Articles | Volume 18, issue 2
https://doi.org/10.5194/os-18-321-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-18-321-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Occurrence of structural aluminium (Al) in marine diatom biological silica: visible evidence from microscopic analysis
Qian Tian
CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Institutions of Earth Science, Chinese Academy of Sciences, Guangzhou 510640, China
CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
University of Chinese Academy of Sciences, Beijing 100049, China
Dong Liu
CORRESPONDING AUTHOR
CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Institutions of Earth Science, Chinese Academy of Sciences, Guangzhou 510640, China
CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, China
current addresses: Guangzhou Institute of Geochemistry, Chinese Academy of
Sciences Wushan, Guangzhou, 510640, China
Peng Yuan
CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Institutions of Earth Science, Chinese Academy of Sciences, Guangzhou 510640, China
CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
Mengyuan Li
CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Institutions of Earth Science, Chinese Academy of Sciences, Guangzhou 510640, China
CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
University of Chinese Academy of Sciences, Beijing 100049, China
Weifeng Yang
State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, China
Jieyu Zhou
CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Institutions of Earth Science, Chinese Academy of Sciences, Guangzhou 510640, China
CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
University of Chinese Academy of Sciences, Beijing 100049, China
Huihuang Wei
CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Institutions of Earth Science, Chinese Academy of Sciences, Guangzhou 510640, China
CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
University of Chinese Academy of Sciences, Beijing 100049, China
Junming Zhou
CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Institutions of Earth Science, Chinese Academy of Sciences, Guangzhou 510640, China
CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
University of Chinese Academy of Sciences, Beijing 100049, China
Haozhe Guo
CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Institutions of Earth Science, Chinese Academy of Sciences, Guangzhou 510640, China
CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
University of Chinese Academy of Sciences, Beijing 100049, China
Cited articles
Armbrust, E. V.: The life of diatoms in the world's oceans, Nature, 459,
185–192, https://doi.org/10.1038/nature08057, 2009.
Baines, S. B., Twining, B. S., Brzezinski, M. A., Nelson, D. M., and Fisher,
N. S.: Causes and biogeochemical implications of regional differences in
silicification of marine diatoms, Global Biogeochem. Cy., 24, 1–15,
https://doi.org/10.1029/2010gb003856, 2010.
Beck, L., Gehlen, M., Flank, A. M., van Bennekom, A. J., and van Beusekom,
J. E. E.: The relationship between Al and Si in biogenic silica as
determined by PIXE and XAS, Nucl. Instrum. Meth. B, 189,
180–184, https://doi.org/10.1016/S0168-583X(01)01035-7, 2002.
Chou, L. and Wollast, R.: Biogeochemical behavior and mass balance of
dissolved aluminum in the western Mediterranean Sea, Deep-Sea Res. Pt.
II, 44, 741–768, https://doi.org/10.1016/s0967-0645(96)00092-6, 1997.
Couradeau, E., Benzerara, K., Gerard, E., Moreira, D., Bernard, S., Brown Jr.,
G. E., and Lopez-Garcia, P.: An Early-Branching Microbialite
Cyanobacterium Forms Intracellular Carbonates, Science, 336, 459–462,
https://doi.org/10.1126/science.1216171, 2012.
de Jonge, M. D., Holzner, C., Baines, S. B., Twining, B. S., Ignatyev, K.,
Diaz, J., Howard, D. L., Legnini, D., Miceli, A., McNulty, I., Jacobsen, C.
J., and Vogt, S.: Quantitative 3D elemental microtomography of Cyclotella meneghiniana at 400-nm
resolution, P. Natl. Acad. Sci. USA, 107, 15676–15680,
https://doi.org/10.1073/pnas.1001469107, 2010.
De La Rocha, C. L., Nowald, N., and Passow, U.: Interactions between diatom
aggregates, minerals, particulate organic carbon, and dissolved organic
matter: Further implications for the ballast hypothesis, Global
Biogeochem. Cy., 22, GB4005, https://doi.org/10.1029/2007gb003156, 2008.
