Articles | Volume 19, issue 4
https://doi.org/10.5194/os-19-1083-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-19-1083-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The Weddell Gyre heat budget associated with the Warm Deep Water circulation derived from Argo floats
Physical Oceanography of the Polar Seas, Climate Sciences, Alfred Wegener Institute, Bremerhaven, Germany
Torsten Kanzow
Physical Oceanography of the Polar Seas, Climate Sciences, Alfred Wegener Institute, Bremerhaven, Germany
Department of Physics and Electrical Engineering, Bremen University,
Bremen, Germany
Olaf Boebel
Physical Oceanography of the Polar Seas, Climate Sciences, Alfred Wegener Institute, Bremerhaven, Germany
Myriel Vredenborg
Physical Oceanography of the Polar Seas, Climate Sciences, Alfred Wegener Institute, Bremerhaven, Germany
Volker Strass
Physical Oceanography of the Polar Seas, Climate Sciences, Alfred Wegener Institute, Bremerhaven, Germany
Rüdiger Gerdes
Physical Oceanography of the Polar Seas, Climate Sciences, Alfred Wegener Institute, Bremerhaven, Germany
Earth and Environmental Sciences, Jacobs University, Bremen, Germany
Related authors
K. A. Reeve, O. Boebel, T. Kanzow, V. Strass, G. Rohardt, and E. Fahrbach
Earth Syst. Sci. Data, 8, 15–40, https://doi.org/10.5194/essd-8-15-2016, https://doi.org/10.5194/essd-8-15-2016, 2016
Short summary
Short summary
We present spatially gridded, time-composite mapped data of temperature and salinity of the upper 2000m of the Weddell Gyre through the objective mapping of Argo float data. This was realized on fixed-pressure surfaces ranging from 50 to 2000 dbar. Pressure, temperature and salinity are also available at the level of the sub-surface temperature maximum, which represents the core of Warm Deep Water, the primary heat source of the Weddell Gyre. A detailed description of the methods is provided.
Céline Heuzé, Oliver Huhn, Maren Walter, Natalia Sukhikh, Salar Karam, Wiebke Körtke, Myriel Vredenborg, Klaus Bulsiewicz, Jürgen Sültenfuß, Ying-Chih Fang, Christian Mertens, Benjamin Rabe, Sandra Tippenhauer, Jacob Allerholt, Hailun He, David Kuhlmey, Ivan Kuznetsov, and Maria Mallet
Earth Syst. Sci. Data, 15, 5517–5534, https://doi.org/10.5194/essd-15-5517-2023, https://doi.org/10.5194/essd-15-5517-2023, 2023
Short summary
Short summary
Gases dissolved in the ocean water not used by the ecosystem (or "passive tracers") are invaluable to track water over long distances and investigate the processes that modify its properties. Unfortunately, especially so in the ice-covered Arctic Ocean, such gas measurements are sparse. We here present a data set of several passive tracers (anthropogenic gases, noble gases and their isotopes) collected over the full ocean depth, weekly, during the 1-year drift in the Arctic during MOSAiC.
Wilken-Jon von Appen, Volker H. Strass, Astrid Bracher, Hongyan Xi, Cora Hörstmann, Morten H. Iversen, and Anya M. Waite
Ocean Sci., 16, 253–270, https://doi.org/10.5194/os-16-253-2020, https://doi.org/10.5194/os-16-253-2020, 2020
Short summary
Short summary
Nutrient-rich water is moved to the surface near continental margins. Then it forms rich but difficult to observe spatial structures of physical and biological/biogeochemical properties. Here we present a high resolution (2.5 km) section through such features obtained in May 2018 with a vehicle towed behind a ship. Considering that such interactions of physics and biology are common in the ocean, they likely strongly influence the productivity of such systems and their role in CO2 uptake.
