Articles | Volume 19, issue 4
https://doi.org/10.5194/os-19-1047-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-19-1047-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Coupled hydrological and hydrodynamic modelling application for climate change impact assessment in the Nemunas river watershed–Curonian Lagoon–southeastern Baltic Sea continuum
Rasa Idzelytė
Marine Research Institute, Klaipėda University, Klaipėda
92294, Lithuania
Natalja Čerkasova
Marine Research Institute, Klaipėda University, Klaipėda
92294, Lithuania
Texas A&M AgriLife Research, Blackland Research and Extension
Center, Temple, TX 76502, USA
Jovita Mėžinė
Marine Research Institute, Klaipėda University, Klaipėda
92294, Lithuania
Toma Dabulevičienė
Marine Research Institute, Klaipėda University, Klaipėda
92294, Lithuania
Artūras Razinkovas-Baziukas
Marine Research Institute, Klaipėda University, Klaipėda
92294, Lithuania
Ali Ertürk
Marine Research Institute, Klaipėda University, Klaipėda
92294, Lithuania
Department of Inland Water Resources and Management, Istanbul
University, Istanbul 34134, Turkey
Georg Umgiesser
CORRESPONDING AUTHOR
Marine Research Institute, Klaipėda University, Klaipėda
92294, Lithuania
CNR – National Research Council of Italy, ISMAR – Institute of Marine Sciences, Venice 30122, Italy
Related authors
Natalja Čerkasova, Jovita Mėžinė, Rasa Idzelytė, Jūratė Lesutienė, Ali Ertürk, and Georg Umgiesser
Ocean Sci., 20, 1123–1147, https://doi.org/10.5194/os-20-1123-2024, https://doi.org/10.5194/os-20-1123-2024, 2024
Short summary
Short summary
This study advances the understanding of climate projection variability in the Nemunas River, Curonian Lagoon, and southeastern Baltic Sea continuum by analyzing a subset of climate models with a focus on a coupled ocean and drainage basin model. This study investigates the variability and trends in environmental parameters, such as water fluxes, timing, nutrient load, water temperature, ice cover, and saltwater intrusions in Representative Concentration Pathway 4.5 and 8.5 scenarios.
Natalja Čerkasova, Jovita Mėžinė, Rasa Idzelytė, Jūratė Lesutienė, Ali Ertürk, and Georg Umgiesser
Ocean Sci., 20, 1123–1147, https://doi.org/10.5194/os-20-1123-2024, https://doi.org/10.5194/os-20-1123-2024, 2024
Short summary
Short summary
This study advances the understanding of climate projection variability in the Nemunas River, Curonian Lagoon, and southeastern Baltic Sea continuum by analyzing a subset of climate models with a focus on a coupled ocean and drainage basin model. This study investigates the variability and trends in environmental parameters, such as water fluxes, timing, nutrient load, water temperature, ice cover, and saltwater intrusions in Representative Concentration Pathway 4.5 and 8.5 scenarios.
Brigitta Szabó, Piroska Kassai, Svajunas Plunge, Attila Nemes, Péter Braun, Michael Strauch, Felix Witing, János Mészáros, and Natalja Čerkasova
SOIL, 10, 587–617, https://doi.org/10.5194/soil-10-587-2024, https://doi.org/10.5194/soil-10-587-2024, 2024
Short summary
Short summary
This research introduces methods and tools for obtaining soil input data in European case studies for environmental models like SWAT+. With various available soil datasets and prediction methods, determining the most suitable is challenging. The study aims to (i) catalogue open-access datasets and prediction methods for Europe, (ii) demonstrate and quantify differences between prediction approaches, and (iii) offer a comprehensive workflow with open-source R codes for deriving missing soil data.
Salam A. Abbas, Ryan T. Bailey, Jeremy T. White, Jeffrey G. Arnold, Michael J. White, Natalja Čerkasova, and Jungang Gao
Hydrol. Earth Syst. Sci., 28, 21–48, https://doi.org/10.5194/hess-28-21-2024, https://doi.org/10.5194/hess-28-21-2024, 2024
Short summary
Short summary
Research highlights.
1. Implemented groundwater module (gwflow) into SWAT+ for four watersheds with different unique hydrologic features across the United States.
2. Presented methods for sensitivity analysis, uncertainty analysis and parameter estimation for coupled models.
3. Sensitivity analysis for streamflow and groundwater head conducted using Morris method.
4. Uncertainty analysis and parameter estimation performed using an iterative ensemble smoother within the PEST framework.
Luca Arpaia, Christian Ferrarin, Marco Bajo, and Georg Umgiesser
Geosci. Model Dev., 16, 6899–6919, https://doi.org/10.5194/gmd-16-6899-2023, https://doi.org/10.5194/gmd-16-6899-2023, 2023
Short summary
Short summary
We propose a discrete multilayer shallow water model based on z-layers which, thanks to the insertion and removal of surface layers, can deal with an arbitrarily large tidal oscillation independently of the vertical resolution. The algorithm is based on a two-step procedure used in numerical simulations with moving boundaries (grid movement followed by a grid topology change, that is, the insertion/removal of surface layers), which avoids the appearance of very thin surface layers.
