Level, Tide, Surge, Waves and Flooding: Mechanisms and
Contributions to Sea Level Variations at the Coast, Surv. Geophys., 40,
1603–1630, https://doi.org/10.1007/s10712-019-09549-5, 2019.
Law-Chune, S., Aouf, L., Dalphinet, A., Levier, B., Drillet, Y., and
Drevillon, M.: WAVERYS: a CMEMS global wave reanalysis during the altimetry
period, Ocean Dynam., 71, 357–378,
https://doi.org/10.1007/s10236-020-01433-w, 2021.
Levier, B., Lorente, P., Reffray, G., and Sotillo, M.: Quality Information Document
(CMEMS-IBI-QUID-005-002), https://catalogue.marine.copernicus.eu/documents/QUID/CMEMS-IBI-QUID-005-002.pdf
(last access: 16 December 2022), 2020.
Lewis, M. J., Palmer, T., Hashemi, R., Robins, P., Saulter, A., Brown, J.,
Lewis, H., and Neill, S.: Wave-tide interaction modulates nearshore wave
height, Ocean Dynam., 69, 367–384,
https://doi.org/10.1007/s10236-018-01245-z, 2019.
Lobeto, H., Menendez, M., and Losada, I. J.: Future behavior of wind wave
extremes due to climate change, Sci. Rep., 11, 7869,
https://doi.org/10.1038/s41598-021-86524-4, 2021.
Longuet-Higgins, M. S. and Stewart, R. W.: Radiation stresses in water
waves; a physical discussion, with applications, Deep Sea Research and
Oceanographic Abstracts, 11, 529–562,
https://doi.org/10.1016/0011-7471(64)90001-4, 1964.
Lozano, I., Devoy, R. J. N., May, W., and Andersen, U.: Storminess and
vulnerability along the Atlantic coastlines of Europe: analysis of storm
records and of a greenhouse gases induced climate scenario, Mar. Geol.,
210, 205–225, https://doi.org/10.1016/j.margeo.2004.05.026, 2004.
Masselink, G., Castelle, B., Scott, T., Dodet, G., Suanez, S., Jackson, D.,
and Floc'h, F.: Extreme wave activity during 2013/2014 winter and
morphological impacts along the Atlantic coast of Europe, Geophys.
Res. Lett., 43, 2135–2143, https://doi.org/10.1002/2015GL067492,
2016.
McMichael, C., Dasgupta, S., Ayeb-Karlsson, S., and Kelman, I.: A review of
estimating population exposure to sea-level rise and the relevance for
migration, Environ. Res. Lett., 15, 123005,
https://doi.org/10.1088/1748-9326/abb398, 2020.
Melet, A., Almar, R., Hemer, M., Cozannet, G. L., Meyssignac, B., and
Ruggiero, P.: Contribution of Wave Setup to Projected Coastal Sea Level
Changes, J. Geophys. Res.-Oceans, 125, e2020JC016078,
https://doi.org/10.1029/2020JC016078, 2020a.
Melet, A., Teatini, P., Le Cozannet, G., Jamet, C., Conversi, A.,
Benveniste, J., and Almar, R.: Earth Observations for Monitoring Marine
Coastal Hazards and Their Drivers, Surv. Geophys., 41, 1489–1534,
https://doi.org/10.1007/s10712-020-09594-5, 2020b.
Mentaschi, L., Vousdoukas, M., Voukouvalas, E., Sartini, L., Feyen, L., Besio, G., and Alfieri, L.: The transformed-stationary approach: a generic and simplified methodology for non-stationary extreme value analysis, Hydrol. Earth Syst. Sci., 20, 3527–3547, https://doi.org/10.5194/hess-20-3527-2016, 2016.
Meucci, A., Young, I. R., Hemer, M., Kirezci, E., and Ranasinghe, R.:
Projected 21st century changes in extreme wind-wave events, Sci.
Adv., 26, 24, https://doi.org/10.1126/sciadv.aaz7295, 2020.
Morim, J., Hemer, M., Cartwright, N., Strauss, D., and Andutta, F.: On the
concordance of 21st century wind-wave climate projections, Glob.
Planet. Change, 167, 160–171,
https://doi.org/10.1016/j.gloplacha.2018.05.005, 2018.