Hiroshi Sumata, Frank Kauker, Michael Karcher, Benjamin Rabe, Mary-Louise Timmermans, Axel Behrendt, Rüdiger Gerdes, Ursula Schauer, Koji Shimada, Kyoung-Ho Cho, and Takashi Kikuchi
Ocean Sci., 14, 161–185, https://doi.org/10.5194/os-14-161-2018, https://doi.org/10.5194/os-14-161-2018, 2018
Short summary
Short summary
We estimated spatial and temporal decorrelation scales of temperature and salinity in the Amerasian Basin in the Arctic Ocean. The estimated scales can be applied to representation error assessment in the ocean data assimilation system for the Arctic Ocean.
Amelie Driemel, Eberhard Fahrbach, Gerd Rohardt, Agnieszka Beszczynska-Möller, Antje Boetius, Gereon Budéus, Boris Cisewski, Ralph Engbrodt, Steffen Gauger, Walter Geibert, Patrizia Geprägs, Dieter Gerdes, Rainer Gersonde, Arnold L. Gordon, Hannes Grobe, Hartmut H. Hellmer, Enrique Isla, Stanley S. Jacobs, Markus Janout, Wilfried Jokat, Michael Klages, Gerhard Kuhn, Jens Meincke, Sven Ober, Svein Østerhus, Ray G. Peterson, Benjamin Rabe, Bert Rudels, Ursula Schauer, Michael Schröder, Stefanie Schumacher, Rainer Sieger, Jüri Sildam, Thomas Soltwedel, Elena Stangeew, Manfred Stein, Volker H Strass, Jörn Thiede, Sandra Tippenhauer, Cornelis Veth, Wilken-Jon von Appen, Marie-France Weirig, Andreas Wisotzki, Dieter A. Wolf-Gladrow, and Torsten Kanzow
Earth Syst. Sci. Data, 9, 211–220, https://doi.org/10.5194/essd-9-211-2017, https://doi.org/10.5194/essd-9-211-2017, 2017
Short summary
Short summary
Our oceans are always in motion – huge water masses are circulated by winds and by global seawater density gradients resulting from different water temperatures and salinities. Measuring temperature and salinity of the world's oceans is crucial e.g. to understand our climate. Since 1983, the research icebreaker Polarstern has been the basis of numerous water profile measurements in the Arctic and the Antarctic. We report on a unique collection of 33 years of polar salinity and temperature data.
T. Krumpen, R. Gerdes, C. Haas, S. Hendricks, A. Herber, V. Selyuzhenok, L. Smedsrud, and G. Spreen
The Cryosphere, 10, 523–534, https://doi.org/10.5194/tc-10-523-2016, https://doi.org/10.5194/tc-10-523-2016, 2016
Short summary
Short summary
We present an extensive data set of ground-based and airborne electromagnetic ice thickness measurements covering Fram Strait in summer between 2001 and 2012. An investigation of back trajectories of surveyed sea ice using satellite-based sea ice motion data allows us to examine the connection between thickness variability, ice age and source area. In addition, we determine across and along strait gradients in ice thickness and associated volume fluxes.
K. A. Reeve, O. Boebel, T. Kanzow, V. Strass, G. Rohardt, and E. Fahrbach
Earth Syst. Sci. Data, 8, 15–40, https://doi.org/10.5194/essd-8-15-2016, https://doi.org/10.5194/essd-8-15-2016, 2016
Short summary
Short summary
We present spatially gridded, time-composite mapped data of temperature and salinity of the upper 2000m of the Weddell Gyre through the objective mapping of Argo float data. This was realized on fixed-pressure surfaces ranging from 50 to 2000 dbar. Pressure, temperature and salinity are also available at the level of the sub-surface temperature maximum, which represents the core of Warm Deep Water, the primary heat source of the Weddell Gyre. A detailed description of the methods is provided.
K. Castro-Morales, R. Ricker, and R. Gerdes
The Cryosphere Discuss., https://doi.org/10.5194/tcd-9-5681-2015, https://doi.org/10.5194/tcd-9-5681-2015, 2015
Revised manuscript not accepted
Short summary
Short summary
The snow cover on Arctic sea ice is subject to vast changes due to a warming climate. In this study, we assess last decade changes of Arctic snow depth (SD) on sea-ice simulated by an Arctic general circulation model. North of 76 N, the model SD is on average 3 cm thicker than radar SD measurements. In the last decade, the mean regional SD decreased 21 % mainly in first-year ice areas. Surface snow sublimation and melt are the dominant processes responsible of this decline.