Davide Zanchettin, Sara Bruni, Fabio Raicich, Piero Lionello, Fanny Adloff, Alexey Androsov, Fabrizio Antonioli, Vincenzo Artale, Eugenio Carminati, Christian Ferrarin, Vera Fofonova, Robert J. Nicholls, Sara Rubinetti, Angelo Rubino, Gianmaria Sannino, Giorgio Spada, Rémi Thiéblemont, Michael Tsimplis, Georg Umgiesser, Stefano Vignudelli, Guy Wöppelmann, and Susanna Zerbini
Nat. Hazards Earth Syst. Sci., 21, 2643–2678, https://doi.org/10.5194/nhess-21-2643-2021, https://doi.org/10.5194/nhess-21-2643-2021, 2021
Short summary
Short summary
Relative sea level in Venice rose by about 2.5 mm/year in the past 150 years due to the combined effect of subsidence and mean sea-level rise. We estimate the likely range of mean sea-level rise in Venice by 2100 due to climate changes to be between about 10 and 110 cm, with an improbable yet possible high-end scenario of about 170 cm. Projections of subsidence are not available, but historical evidence demonstrates that they can increase the hazard posed by climatically induced sea-level rise.
Piero Lionello, David Barriopedro, Christian Ferrarin, Robert J. Nicholls, Mirko Orlić, Fabio Raicich, Marco Reale, Georg Umgiesser, Michalis Vousdoukas, and Davide Zanchettin
Nat. Hazards Earth Syst. Sci., 21, 2705–2731, https://doi.org/10.5194/nhess-21-2705-2021, https://doi.org/10.5194/nhess-21-2705-2021, 2021
Short summary
Short summary
In this review we describe the factors leading to the extreme water heights producing the floods of Venice. We discuss the different contributions, their relative importance, and the resulting compound events. We highlight the role of relative sea level rise and the observed past and very likely future increase in extreme water heights, showing that they might be up to 160 % higher at the end of the 21st century than presently.
Georg Umgiesser, Marco Bajo, Christian Ferrarin, Andrea Cucco, Piero Lionello, Davide Zanchettin, Alvise Papa, Alessandro Tosoni, Maurizio Ferla, Elisa Coraci, Sara Morucci, Franco Crosato, Andrea Bonometto, Andrea Valentini, Mirko Orlić, Ivan D. Haigh, Jacob Woge Nielsen, Xavier Bertin, André Bustorff Fortunato, Begoña Pérez Gómez, Enrique Alvarez Fanjul, Denis Paradis, Didier Jourdan, Audrey Pasquet, Baptiste Mourre, Joaquín Tintoré, and Robert J. Nicholls
Nat. Hazards Earth Syst. Sci., 21, 2679–2704, https://doi.org/10.5194/nhess-21-2679-2021, https://doi.org/10.5194/nhess-21-2679-2021, 2021
Short summary
Short summary
The city of Venice relies crucially on a good storm surge forecast to protect its population and cultural heritage. In this paper, we provide a state-of-the-art review of storm surge forecasting, starting from examples in Europe and focusing on the Adriatic Sea and the Lagoon of Venice. We discuss the physics of storm surge, as well as the particular aspects of Venice and new techniques in storm surge modeling. We also give recommendations on what a future forecasting system should look like.
Piero Lionello, Robert J. Nicholls, Georg Umgiesser, and Davide Zanchettin
Nat. Hazards Earth Syst. Sci., 21, 2633–2641, https://doi.org/10.5194/nhess-21-2633-2021, https://doi.org/10.5194/nhess-21-2633-2021, 2021
Short summary
Short summary
Venice is an iconic place, and a paradigm of huge historical and cultural value is at risk. The threat posed by floods has dramatically increased in recent decades and is expected to continue to grow – and even accelerate – through this century. There is a need to better understand the future evolution of the relative sea level and its extremes and to develop adaptive planning strategies appropriate for present uncertainty, which might not be substantially reduced in the near future.
Christian Ferrarin, Marco Bajo, and Georg Umgiesser
Geosci. Model Dev., 14, 645–659, https://doi.org/10.5194/gmd-14-645-2021, https://doi.org/10.5194/gmd-14-645-2021, 2021
Short summary
Short summary
The problem of the optimization of ocean monitoring networks is tackled through the implementation of data assimilation techniques in a numerical model. The methodology has been applied to the tide gauge network in the Lagoon of Venice (Italy). The data assimilation methods allow identifying the minimum number of stations and their distribution that correctly represent the lagoon's dynamics. The methodology is easily exportable to other environments and can be extended to other variables.
Nadia Pinardi, Vladyslav Lyubartsev, Nicola Cardellicchio, Claudio Caporale, Stefania Ciliberti, Giovanni Coppini, Francesca De Pascalis, Lorenzo Dialti, Ivan Federico, Marco Filippone, Alessandro Grandi, Matteo Guideri, Rita Lecci, Lamberto Lamberti, Giuliano Lorenzetti, Paolo Lusiani, Cosimo Damiano Macripo, Francesco Maicu, Michele Mossa, Diego Tartarini, Francesco Trotta, Georg Umgiesser, and Luca Zaggia
Nat. Hazards Earth Syst. Sci., 16, 2623–2639, https://doi.org/10.5194/nhess-16-2623-2016, https://doi.org/10.5194/nhess-16-2623-2016, 2016
Short summary
Short summary
A multiscale sampling experiment was carried out in the Gulf of Taranto (eastern Mediterranean) providing the first synoptic evidence of the large-scale circulation structure and associated mesoscale variability. The circulation is shown to be dominated by an anticyclonic gyre and upwelling areas at the gyre periphery.
Georg Umgiesser, Petras Zemlys, Ali Erturk, Arturas Razinkova-Baziukas, Jovita Mėžinė, and Christian Ferrarin
Ocean Sci., 12, 391–402, https://doi.org/10.5194/os-12-391-2016, https://doi.org/10.5194/os-12-391-2016, 2016
Short summary
Short summary
The paper explores the importance of physical forcing on the exchange mechanisms and the renewal time in the Curonian Lagoon over 10 years. The influence of ice cover on the exchange rates has been explored. Finally, the influence of water level fluctuations and river discharge has been studied. It has been found that ice cover is surprisingly not very important for changes in renewal time. The single most important factor is river discharge.