Morim, J., Hemer, M., Wang, X. L., Cartwright, N., Trenham, C., Semedo, A.,
Young, I., Bricheno, L., Camus, P., Casas-Prat, M., Erikson, L., Mentaschi,
L., Mori, N., Shimura, T., Timmermans, B., Aarnes, O., Breivik, Ø.,
Behrens, A., Dobrynin, M., Menendez, M., Staneva, J., Wehner, M., Wolf, J.,
Kamranzad, B., Webb, A., Stopa, J., and Andutta, F.: Robustness and
uncertainties in global multivariate wind-wave climate projections, Nat.
Clim. Change, 9, 711–718, https://doi.org/10.1038/s41558-019-0542-5, 2019.
Morim, J., Vitousek, S., Hemer, M., Reguero, B., Erikson, L., Casas-Prat,
M., Wang, X. L., Semedo, A., Mori, N., Shimura, T., Mentaschi, L., and
Timmermans, B.: Global-scale changes to extreme ocean wave events due to
anthropogenic warming, Environ. Res. Lett., 16, 074056,
https://doi.org/10.1088/1748-9326/ac1013, 2021.
Morim, J., Wahl, T., Vitousek, S., Santamaria-Aguilar, S., Young, I., and
Hemer, M.: Understanding uncertainties in contemporary and future extreme
wave events for broad-scale impact and adaptation planning, Sci.
Adv., 9, eade3170, https://doi.org/10.1126/sciadv.ade3170, 2023.
Neumann, B., Vafeidis, A. T., Zimmermann, J., and Nicholls, R. J.: Future
Coastal Population Growth and Exposure to Sea-Level Rise and Coastal
Flooding – A Global Assessment, PLOS ONE, 10, e0118571,
https://doi.org/10.1371/journal.pone.0118571, 2015.
NOAA National Geophysical Data Center: 2-minute Gridded Global Relief Data (ETOPO2) v2, NOAA National Centers for Environmental Information [data set], https://doi.org/10.7289/V5J1012Q, 2006.
O'Dea, E., Bell, M. J., Coward, A., and Holt, J.: Implementation and
assessment of a flux limiter based wetting and drying scheme in NEMO, Ocean
Model., 155, 101708, https://doi.org/10.1016/j.ocemod.2020.101708, 2020.
O'Neill, B. C., Tebaldi, C., van Vuuren, D. P., Eyring, V., Friedlingstein, P., Hurtt, G., Knutti, R., Kriegler, E., Lamarque, J.-F., Lowe, J., Meehl, G. A., Moss, R., Riahi, K., and Sanderson, B. M.: The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6, Geosci. Model Dev., 9, 3461–3482, https://doi.org/10.5194/gmd-9-3461-2016, 2016.
Pickering, M. D., Horsburgh, K. J., Blundell, J. R., Hirschi, J. J.-M.,
Nicholls, R. J., Verlaan, M., and Wells, N. C.: The impact of future
sea-level rise on the global tides, Cont. Shelf Res., 142, 50–68,
https://doi.org/10.1016/j.csr.2017.02.004, 2017.
Ranasinghe, R.: Assessing climate change impacts on open sandy coasts: A
review, Earth-Sci. Rev., 160, 320–332,
https://doi.org/10.1016/j.earscirev.2016.07.011, 2016.
Saint-Martin, D., Geoffroy, O., Voldoire, A., Cattiaux, J., Brient, F.,
Chauvin, F., Chevallier, M., Colin, J., Decharme, B., Delire, C., Douville,
H., Guérémy, J.-F., Joetzjer, E., Ribes, A., Roehrig, R., Terray,
L., and Valcke, S.: Tracking Changes in Climate Sensitivity in CNRM Climate
Models, J. Adv. Model. Earth Sy., 13, 6,
https://doi.org/10.1029/2020ms002190, 2021.
Staneva, J., Grayek, S., Behrens, A., and Günther, H.: GCOAST: Skill
assessments of coupling wave and circulation models (NEMO-WAM), J. Phys.
Conf. Ser., 1730, 012071, https://doi.org/10.1088/1742-6596/1730/1/012071,
2021.
Stokes, K., Poate, T., Masselink, G., King, E., Saulter, A., and Ely, N.:
Forecasting coastal overtopping at engineered and naturally defended
coastlines, Coast. Eng., 164, 103827,
https://doi.org/10.1016/j.coastaleng.2020.103827, 2021.
Toledano, C., García San Martín, L., Barrera Rodríguez, E.,
Dalphinet, A., Ghantous, M., Aouf, L., Lorente, P., de Alfonso, M., and García
Sotillo, M.: Quality Information Document (CMEMS-IBI-QUID-005-006), https://catalogue.marine.copernicus.eu/documents/QUID/CMEMS-IBI-QUID-005-006.pdf
(last access: 16 December 2022), 2021.