Cited articles
Akitomo, K.: Thermobaric deep convection, baroclinic instability, and their
roles in vertical heat transport around Maud Rise in the Weddell Sea, J.
Geophys. Res., 111, C09027, https://doi.org/10.1029/2005JC003284, 2006.
Argo: Argo float data and metadata from Global Data Assembly Centre (Argo
GDAC), SEANOE [data set], https://doi.org/10.17882/42182, 2000 (data available at: http://www.argo.ucsd.edu, http://argo.jcommops.org, last access: 11 August 2017).
Behrendt, A., Fahrbach, E., Hoppema, M., Rohardt, G., Boebel, O., Klatt, O.,
Wisotzki, A., and Witte, H.: Variations of winter water properties and sea
ice along the Greenwich Meridian on decadal time scales, Deep-Sea Res.
Pt. II, 58, 2524–2532, https://doi.org/10.1016/j.dsr2.2011.07.001, 2011.
Brown, P. J., Jullion, L., Landschützer, P., Bakker, D. C., Naveira
Garabato, A. C., Meredith, M. P., Torres-Valdés, S., Watson, A. J.,
Hoppema, M., Loose, B., and Jones, E. M.: Carbon dynamics of the Weddell Gyre,
Southern Ocean, Global Biogeochem. Cy., 29, 288–306, 2015.
Cisewski, B., Strass, V. H., and Prandke, H.: Upper-ocean vertical mixing in
the Antarctic Polar Front Zone, Deep-Sea Res. Pt. II, 52, 1087–1108,
https://doi.org/10.1016/j.dsr2.2005.01.010, 2005.
Cisewski, B., Strass, V. H., Losch, M., and Prandke, H.: Mixed layer analysis
of a mesoscale eddy in the Antarctic Polar Front Zone, J. Geophys. Res.,
113, C05017, https://doi.org/10.1029/2007JC004372, 2008.
Cisewski, B., Strass, V., and Leach, H.: Circulation and transport of water
masses in the Lazarev Sea, Antarctica, during summer and winter 2006, Deep-Sea Res. Pt. I, 58, 186–199, https://doi.org/10.1016/j.dsr.2010.12.001, 2011.
Cole, S. T., Wortham, C., Kunze, E., and Owens, W. B.: Eddy stirring and
horizontal diffusivity from Argo float observations: Geographic and depth
variability, Geophys. Res. Lett., 42, 3989–3997, https://doi.org/10.1002/2015GL063827,
2015.
Daae, K. L., Fer, I., and Abrahamsen, E. P.: Mixing on the continental slope of
the southern Weddell Sea, J. Geophys. Res.-Oceans, 114, C09018, https://doi.org/10.1029/2008JC005259, 2009.
Deacon, G.: The Weddell Gyre, Deep-Sea Res. Pt. I, 26, 981–995, 1979.
Donnelly, M., Leach, H., and Strass, V.: Modification of the deep
salinity-maximum in the Southern Ocean by circulation in the Antarctic
Circumpolar Current and the Weddell Gyre, Ocean Dynam., 67, 813–838,
2017.
Fahrbach, E., Hoppema, M., Rohardt, G., Schröder, M., and Wisotzki, A.:
Decadal-scale variations of water mass properties in the deep weddell sea,
Ocean Dynam., 54, 77–91, https://doi.org/10.1007/s10236-003-0082-3, 2004.
Fahrbach, E., Hoppema, M., Rohardt, G., Boebel, O., Klatt, O., and Wisotzki,
A.: Warming of deep and abyssal water masses along the greenwich meridian on
decadal time scales: The weddell gyre as a heat buffer, Deep Sea Res. Pt. II, 58, 2509–2523,
https://doi.org/10.1016/j.dsr2.2011.06.007, 2011.