P. Zemlys, C. Ferrarin, G. Umgiesser, S. Gulbinskas, and D. Bellafiore
Ocean Sci., 9, 573–584, https://doi.org/10.5194/os-9-573-2013, https://doi.org/10.5194/os-9-573-2013, 2013
C. Ferrarin, M. Ghezzo, G. Umgiesser, D. Tagliapietra, E. Camatti, L. Zaggia, and A. Sarretta
Hydrol. Earth Syst. Sci., 17, 1733–1748, https://doi.org/10.5194/hess-17-1733-2013, https://doi.org/10.5194/hess-17-1733-2013, 2013
Cited articles
Anthony, A., Atwood, J., August, P., Byron, C., Cobb, S., Foster, C., Fry,
C., Gold, A., Hagos, K., Heffner, L., Kellogg, D. Q., Lellis-Dibble, K.,
Opaluch, J. J., Oviatt, C., Pfeiffer-Herbert, A., Rohr, N., Smith, L.,
Smythe, T., Swift, J., and Vinhateiro, N.: Coastal Lagoons and Climate
Change: Ecological and Social Ramifications in U.S. Atlantic and Gulf Coast
Ecosystems, Ecol. Soc., 14, 8, https://doi.org/10.5751/ES-02719-140108,
2009.
Avotniece, Z., Aniskevich, S., and Malinovskis, E.: Climate Change Scenarios
for Latvia, Report summary, Riga, 2017.
BACC Author Team: Assessment of Climate Change for the Baltic Sea Basin,
Springer Berlin Heidelberg, Berlin, Heidelberg, edited by: The BACC Author Team,
https://doi.org/10.1007/978-3-540-72786-6, 2008.
BACC II Author Team: Second Assessment of Climate Change for the Baltic Sea
Basin, edited by: The BACC II Author Team, Springer International
Publishing, Cham, https://doi.org/10.1007/978-3-319-16006-1, 2015.
Bartoli, M., Zilius, M., Bresciani, M., Vaiciute, D., Vybernaite-Lubiene,
I., Petkuviene, J., Giordani, G., Daunys, D., Ruginis, T., Benelli, S.,
Giardino, C., Bukaveckas, P. A., Zemlys, P., Griniene, E., Gasiunaite, Z.
R., Lesutiene, J., Pilkaitytė, R., and Baziukas-Razinkovas, A.: Drivers
of Cyanobacterial Blooms in a Hypertrophic Lagoon, Front. Mar. Sci., 5, 434,
https://doi.org/10.3389/fmars.2018.00434, 2018.
Belkin, I. M.: Rapid warming of Large Marine Ecosystems, Prog. Oceanogr.,
81, 207–213, https://doi.org/10.1016/j.pocean.2009.04.011, 2009.
Bellafiore, D. and Umgiesser, G.: Hydrodynamic coastal processes in the
North Adriatic investigated with a 3D finite element model, Ocean Dynam., 60,
255–273, https://doi.org/10.1007/s10236-009-0254-x, 2010.
Camacho-Ibar, V. F. and Rivera-Monroy, V. H.: Coastal Lagoons and Estuaries
in Mexico: Processes and Vulnerability, Estuar. Coasts, 37,
1313–1318, https://doi.org/10.1007/s12237-014-9896-0, 2014.
Čepienė, E., Dailidytė, L., Stonevičius, E., and
Dailidienė, I.: Sea Level Rise Impact on Compound Coastal River Flood
Risk in Klaipėda City (Baltic Coast, Lithuania), Water, 14, 414,
https://doi.org/10.3390/w14030414, 2022.
Čerkasova, N., Umgiesser, G., and Ertürk, A.: Development of a
hydrology and water quality model for a large transboundary river watershed
to investigate the impacts of climate change – A SWAT application, Ecol.
Eng., 124, 99–115, https://doi.org/10.1016/j.ecoleng.2018.09.025, 2018.
Čerkasova, N., Umgiesser, G., and Ertürk, A.: Assessing Climate
Change Impacts on Streamflow, Sediment and Nutrient Loadings of the Minija
River (Lithuania): A Hillslope Watershed Discretization Application with
High-Resolution Spatial Inputs, Water, 11, 676, https://doi.org/10.3390/w11040676, 2019.
Čerkasova, N., Umgiesser, G., and Ertürk, A.: Modelling framework
for flow, sediments and nutrient loads in a large transboundary river
watershed: A climate change impact assessment of the Nemunas River
watershed, J. Hydrol., 598, 126422,
https://doi.org/10.1016/j.jhydrol.2021.126422, 2021.
Christensen, O. B., Kjellström, E., Dieterich, C., Gröger, M., and Meier, H. E. M.: Atmospheric regional climate projections for the Baltic Sea region until 2100, Earth Syst. Dynam., 13, 133–157, https://doi.org/10.5194/esd-13-133-2022, 2022.
Climate Change in the Baltic Sea: 2021 Fact Sheet. Baltic Sea Environment
Proceedings no. 180, HELCOM/Baltic Earth, ISSN 0357-2994, 2021.
De Pascalis, F., Pérez-Ruzafa, A., Gilabert, J., Marcos, C., and
Umgiesser, G.: Climate change response of the Mar Menor coastal lagoon
(Spain) using a hydrodynamic finite element model, Estuar. Coast. Shelf
S., 114, 118–129, https://doi.org/10.1016/j.ecss.2011.12.002, 2011.
de Wit, R., Mazouni, N., and Viaroli, P.: Preface: Research and Management
for the Conservation of Coastal Lagoon Ecosystems, South–North Comparisons,
Hydrobiologia, 699, 1–4, https://doi.org/10.1007/s10750-012-1158-1, 2012.
