Articles | Volume 18, issue 3
https://doi.org/10.5194/os-18-881-2022
https://doi.org/10.5194/os-18-881-2022
Research article
 | 
09 Jun 2022
Research article |  | 09 Jun 2022

Data-assimilation-based parameter estimation of bathymetry and bottom friction coefficient to improve coastal accuracy in a global tide model

Xiaohui Wang, Martin Verlaan, Jelmer Veenstra, and Hai Xiang Lin

Related authors

Position correction in dust storm forecasting using LOTOS-EUROS v2.1: grid-distorted data assimilation v1.0
Jianbing Jin, Arjo Segers, Hai Xiang Lin, Bas Henzing, Xiaohui Wang, Arnold Heemink, and Hong Liao
Geosci. Model Dev., 14, 5607–5622, https://doi.org/10.5194/gmd-14-5607-2021,https://doi.org/10.5194/gmd-14-5607-2021, 2021
Short summary

Cited articles

Arbic, B. K., Mitrovica, J. X., MacAyeal, D. R., and Milne, G. A.: On the factors behind large Labrador Sea tides during the last glacial cycle and the potential implications for Heinrich events, Paleoceanography, 23, PA3211, https://doi.org/10.1029/2007PA001573, 2008. a
Arbic, B. K., Wallcraft, A. J., and Metzger, E. J.: Concurrent simulation of the eddying general circulation and tides in a global ocean model, Ocean Model., 32, 175–187, https://doi.org/10.1016/j.ocemod.2010.01.007, 2010. a
AVISO: Global Tide – FES2014, AVISO [data set], https://www.aviso.altimetry.fr/en/data/products/auxiliary-products/global-tide-fes/description-fes2014.html, last access: 31 May 2022. a
Bij de Vaate, I., Vasulkar, A. N., Slobbe, D. C., and Verlaan, M.: The Influence of Arctic Landfast Ice on Seasonal Modulation of the M2 Tide, J. Geophys. Res.-Ocean., 126, e2020JC016630, https://doi.org/10.1029/2020JC016630, 2021. a, b
Blakely, C. P., Ling, G., Pringle, W. J., Contreras, M. T., Wirasaet, D., Westerink, J. J., Moghimi, S., Seroka, G., Shi, L., Myers, E., and Owensby, M.: Dissipation and Bathymetric Sensitivities in an Unstructured Mesh Global Tidal Model, Earth Space Sci. Open Arch., 127, e2021JC018178, https://doi.org/10.1002/essoar.10509993.1, 2022. a
Download
Short summary
The accuracy of the Global Tide and Surge Model is significantly affected by some parameters. We correct the bathymetry and bottom friction coefficient with mathematical methods to improve model accuracy. The lack of tide gauge data in many coastal areas affects the correction process. We propose using observations from altimetry tidal products like FES2014 that have higher accuracy than our model to offset the data lack. Model accuracy is greatly improved, especially in the European shelf.