Forryan, A., Martin, A. P., Srokosz, M. A., Popova, E. E., Painter, S. C., and
Renner, A. H.: A new observationally motivated Richardson number based mixing
parametrization for oceanic mesoscale flow, J. Geophys. Res.-Oceans,
118, 1405–1419, 2013.
Foster, T. D., Foldvik, A., and Middleton, J. H.: Mixing and bottom water
formation in the shelf break region of the southern weddell sea, Deep Sea
Res., 34, 1771–1794,
https://doi.org/10.1016/0198-0149(87)90053-7, 1987.
Gordon, A. L. and Huber, B. A.: Thermohaline stratification below the Southern
Ocean sea ice, J. Geophys Res., 89, 641–648, 1984.
Gouretski, V. V. and Danilov, A. I.: Weddell Gyre: structure of the eastern
boundary, Deep-Sea Res. Pt. I, 40, 561–582, https://doi.org/10.1016/0967-0637(93)90146-T,
1993.
Groeskamp, S., Abernathey, R. P., and Klocker, A.: Water mass transformation
by cabbeling and thermobaricity, Geophys. Res. Lett., 43, 10835–10845,
https://doi.org/10.1002/2016GL070860, 2016.
Hellmer, H., Kauker, F., Timmermann, R., Determann, J., and Rae, J.:
Twenty-first-century warming of a large Antarctic ice-shelf cavity by a
redirected coastal current, Nature, 485, 225–228, https://doi.org/10.1038/nature11064, 2012.
Hersbach, H., Bell, B., Berrisford, P., et al.: The ERA5 global reanalysis,
Q. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.
IOC, IHO, and BODC: Centenary edition of the gebco digital atlas, in:
Published on CD-ROM on behalf of the Intergovernmental Oceanographic
Commission and the International Hydrographic Organization as part of the
General Bathymetric Chart of the Oceans, British Oceanographic Data Centre,
Liverpool, UK, The GEBCO_2014 Grid [data set], version 20150318, http://www.gebco.net (last access: 24 January 2013), 2003.
Jones, R. W., Renfrew, I. A., Orr, A., Webber, B. G. M., Holland, D. M., and
Lazzara, M. A.: Evaluation of four global reanalysis products using in situ
observations in the Amundsen Sea Embayment, Antarctica, J. Geophys. Res.-Atmos., 121, 6240–6257, https://doi.org/10.1002/2015JD024680, 2016.
Jullion, L., Garabato, A. C. N., Bacon, S., Meredith, M. P., Brown, P. J.,
Torres-Valdés, S., Speer, K. G., Holland, P. R., Dong, J., Bakker, D., and
Hoppema, M.: The contribution of the Weddell Gyre to the lower limb of the
Global Overturning Circulation, J. Geophys. Res.-Oceans, 119,
3357–3377, 2014.
Kerr, R., Dotto, T. S., Mata, M. M., and Hellmer, H. H.: Three decades of deep
water mass investigation in the Weddell Sea (1984–2014): Temporal
variability and changes, Deep-Sea Res. Pt. II, 149, 70–83,
https://doi.org/10.1016/j.dsr2.2017.12.002, 2017.
Klatt, O., Fahrbach, E., Hoppema, M., and Rohardt, G.: The transport of the
weddell gyre across the prime meridian, Deep Sea Res. Pt. II, 52, 513–528,
https://doi.org/10.1016/j.dsr2.2004.12.015, 2005.
Leach, H., Strass, V., and Cisewski, B.: Modification by Lateral Mixing of
the Warm Deep Water entering the Weddell Sea in the Maud Rise Region, Ocean
Dynam., 61, 51–68, https://doi.org/10.1007/s10236-010-0342-y, 2011.
Ledwell, J. R., Watson, A. J., and Law, C. S.: Mixing of a tracer in the
pycnocline, J. Geophys Res.-Oceans, 103, 21499–21529, 1998.