Dixit, S., van Cappellen, P., and van Bennekom, A. J.: Processes controlling
solubility of biogenic silica and pore water build-up of silicic acid in
marine sediments, Mar. Chem., 73, 333–352, https://doi.org/10.1016/s0304-4203(00)00118-3, 2001.
Gehlen, M., Beck, L., Calas, G., Flank, A. M., van Bennekom, A. J., and van
Beusekom, J. E. E.: Unraveling the atomic structure of biogenic silica:
Evidence of the structural association of Al and Si in diatom frustules,
Geochim. Cosmochim. Ac., 66, 1601–1609, https://doi.org/10.1016/s0016-7037(01)00877-8, 2002.
Gehlen, M., Heinze, C., Maier-Reimer, E., and Measures, C. I.: Coupled Al-Si
geochemistry in an ocean general circulation model: A tool for the
validation of oceanic dust deposition fields?, Global Biogeochem. Cy.,
17, 1028, https://doi.org/10.1029/2001GB001549, 2003.
Gillmore, M. L., Golding, L. A., Angel, B. M., Adams, M. S., and Jolley, D.
F.: Toxicity of dissolved and precipitated aluminium to marine diatoms,
Aquat. Toxicol., 174, 82–91, https://doi.org/10.1016/j.aquatox.2016.02.004, 2016.
Guillard, R. R. and Ryther, J. H.: Studies of marine planktonic diatoms, I.
Cyclotella nana Hustedt, and Detonula confervacea (cleve) Gran, Can.
J. Microbiol., 8, 229–239, https://doi.org/10.1139/m62-029, 1962.
Guillard, R. R. L.: Culture of phytoplankton for feeding marine
invertebrates, in: culture of marine invertebrate animals: proceedings –
1st Conference on Culture of Marine Invertebrate Animals Greenport, edited
by: Smith, W. L. and Chanley, M. H., Springer US, Boston, MA, 29–60,
https://doi.org/10.1007/978-1-4615-8714-9_3,
1975.
Hall, I. R., Hydes, D. J., Statham, P. J., and Overnell, J.: Seasonal
variations in the cycling of aluminium, cadmium and manganese in a Scottish
sea loch: biogeochemical processes involving suspended particles,
Cont. Shelf Res., 19, 1783–1808, https://doi.org/10.1016/s0278-4343(99)00056-4, 1999.
Han, Q., Moore, J. K., Zender, C., Measures, C., and Hydes, D.: Constraining
oceanic dust deposition using surface ocean dissolved Al, Global
Biogeochem. Cy., 22, GB2003, https://doi.org/10.1029/2007GB002975, 2008.
Honda, M. C. and Watanabe, S.: Importance of biogenic opal as ballast of
particulate organic carbon (POC) transport and existence of mineral
ballast-associated and residual POC in the Western Pacific Subarctic Gyre,
Geophys. Res. Lett., 37, L02605, https://doi.org/10.1029/2009GL041521, 2010.
Hydes, D. J.: Dissolved aluminium concentration in sea water, Nature, 268,
136–137, https://doi.org/10.1038/268136a0, 1977.
Isson, T. T. and Planavsky, N. J.: Reverse weathering as a long-term stabilizer of
marine pH and planetary climate, Nature, 560, 471–475, https://doi.org/10.1038/s41586-018-0408-4, 2018.
Koning, E., Gehlen, M., Flank, A. M., Calas, G., and Epping, E.: Rapid
post-mortem incorporation of aluminum in diatom frustules: Evidence from
chemical and structural analyses, Mar. Chem., 106, 208–222, https://doi.org/10.1016/j.marchem.2006.06.009, 2007.