Dieterich, C., Wang, S., Schimanke, S., Gröger, M., Klein, B., Hordoir,
R., Samuelsson, P., Liu, Y., Axell, L., Höglund, A., and Meier, H. E.
M.: Surface Heat Budget over the North Sea in Climate Change Simulations,
Atmosphere, 10, 272, https://doi.org/10.3390/atmos10050272, 2019.
Donnelly, C., Yang, W., and Dahné, J.: River discharge to the Baltic Sea
in a future climate, Climatic Change, 122, 157–170,
https://doi.org/10.1007/s10584-013-0941-y, 2014.
Dutheil, C., Meier, H. E. M., Gröger, M., and Börgel, F.:
Understanding past and future sea surface temperature trends in the Baltic
Sea, Clim. Dynam., 58, 3021–3039, https://doi.org/10.1007/s00382-021-06084-1,
2022.
EEA (European Environment Agency): Climate change in Europe: key facts and
figures,
https://www.eea.europa.eu/en/about/contact-us/faqs/what-are-the-climate-change-impacts-in-europe
(last access: 15 March 2023), 2021.
Fernández-Alías, A., Razinkovas-Baziukas, A., Morkūnė, R.,
Ibáñez-Martínez, H., Bacevičius, E., Muñoz, I., Marcos,
C., and Pérez-Ruzafa, A.: Recolonization origin and reproductive
locations, but not isolation from the sea, lead to genetic structure in
migratory lagoonal fishes, Mar. Environ. Res., 181, 105732,
https://doi.org/10.1016/j.marenvres.2022.105732, 2022.
Ferrarin, C. and Umgiesser, G.: Hydrodynamic modeling of a coastal lagoon:
The Cabras lagoon in Sardinia, Italy, Ecol. Model., 188, 340–357,
https://doi.org/10.1016/j.ecolmodel.2005.01.061, 2005.
Ferrarin, C., Razinkovas, A., Gulbinskas, S., Umgiesser, G., and
Bliudžiute, L.: Hydraulic regime-based zonation scheme of the Curonian
Lagoon, Hydrobiologia, 611, 133–146,
https://doi.org/10.1007/s10750-008-9454-5, 2008.
Ferrarin, C., Umgiesser, G., Bajo, M., Bellafiore, D., De Pascalis, F.,
Ghezzo, M., Mattassi, G., and Scroccaro, I.: Hydraulic zonation of the
lagoons of Marano and Grado, Italy. A modelling approach, Estuar. Coast.
Shelf S., 87, 561–572, https://doi.org/10.1016/j.ecss.2010.02.012, 2010.
Ferrarin, C., Bergamasco, A., Umgiesser, G., and Cucco, A.: Hydrodynamics
and spatial zonation of the Capo Peloro coastal system (Sicily) through 3-D
numerical modeling, J. Marine Syst., 117–118, 96–107,
https://doi.org/10.1016/j.jmarsys.2013.02.005, 2013.
Gailiušis, B., Jablonskis, J., and Kovalenkovienė, M.: The
Lithuanian rivers, in: Hydrography and Runoff, Lithuanian Energy Institute,
Kaunas, Lithuania, ISBN 9986492645, 792 pp., 2001.
Gasiūnaitė, Z. R., Daunys, D., Olenin, S., and Razinkovas, A.: The
Curonian Lagoon, in: Ecology of Baltic Coastal Waters, edited by: Schiewer,
U., Springer, Berlin/Heidelberg, Germany, 197–215,
https://doi.org/10.1007/978-3-540-73524-3_9, 2008.
Gassman, P. W., Reyes, M. R., Green, C. H., and Arnold, J. G.: The Soil and
Water Assessment Tool: Historical Development, Applications, and Future
Research Directions, T. ASABE, 50, 1211–1250,
https://doi.org/10.13031/2013.23637, 2007.
Girjatowicz, J. P. and Świątek, M.: Relationship between Air
Temperature Change and Southern Baltic Coastal Lagoons Ice Conditions,
Atmosphere, 12, 931, https://doi.org/10.3390/atmos12080931, 2021.
Graham, L. P.: Climate Change Effects on River Flow to the Baltic Sea,
Ambio, 33, 235–241, 2004.
Gröger, M., Arneborg, L., Dieterich, C., Höglund, A., and Meier, H.
E. M.: Summer hydrographic changes in the Baltic Sea, Kattegat and Skagerrak
projected in an ensemble of climate scenarios downscaled with a coupled
regional ocean–sea ice–atmosphere model, Clim. Dynam., 53, 5945–5966,
https://doi.org/10.1007/s00382-019-04908-9, 2019.
Gupta, R., Bhattarai, R., and Mishra, A.: Development of Climate Data Bias
Corrector (CDBC) Tool and Its Application over the Agro-Ecological Zones of
India, Water, 11, 1102, https://doi.org/10.3390/w11051102, 2019.
Hagemann, S., Stacke, T., and Ho-Hagemann, H. T. M.: High Resolution
Discharge Simulations Over Europe and the Baltic Sea Catchment, Front. Earth
Sci., 8, 12, https://doi.org/10.3389/feart.2020.00012, 2020.
Holt, J., Schrum, C., Cannaby, H., Daewel, U., Allen, I., Artioli, Y., Bopp,
L., Butenschon, M., Fach, B. A., Harle, J., Pushpadas, D., Salihoglu, B.,
and Wakelin, S.: Potential impacts of climate change on the primary
production of regional seas: A comparative analysis of five European seas,
Prog. Oceanogr., 140, 91–115, https://doi.org/10.1016/j.pocean.2015.11.004,
2016.