Ledwell, J. R., Montgomery, E. T., Polzin, K. L., St Laurent, L. C., Schmitt,
R. W., and Toole, J. M.: Evidence for enhanced mixing over rough topography in
the abyssal ocean, Nature, 403, 179–182, 2000.
Le Paih, N., Hattermann, T., Boebel, O., Kanzow, T., Lüpkes, C.,
Rohardt, G., Strass, V., and Herbette, S.: Coherent seasonal acceleration of
the Weddell Sea boundary current system driven by upstream winds, J.
Geophys. Res.-Oceans, 125, e2020JC016316, https://doi.org/10.1029/2020JC016316, 2020.
McDougall T. J. and Barker, P. M.: Getting started with TEOS-10 and the
Gibbs Seawater (GSW) Oceanographic Toolbox, 28 pp., SCOR/IAPSO WG127, ISBN
978-0-646-55621-5, 2011.
McDougall, T. J. and McIntosh, P. C.: The temporal-residual-mean velocity,
Part II: Isopycnal interpretation and the tracer and momentum equations,
J. Phys. Ocean., 31, 1222–1246, 2001.
Menemenlis, D., Fukumori, I., and Lee, T.: Using Green's Functions to
calibrate and Ocean General Circulation Model, Month. Weather Rev., 133,
1224–1240, 2005.
Menemenlis, D., Campin, J. M., Heimbach, P., Hill, C., Lee, T., Nguyen, A.,
Schodlok, M., and Zhang, H.: ECCO2: High resolution global ocean and sea ice
data synthesis, Mercator Ocean Quarterly Newsletter, 31, 13–21, 2008.
Meredith, M. P., Gordon, A. L., Naveira Garabato, A. C., Abrahamsen, E. P.,
Huber, B. A., Jullion, L., and Venables, H. J.: Synchronous intensification
and warming of Antarctic Bottom Water outflow from the Weddell Gyre,
Geophys. Res. Lett., 38, L03603, https://doi.org/10.1029/2010GL046265, 2011.
Muench, R. D., Morison, J. H., Padman, L., Martinson, D., Schlosser, P.,
Huber, B., and Hohmann, R.: Maud Rise revisited, J. Geophys. Res., 106,
2423–2440, 2001.
Naughten, K. A., De Rydt, J., Rosier, S. H. R., Jenkins, A., Holland, P. R., and Ridley, J. K.: Two-timescale response of
a large Antarctic ice shelf to climate change, Nat. Commun., 12, 1991,
https://doi.org/10.1038/s41467-021-22259-0, 2021.
Naveira Garabato, A. C., McDonagh, E. L., Stevens, D. P., Heywood, K. J., and
Sanders, R. J.: On the export of Antarctic Bottom Water from the Weddell Sea,
Deep-Sea Res. Pt. II, 49,
4715–4742, 2002.
Naveira Garabato, A. C., Oliver, K. I. C., Watson, A. J., and Messias, M. J.:
Turbulent diapycnal mixing in the Nordic Seas, J. Geophys. Res., 109, C12010,
https://doi.org/10.1029/2004JC002411, 2004a.
Naveira Garabato, A. C., Polzin, K. L., King, B. A., Heywood, K. J., and
Visbeck, M.: Widespread intense turbulent mixing in the Southern Ocean,
Science, 303, 210–213, https://doi.org/10.1126/science.1090929, 2004b.
Naveira Garabato, A. C., Stevens, D. P., Watson, A. J., and Roether, W.:
Short-circuiting of the overturning circulation in the Antarctic circumpolar
current, Nature, 447, 194–197, https://doi.org/10.1038/nature05832, 2007.
Naveira Garabato, A. C., Ferrari, R., and Polzin, K. L.: Eddy stirring in the
Southern Ocean, J. Geophys. Res.-Oceans, 116, C09019,
https://doi.org/10.1029/2010jc006818, 2011.