The Wamdi Group: The WAM Model – A Third Generation Ocean Wave Prediction Model, J. Phys. Oceanogr., 18, 1775–1810, https://doi.org/10.1175/1520-0485(1988)018<1775:TWMTGO>2.0.CO;2, 1988.
Valiente, N. G., Masselink, G., Scott, T., Conley, D., and McCarroll, R. J.:
Role of waves and tides on depth of closure and potential for headland
bypassing, Mar. Geol., 407, 60–75,
https://doi.org/10.1016/j.margeo.2018.10.009, 2019.
Valiente, N. G., Saulter, A., Gomez, B., Bunney, C., Li, J.-G., Palmer, T., and Pequignet, C.: The Met Office operational wave forecasting system: the evolution of the regional and global models, Geosci. Model Dev., 16, 2515–2538, https://doi.org/10.5194/gmd-16-2515-2023, 2023.
Viitak, M., Maljutenko, I., Alari, V., Suursaar, Ü., Rikka, S., and
Lagemaa, P.: The impact of surface currents and sea level on the wave field
evolution during St. Jude storm in the eastern Baltic Sea, Oceanologia, 58,
176–186, https://doi.org/10.1016/j.oceano.2016.01.004, 2016.
Voldoire, A.: CNRM-CERFACS CNRM-CM6-1-HR model
output prepared for CMIP6 CMIP historical, Version
YYYYMMDD[1], Earth System Grid Federation [data set],
https://doi.org/10.22033/ESGF/CMIP6.4067, 2019a.
Voldoire, A.: CNRM-CERFACS CNRM-CM6-1-HR model
output prepared for CMIP6 CMIP piControl, Version
YYYYMMDD[1], Earth System Grid Federation [data set],
https://doi.org/10.22033/ESGF/CMIP6.4164, 2019b.
Voldoire, A.: CNRM-CERFACS CNRM-CM6-1-HR model
output prepared for CMIP6 ScenarioMIP ssp585, Version
YYYYMMDD[1], Earth System Grid Federation [data set],
https://doi.org/10.22033/ESGF/CMIP6.422, 2019c.
Voldoire, A., Saint-Martin, D., Sénési, S., Decharme, B., Alias, A.,
Chevallier, M., Colin, J., Guérémy, J.-F., Michou, M., Moine, M.-P.,
Nabat, P., Roehrig, R., Mélia, D. S. Y., Séférian, R., Valcke,
S., Beau, I., Belamari, S., Berthet, S., Cassou, C., Cattiaux, J., Deshayes,
J., Douville, H., Ethé, C., Franchistéguy, L., Geoffroy, O.,
Lévy, C., Madec, G., Meurdesoif, Y., Msadek, R., Ribes, A.,
Sanchez-Gomez, E., Terray, L., and Waldman, R.: Evaluation of CMIP6 DECK
Experiments With CNRM-CM6-1, J. Adv. Model. Earth Sy.,
11, 2177–2213, https://doi.org/10.1029/2019MS001683, 2019.
Wandres, M., Pattiaratchi, C., and Hemer, M. A.: Projected changes of the
southwest Australian wave climate under two atmospheric greenhouse gas
concentration pathways, Ocean Model., 117, 70–87,
https://doi.org/10.1016/j.ocemod.2017.08.002, 2017.
Wehde, H., Schuckmann, K. V., Pouliquen, S., Grouazel, A., Bartolome, T., Tintore,
J., De Alfonso Alonso-Munoyerro, M., Carval, T., Racapé, V., and the INSTAC
team: Quality Information Document (CMEMS-INS-QUID-013-030-036), https://catalogue.marine.copernicus.eu/documents/QUID/CMEMS-INS-QUID-013-030-036.pdf
(last access: 16 December 2022), 2021.
Wolff, C., Nikoletopoulos, T., Hinkel, J., and Vafeidis, A. T.: Future urban
development exacerbates coastal exposure in the Mediterranean, Sci. Rep., 10,
14420, https://doi.org/10.1038/s41598-020-70928-9, 2020.
Short summary
Wind waves and swells are major drivers of coastal environment changes and can drive coastal marine hazards such as coastal flooding. In this paper, by using numerical modeling along the European Atlantic coastline, we assess how present and future wave characteristics are impacted by sea level changes. For example, at the end of the century under the SSP5-8.5 climate change scenario, extreme significant wave heights are higher by up to +40 % due to the effect of tides and mean sea level rise.
Wind waves and swells are major drivers of coastal environment changes and can drive coastal...