Idzelytė, R. and Umgiesser, G.: Application of an ice thermodynamic
model to a shallow freshwater lagoon, Boreal Environ. Res., 26, 61–77,
2021.
Idzelytė, R., Kozlov, I. E., and Umgiesser, G.: Remote Sensing of Ice
Phenology and Dynamics of Europe's Largest Coastal Lagoon (The Curonian
Lagoon), Remote Sens., 11, 2059, https://doi.org/10.3390/rs11172059, 2019.
Idzelytė, R., Mėžinė, J., Zemlys, P., and Umgiesser, G.:
Study of ice cover impact on hydrodynamic processes in the Curonian Lagoon
through numerical modeling, Oceanologia, 62, 428–442,
https://doi.org/10.1016/j.oceano.2020.04.006, 2020.
Idzelytė, R., Čerkasova, N., Mėžinė, J.,
Dabulevičienė, T., Razinkovas-Baziukas, A., Ertürk, A., and
Umgiesser, G.: The computation results of coupled hydrological and
hydrodynamic modelling application for the Nemunas River watershed –
Curonian Lagoon – South-Eastern Baltic Sea continuum, Zenodo [data set],
https://doi.org/10.5281/zenodo.7500744, 2023.
Inácio, M., Schernewski, G., Nazemtseva, Y., Baltranaitė, E.,
Friedland, R., and Benz, J.: Ecosystem services provision today and in the
past: a comparative study in two Baltic lagoons, Ecol. Res., 33,
1255–1274, https://doi.org/10.1007/s11284-018-1643-8, 2018.
Ivanauskas, E., Skersonas, A., Andrašūnas, V., Elyaagoubi, S., and
Razinkovas-Baziukas, A.: Mapping and Assessing Commercial Fisheries Services
in the Lithuanian Part of the Curonian Lagoon, Fishes, 7, 19,
https://doi.org/10.3390/fishes7010019, 2022.
Jacob, D., Petersen, J., Eggert, B., Alias, A., Christensen, O. B., Bouwer,
L. M., Braun, A., Colette, A., Déqué, M., Georgievski, G.,
Georgopoulou, E., Gobiet, A., Menut, L., Nikulin, G., Haensler, A.,
Hempelmann, N., Jones, C., Keuler, K., Kovats, S., Kröner, N.,
Kotlarski, S., Kriegsmann, A., Martin, E., van Meijgaard, E., Moseley, C.,
Pfeifer, S., Preuschmann, S., Radermacher, C., Radtke, K., Rechid, D.,
Rounsevell, M., Samuelsson, P., Somot, S., Soussana, J.-F., Teichmann, C.,
Valentini, R., Vautard, R., Weber, B., and Yiou, P.: EURO-CORDEX: new
high-resolution climate change projections for European impact research, Reg.
Environ. Change, 14, 563–578, https://doi.org/10.1007/s10113-013-0499-2,
2014.
Jakimavičius, D.: Changes of water balance elements of the Curonian
Lagoon and their forecast due to anthropogenic and natural factors, Kaunas
University of Technology, 2012.
Jakimavičius, D. and Kovalenkovienė, M.: Long-term water balance of
the Curonian Lagoon in the context of anthropogenic factors and climate
change, Baltica, 23, 33–46, 2010.
Jakimavičius, D. and Kriaučiūnienė, J.: The Hydrological
Changes of the Curonian Lagoon in the Context of Climate Change, Vilnius
Univ. Proc., 10, 36, https://doi.org/10.15388/Klimatokaita.2020.28, 2020.
Jakimavičius, D., Šarauskienė, D., and
Kriaučiūnienė, J.: Influence of climate change on the ice
conditions of the Curonian Lagoon, Oceanologia, 62, 164–172,
https://doi.org/10.1016/j.oceano.2019.10.003, 2019.
Kļaviņš, M., Avotniece, Z., and Rodinovs, V.: Dynamics and Impacting
Factors of Ice Regimes in Latvia Inland and Coastal Waters, Proc. Latv.
Acad. Sci. Sect. B. Nat. Exact, Appl. Sci., 70, 400–408,
https://doi.org/10.1515/prolas-2016-0059, 2016.
Kniebusch, M., Meier, H. E. M., Neumann, T., and Börgel, F.: Temperature
Variability of the Baltic Sea Since 1850 and Attribution to Atmospheric
Forcing Variables, J. Geophys. Res.-Ocean., 124, 4168–4187,
https://doi.org/10.1029/2018JC013948, 2019.
Kozlov, I., Dailidienė, I., Korosov, A., Klemas, V., and
Mingėlaitė, T.: MODIS-based sea surface temperature of the Baltic
Sea Curonian Lagoon, J. Marine Syst., 129, 157–165,
https://doi.org/10.1016/j.jmarsys.2012.05.011, 2014.
Kozlov, I. E., Krek, E. V., Kostianoy, A. G., and Dailidienė, I.: Remote
Sensing of Ice Conditions in the Southeastern Baltic Sea and in the Curonian
Lagoon and Validation of SAR-Based Ice Thickness Products, Remote Sens., 12,
3754, https://doi.org/10.3390/rs12223754, 2020.
Lehmann, A., Myrberg, K., Post, P., Chubarenko, I., Dailidiene, I., Hinrichsen, H.-H., Hüssy, K., Liblik, T., Meier, H. E. M., Lips, U., and Bukanova, T.: Salinity dynamics of the Baltic Sea, Earth Syst. Dynam., 13, 373–392, https://doi.org/10.5194/esd-13-373-2022, 2022.