Naveira Garabato, A. C., Zika, J. D., Jullion, L., Brown, P. J., Holland, P. R.,
Meredith, M. P., and Bacon, S.: The thermodynamic balance of the Weddell
Gyre, Geophys. Res. Lett., 43, 317–325, https://doi.org/10.1002/2015GL066658, 2016.
Neme, J., England, M. H., and Hogg, A. M.: Seasonal and interannual
variability of the Weddell Gyre from a high-resolution global ocean-sea ice
simulation during 1958–2018, J. Geophys. Res.-Oceans, 126,
e2021JC017662, https://doi.org/10.1029/2021JC017662, 2021.
Okubo, A.: Oceanic diffusion diagrams, Deep Sea Res., 18, 789–802, https://doi.org/10.1016/0011-7471(71)90046-5, 1971.
Orsi, A. H., Nowlin, W. D. Jr., and Whitworth, T.: On the circulation and
stratification of the Weddell gyre, Deep-Sea Res. Pt. I, 40, 169–203,
https://doi.org/10.1016/0967-0637(93)90060-G, 1993.
Orsi, A. H., Whitworth, T., and Nowlin, W. D. Jr.: On the meridional extent
and fronts of the Antarctic circumpolar current, Deep-Sea Res. Pt. I,
42, 641–673, https://doi.org/10.1016/0967-0637(95)00021-W, 1995.
Park, J. J., Kim, K., King, B. A., and Riser, S. C.: An Advanced Method to
Estimate Deep Currents from Profiling Floats, J. Atmos. Ocean. Tech., 22, 1294–1304, 2005.
Pawlowicz, R.: M_Map: A mapping package for MATLAB, version
1.4 m, [Computer software], https://www.eoas.ubc.ca/~rich/map.html (last access: 7 July 2020), 2020.
Polzin, K. L., Toole, J. M., Ledwell, J. R., and Schmitt, R. W.: Spatial
variability of turbulent mixing in the abyssal ocean, Science, 276, 93–96,
https://doi.org/10.1126/science.276.5309.93, 1997.
Reeve, K. A., Boebel, O., Kanzow, T., Strass, V., Rohardt, G., and Fahrbach, E.: A gridded data set of upper-ocean hydrographic properties in the Weddell Gyre obtained by objective mapping of Argo float measurements, Earth Syst. Sci. Data, 8, 15–40, https://doi.org/10.5194/essd-8-15-2016, 2016.
Reeve, K. A., Boebel, O., Strass, V., Kanzow, T., and Gerdes, R.: Horizontal
Circulation and volume transports in the Weddell Gyre derived from Argo
float data, Prog. Oceanogr., 175, 263–283,
https://doi.org/10.1016/j.pocean.2019.04.006, 2019.
Reeve, K. A., Boebel, O., Kanzow, T., Strass, V., and Gerdes, R.: Geostrophic
Stream function of the Weddell Gyre derived from Argo floats from 2002 to
2016, integrated for the upper 50–2000 dbar, link to data files in NetCDF
format, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.960571, 2023.
Rhein, M., Rintoul, S. R., Aoki, S., Campos, E., Chambers, D., Feely, R. A.,
Gulev, S., Johnson, G. C., Josey, S. A., Kostianoy, A., Mauritzen, C.,
Roemmich, D., Talley, L. D., and Wang, F.: Observations: Ocean, in: Climate
Change 2013: The Physical Science Basis, Contribution of Working Group I to
the Fifth Assessment Report of the Intergovernmental Panel on Climate Change
edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung,
J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge
University Press, Cambridge, United Kingdom and New York, NY, USA, https://doi.org/10.1017/CBO9781107415324.010, 2013.
Roemmich, D., Gilson, J., Willis, J., Sutton, P., and Ridgway, K.: Closing
the Time-Varying Mass and Heat Budgets for Large Ocean Areas: The Tasman
Box, J. Climate, 18, 2330–2343, https://doi.org/10.1175/JCLI3409.1, 2005.