Lenderink, G., Buishand, A., and van Deursen, W.: Estimates of future discharges of the river Rhine using two scenario methodologies: direct versus delta approach, Hydrol. Earth Syst. Sci., 11, 1145–1159, https://doi.org/10.5194/hess-11-1145-2007, 2007.
Lesutienė, J., Andrašūnas, V., Čerkasova, N.,
Gasiūnaitė, Z. R., Idzelytė, R., Ivanauskas, E.,
Kaziukonytė, K., Mėžinė, J., and Vilkevičiūtė,
J.: EcoServe Guidelines (version 2), Zenodo,
https://doi.org/10.5281/zenodo.6546247, 2022.
Lillebø, A. I.: Coastal Lagoons in Europe: Integrated Water Resource
Strategies, Water Intell. Online, 14, 9781780406299, https://doi.org/10.2166/9781780406299,
2015.
Luomaranta, A., Ruosteenoja, K., Jylhä, K., Gregow, H., Haapala, J., and
Laaksonen, A.: Multimodel estimates of the changes in the Baltic Sea ice
cover during the present century, Tellus A, 66,
22617, https://doi.org/10.3402/tellusa.v66.22617, 2014.
Maher, D. T., Call, M., Macklin, P., Webb, J. R., and Santos, I. R.:
Hydrological Versus Biological Drivers of Nutrient and Carbon Dioxide
Dynamics in a Coastal Lagoon, Estuar. Coasts, 42, 1015–1031,
https://doi.org/10.1007/s12237-019-00532-2, 2019.
McCrackin, M. L., Gustafsson, B. G., Hong, B., Howarth, R. W., Humborg, C.,
Savchuk, O. P., Svanbäck, A., and Swaney, D. P.: Opportunities to reduce
nutrient inputs to the Baltic Sea by improving manure use efficiency in
agriculture, Reg. Environ. Change, 18, 1843–1854,
https://doi.org/10.1007/s10113-018-1308-8, 2018.
Meier, H. E. M.: Regional ocean climate simulations with a 3D ice-ocean
model for the Baltic Sea. Part 1: model experiments and results for
temperature and salinity, Clim. Dynam., 19, 237–253,
https://doi.org/10.1007/s00382-001-0224-6, 2002a.
Meier, H. E. M.: Regional ocean climate simulations with a 3D ice–ocean
model for the Baltic Sea. Part 2: results for sea ice, Clim. Dynam., 19,
255–266, https://doi.org/10.1007/s00382-001-0225-5, 2002b.
Meier, H. E. M., Dieterich, C., and Gröger, M.: Natural variability is a
large source of uncertainty in future projections of hypoxia in the Baltic
Sea, Commun. Earth Environ., 2, 50,
https://doi.org/10.1038/s43247-021-00115-9, 2021.
Meier, H. E. M., Kniebusch, M., Dieterich, C., Gröger, M., Zorita, E., Elmgren, R., Myrberg, K., Ahola, M. P., Bartosova, A., Bonsdorff, E., Börgel, F., Capell, R., Carlén, I., Carlund, T., Carstensen, J., Christensen, O. B., Dierschke, V., Frauen, C., Frederiksen, M., Gaget, E., Galatius, A., Haapala, J. J., Halkka, A., Hugelius, G., Hünicke, B., Jaagus, J., Jüssi, M., Käyhkö, J., Kirchner, N., Kjellström, E., Kulinski, K., Lehmann, A., Lindström, G., May, W., Miller, P. A., Mohrholz, V., Müller-Karulis, B., Pavón-Jordán, D., Quante, M., Reckermann, M., Rutgersson, A., Savchuk, O. P., Stendel, M., Tuomi, L., Viitasalo, M., Weisse, R., and Zhang, W.: Climate change in the Baltic Sea region: a summary, Earth Syst. Dynam., 13, 457–593, https://doi.org/10.5194/esd-13-457-2022, 2022a.
Meier, H. E. M., Dieterich, C., Gröger, M., Dutheil, C., Börgel, F., Safonova, K., Christensen, O. B., and Kjellström, E.: Oceanographic regional climate projections for the Baltic Sea until 2100, Earth Syst. Dynam., 13, 159–199, https://doi.org/10.5194/esd-13-159-2022, 2022b.
Meynecke, J.-O., Lee, S. Y., Duke, N. C., and Warnken, J.: Relationships
between estuarine habitats and coastal fisheries in Queensland, Australia,
B. Mar. Sci., 80, 773–793, 2007.
Merkouriadi, I. and Leppäranta, M.: Long-term analysis of hydrography
and sea-ice data in Tvärminne, Gulf of Finland, Baltic Sea, Climatic
Change, 124, 849–859, https://doi.org/10.1007/s10584-014-1130-3, 2014.
Mėžinė, J., Ferrarin, C., Vaičiutė, D., Idzelytė,
R., Zemlys, P., and Umgiesser, G.: Sediment transport mechanisms in a lagoon
with high river discharge and sediment loading, Water, 11, 1970,
https://doi.org/10.3390/w11101970, 2019.
Middelkoop, H., Daamen, K., Gellens, D., Grabs, W., Kwadijk, J. C., Lang,
H., Parmet, B. W. A., Schädler, B., Schulla, J., and Wilke, K.: Impact
of Climate Change on Hydrological Regimes and Water Resources Management in
the Rhine Basin, Climatic Change, 49, 105–128,
https://doi.org/10.1023/A:1010784727448, 2001.