Ryan, S., Hellmer, H. H., Janout, M., Darelius, E., Vignes, L., and
Schröder, M.: Exceptionally warm and prolonged flow of Warm Deep Water
toward the Filchner-Ronne Ice Shelf in 2017, Geophys. Res. Lett., 47,
e2020GL088119, https://doi.org/10.1029/2020GL088119, 2020.
Ryan, S., Schröder, M., Huhn, O., and Timmermann, R.: On the warm inflow
at the eastern boundary of the Weddell Gyre, Deep-Sea Res. Pt. I, 107, 70–81,
https://doi.org/10.1016/j.dsr.2015.11.002, 2016.
Schlosser, P., Roether, W., and Rohardt, G.: Helium-3 balance of the upper
layers of the northwestern Weddell Sea, Deep Sea Res., 34, 365–377, 1987.
Schröder, M. and Fahrbach, E.: On the structure and the transport of the
eastern Weddell Gyre, Deep Sea Res. Pt. II, 46, 501–527, 1999.
Sévellec, F., Verdière, A. C. D., and Kolodziejczyk, N.: Deep Horizontal
Turbulent Diffusivity, SEANOE [data set], https://doi.org/10.17882/91335,
2020.
Sévellec, F., Naveira Garabato, A. C., Vic, C., and Ducousso, N.:
Observing the local emergence of the Southern Ocean residual-mean
circulation, Geophys. Res. Lett., 46, 3862–3870,
https://doi.org/10.1029/2018GL081382, 2019.
Sonnewald, M., Reeve, K. A., and Lguensat, R.: A Southern Ocean supergyre as
a unifying dynamical framework identified by physics-informed machine
learning, Commun. Earth Environ., 4, 153,
https://doi.org/10.1038/s43247-023-00793-7, 2023.
Strass, V. H., Rohardt,
G., Kanzow, T., Hoppema, M., and Boebel, O.: Multidecadal warming and density
loss in the deep Weddell Sea, Antarctica, J. Climate, 33, 9863–9881,
2020.
Tamsitt, V., Talley, L. D., Mazloff, M. R., and Cerovecki, I.: Zonal
Variations in the Southern Ocean heat budget, J. Climate, 29, 6563–6579,
https://doi.org/10.1175/JCLI-D-15-0630.1, 2016.
Thompson, A. and Salleé, J. B.: Jets and topography: Jet transitions and the
impact on transport in the Antarctic Circumpolar Current, J. Phys. Oceanogr., 42, 956–972, 2012.
Timmermann, R., Beckmann, A., and Hellmer, H. H.: Simulations of ice-ocean
dynamics in the Weddell Sea 1. Model configuration and validation, J.
Geophys. Res., 107, https://doi.org/10.1029/2000JC000741, 2002.
Tschudi, M., Meier, W. N., Stewart, J. S., Fowler, C., and Maslanik, J.:
Polar Pathfinder Daily 25 km EASE-Grid Sea Ice Motion Vectors, Version 4,
Boulder, Colorado USA, NASA National Snow and Ice Data Center Distributed
Active Archive Center [data set], https://doi.org/10.5067/INAWUWO7QH7B,
2019.
Wilson, E. A., Thompson, A. F., Stewart, A., and Sun, S.: Bathymetric
control of the subpolar gyres and overturning circulation in the Southern
Ocean, J. Phys. Ocean., 52, 205–223,
https://doi.org/10.1175/JPO-D-21-0136.1, 2022.
Zika, J. D., Sloyan, B. M., and McDougall, T. J.: Diagnosing the Southern Ocean
overturning from tracer fields, J. Phys. Ocean., 39,
2926–2940, 2009.
Short summary
The Weddell Gyre is key for bottom water formation. Prior studies show warming of the whole water column, except for the gyre’s heat source, Warm Deep Water (WDW). We use Argo floats to estimate a heat budget within WDW. Heat advects into the southern limb and upwards from below throughout. Turbulent diffusion removes heat through the top and transports heat from the southern limb into the interior and southwards towards Antarctica. Turbulent diffusion imports heat across the northern boundary.
The Weddell Gyre is key for bottom water formation. Prior studies show warming of the whole...