Neitsch, S. L., Arnold, J. G., Kiniry, J. R., and Williams, J. R.: Soil and
Water Assessment Tool Theoretical Documentation Version 2009, Texas Water
Resources Institute, College Station, Texas, 2009.
Newton, A., Brito, A. C., Icely, J. D., Derolez, V., Clara, I., Angus, S.,
Schernewski, G., Inácio, M., Lillebø, A. I., Sousa, A. I.,
Béjaoui, B., Solidoro, C., Tosic, M., Cañedo-Argüelles, M.,
Yamamuro, M., Reizopoulou, S., Tseng, H.-C., Canu, D., Roselli, L., Maanan,
M., Cristina, S., Ruiz-Fernández, A. C., Lima, R. F. de, Kjerfve, B.,
Rubio-Cisneros, N., Pérez-Ruzafa, A., Marcos, C., Pastres, R., Pranovi,
F., Snoussi, M., Turpie, J., Tuchkovenko, Y., Dyack, B., Brookes, J.,
Povilanskas, R., and Khokhlov, V.: Assessing, quantifying and valuing the
ecosystem services of coastal lagoons, J. Nat. Conserv., 44,
50–65, https://doi.org/10.1016/j.jnc.2018.02.009, 2018.
Olenin, S. and Daunys, D.: Coastal Typology Based on Benthic Biotope and
Community Data: The Lithuanian Case Study, Coastline Reports, 4, 65–83,
2004.
Omstedt, A., Gustafsson, B., Rodhe, J., and Walin, G.: Use of Baltic Sea
modelling to investigate the water cycle and the heat balance in GCM and
regional climate models, Clim. Res., 15, 95–108,
https://doi.org/10.3354/cr015095, 2000.
PAIC: Enhancement of SWAT model. Supplement of 3rd Interim report, SIA
“Procesu analīzes un izpētes centrs”, Latvia, 42
pp., 2015.
Pérez-Ruzafa, A., Marcos, C., Pérez-Ruzafa, I. M., and
Pérez-Marcos, M.: Coastal lagoons: “transitional ecosystems” between
transitional and coastal waters, J. Coast. Conserv., 15, 369–392,
https://doi.org/10.1007/s11852-010-0095-2, 2011.
Pihlainen, S., Zandersen, M., Hyytiäinen, K., Andersen, H. E.,
Bartosova, A., Gustafsson, B., Jabloun, M., McCrackin, M., Meier, H. E. M.,
Olesen, J. E., Saraiva, S., Swaney, D., and Thodsen, H.: Impacts of changing
society and climate on nutrient loading to the Baltic Sea, Sci. Total
Environ., 731, 138935, https://doi.org/10.1016/j.scitotenv.2020.138935,
2020.
Riahi, K., Rao, S., Krey, V., Cho, C., Chirkov, V., Fischer, G., Kindermann,
G., Nakicenovic, N., and Rafaj, P.: RCP 8.5 – A scenario of comparatively
high greenhouse gas emissions, Climatic Change, 109, 33–57,
https://doi.org/10.1007/s10584-011-0149-y, 2011.
Rodrigues, M., Oliveira, A., Queiroga, H., Brotas, V., and Fortunato, A. B.:
Modelling the effects of climate change in estuarine ecosystems with coupled
hydrodynamic and biogeochemical models, Dev. Environ. Model., 27, 271–288,
https://doi.org/10.1016/B978-0-444-63536-5.00012-0, 2015.
Seifert, T., Tauber, F., and Kayser, B.: A high resolution spherical grid
topography of the Baltic Sea – 2nd Edn., [data set], https://www.io-warnemuende.de/topography-of-the-baltic-sea.html, 2001.
Siitam, L., Sipelgas, L., Pärn, O., and Uiboupin, R.: Statistical
characterization of the sea ice extent during different winter scenarios in
the Gulf of Riga (Baltic Sea) using optical remote-sensing imagery, Int. J.
Remote Sens., 38, 617–638, https://doi.org/10.1080/01431161.2016.1268734,
2017.
Stonevičius, E., Rimkus, E., Štaras, A., Kažys, J., and
Valiuškevičius, G.: Climate change impact on the Nemunas River
basinhydrology in the 21st century, Boreal Environ. Res., 22, 49–65, 2017.
Tapiador, F. J., Roca, R., Del Genio, A., Dewitte, B., Petersen, W., and
Zhang, F.: Is Precipitation a Good Metric for Model Performance?, B. Am.
Meteorol. Soc., 100, 223–233, https://doi.org/10.1175/BAMS-D-17-0218.1,
2019.
Tedesco, L., Vichi, M., Haapala, J., and Stipa, T.: An enhanced sea-ice
thermodynamic model applied to the Baltic Sea, Boreal Environ. Res., 14,
68–80, 2009.
Thomson, A. M., Calvin, K. V., Smith, S. J., Kyle, G. P., Volke, A., Patel,
P., Delgado-Arias, S., Bond-Lamberty, B., Wise, M. A., Clarke, L. E., and
Edmonds, J. A.: RCP4.5: a pathway for stabilization of radiative forcing by
2100, Climatic Change, 109, 77–94,
https://doi.org/10.1007/s10584-011-0151-4, 2011.
Umgiesser, G., Canu, D. M., Cucco, A., and Solidoro, C.: A finite element
model for the Venice Lagoon. Development, set up, calibration and
validation, J. Marine Syst., 51, 123–145,
https://doi.org/10.1016/j.jmarsys.2004.05.009, 2004.
Umgiesser, G., Ferrarin, C., Cucco, A., De Pascalis, F., Bellafiore, D.,
Ghezzo, M., and Bajo, M.: Comparative hydrodynamics of 10 Mediterranean
lagoons by means of numerical modeling, J. Geophys. Res.-Ocean., 119,
2212–2226, https://doi.org/10.1002/2013JC009512, 2014.
Umgiesser, G., Zemlys, P., Erturk, A., Razinkovas-Baziukas, A., Mezine, J.,
and Ferrarin, C.: Seasonal renewal time variability in the Curonian Lagoon
caused by atmospheric and hydrographical forcing, Ocean Sci., 12, 391–402,
https://doi.org/10.5194/os-12-391-2016, 2016.
Valiuškevičius, G., Stonevičius, E., Stankūnavičius, G.,
and Brastovickytė-Stankevič, J.: Severe floods in Nemunas River
Delta, Baltica, 31, 89–99, https://doi.org/10.5200/baltica.2018.31.09,
2018.
van Vuuren, D. P., Stehfest, E., den Elzen, M. G. J., Kram, T., van Vliet,
J., Deetman, S., Isaac, M., Klein Goldewijk, K., Hof, A., Mendoza Beltran,
A., Oostenrijk, R., and van Ruijven, B.: RCP2.6: exploring the possibility
to keep global mean temperature increase below 2 ∘C, Climatic
Change, 109, 95–116, https://doi.org/10.1007/s10584-011-0152-3, 2011.
Vigouroux, G., Kari, E., Beltrán-Abaunza, J. M., Uotila, P., Yuan, D.,
and Destouni, G.: Trend correlations for coastal eutrophication and its main
local and whole-sea drivers – Application to the Baltic Sea, Sci.
Total Environ., 779, 146367,
https://doi.org/10.1016/j.scitotenv.2021.146367, 2021.
Vohland, K., Rannow, S., and Stagl, J.: Climate Change Impact Modelling
Cascade – Benefits and Limitations for Conservation Management, 63–76,
https://doi.org/10.1007/978-94-007-7960-0_5, 2014.
von Storch, H., Omstedt, A., Pawlak, J., and Reckermann, M.: Introduction
and Summary, 1–22, https://doi.org/10.1007/978-3-319-16006-1_1, 2015.
Vousdoukas, M. I., Mentaschi, L., Hinkel, J., Ward, P. J., Mongelli, I.,
Ciscar, J.-C., and Feyen, L.: Economic motivation for raising coastal flood
defenses in Europe, Nat. Commun., 11, 2119,
https://doi.org/10.1038/s41467-020-15665-3, 2020.
Vybernaite-Lubiene, I., Zilius, M., Saltyte-Vaisiauske, L., and Bartoli, M.:
Recent Trends (2012–2016) of N, Si, and P Export from the Nemunas River
Watershed: Loads, Unbalanced Stoichiometry, and Threats for Downstream
Aquatic Ecosystems, Water, 10, 1178, https://doi.org/10.3390/w10091178,
2018.
Vybernaite-Lubiene, I., Zilius, M., Bartoli, M., Petkuviene, J., Zemlys, P.,
Magri, M., and Giordani, G.: Biogeochemical Budgets of Nutrients and
Metabolism in the Curonian Lagoon (South East Baltic Sea): Spatial and
Temporal Variations, Water, 14, 164, https://doi.org/10.3390/w14020164,
2022.
Wang, S., Dieterich, C., Döscher, R., Höglund, A., Hordoir, R.,
Meier, H. E. M., Samuelsson, P., and Schimanke, S.: Development and
evaluation of a new regional coupled atmosphere–ocean model in the North
Sea and Baltic Sea, Tellus A, 67, 24284,
https://doi.org/10.3402/tellusa.v67.24284, 2015.
Watson, E. B., Hinojosa-Corona, A., Krause, J. R., Herguera, J. C.,
McDonnell, J., Villegas Manríquez, K. R. V., Gannon, M. E., and Gray,
A. B.: Lagoon Biogeochemical Processing is Reflected in Spatial Patterns of
Sediment Stable Isotopic Ratios, J. Mar. Sci. Eng., 8, 874,
https://doi.org/10.3390/jmse8110874, 2020.
Žaromskis, R.: Oceans, Seas, Estuaries, Debesija, Vilnius, edited by: Pruskuvienė, G., ISBN 9986-652-02-2, 1996.
Zemlys, P., Ferrarin, C., Umgiesser, G., Gulbinskas, S., and Bellafiore, D.: Investigation of saline water intrusions into the Curonian Lagoon (Lithuania) and two-layer flow in the Klaipėda Strait using finite element hydrodynamic model, Ocean Sci., 9, 573–584, https://doi.org/10.5194/os-9-573-2013, 2013.
Zhu, S., Luo, Y., Ptak, M., Sojka, M., Ji, Q., Choiński, A., and Kuang,
M.: A hybrid model for the forecasting of sea surface water temperature
using the information of air temperature: a case study of the Baltic Sea,
All Earth, 34, 27–38, https://doi.org/10.1080/27669645.2022.2058689, 2022.
Žilinskas, G., Jarmalavičius, D., Pupienis, D., Gulbinas, G.,
Korotkich, P., Palčiauskaitė, R., Pileckas, M., and Raščius,
G.: Curonian Lagoon coastal management study, Tech. Rep., Nature Heritage
Fund, 2012.
Short summary
This work is focused on the impacts of climate change on a complex water flow system in the southeastern (SE) Baltic Sea, covering the Nemunas river basin and Curonian Lagoon. The results show that lagoon and sea will receive more water coming from the Nemunas. This will lead to a decreased frequency of saltwater inflow to the lagoon, and water will take less time to renew. Water temperatures in the entire lagoon and the SE Baltic Sea will increase steadily, and salinity values will decrease.
This work is focused on the impacts of climate change on a complex water flow system in the...