Leblanc, K., Quéguiner, B., Diaz, F., Cornet, V., Michel-Rodriguez, M.,
Durrieu de Madron, X., Bowler, C., Malviya, S., Thyssen, M., Grégori,
G., Rembauville, M., Grosso, O., Poulain, J., de Vargas, C., Pujo-Pay, M.,
and Conan, P.: Nanoplanktonic diatoms are globally overlooked but play a
role in spring blooms and carbon export, Nat. Commun., 9, 953,
https://doi.org/10.1038/s41467-018-03376-9, 2018.
Liu, D., Yuan, P., Tian, Q., Liu, H., Deng, L., Song, Y., Zhou, J., Losic,
D., Zhou, J., Song, H., Guo, H., and Fan, W.: Lake sedimentary biogenic
silica from diatoms constitutes a significant global sink for aluminium,
Nat. Commun., 10, 4829,
https://doi.org/10.1038/s41467-019-12828-9, 2019.
Liu, Q., Zhou, L., Liu, F., Fortin, C., Tan, Y., Huang, L., and Campbell, P.
G. C.: Uptake and subcellular distribution of aluminum in a marine diatom,
Ecotox. Environ. Safe., 169, 85–92, https://doi.org/10.1016/j.ecoenv.2018.10.095, 2019.
Machill, S., Kohler, L., Ueberlein, S., Hedrich, R., Kunaschk, M., Paasch,
S., Schulze, R., and Brunner, E.: Analytical studies on the incorporation of
aluminium in the cell walls of the marine diatom Stephanopyxis turris, Biometals, 26, 141–150,
https://doi.org/10.1007/s10534-012-9601-3, 2013.
Mackenzie, F. T. and Kump, L. R.: Reverse weathering, clay mineral
formation, and oceanic element cycles, Science, 270, 586–587, https://doi.org/10.1126/science.270.5236.586, 1995.
Measures, C. I. and Edmond, J. M.: Aluminum in the south-atlantic –
steady-state distribution of a short residence time element, J.
Geophys. Res.-Ocean., 95, 5331–5340, https://doi.org/10.1029/JC095iC04p05331, 1990.
Measures, C. I. and Vink, S.: Seasonal variations in the distribution of Fe
and Al in the surface waters of the Arabian Sea, Deep-Sea Res. Pt.
II, 46, 1597–1622, https://doi.org/10.1016/s0967-0645(99)00037-5, 1999.
Measures, C. I. and Vink, S.: On the use of dissolved aluminum in surface
waters to estimate dust deposition to the ocean, Global Biogeochem.
Cy., 14, 317–327, https://doi.org/10.1029/1999gb001188,
2000.
Menzel Barraqueta, J.-L., Samanta, S., Achterberg, E. P., Bowie, A. R.,
Croot, P., Cloete, R., De Jongh, T., Gelado-Caballero, M. D., Klar, J. K.,
Middag, R., Loock, J. C., Remenyi, T. A., Wenzel, B., and Roychoudhury, A.
N.: A first global oceanic compilation of observational dissolved aluminum
data with regional statistical data treatment, Front. Mar. Sci.,
7, 468, https://doi.org/10.3389/fmars.2020.00468, 2020.
Michalopoulos, P., Aller, R. C., and Reeder, R. J.: Conversion of diatoms to
clays during early diagenesis in tropical, continental shelf muds, Geology,
28, 1095–1098, https://doi.org/10.1130/0091-7613(2000)28<1095:codtcd>2.0.co;2, 2000.
Moran, S. B. and Moore, R. M.: Evidence from mesocosm studies for biological
removal of dissolved aluminum from sea-water, Nature, 335, 706–708,
https://doi.org/10.1038/335706a0, 1988.
Nelson, D. M., DeMaster, D. J., Dunbar, R. B., and Smith, W. O.: Cycling of
organic carbon and biogenic silica in the Southern Ocean: Estimates of
water-column and sedimentary fluxes on the Ross Sea continental shelf,
J. Geophys. Res.-Ocean., 101, 18519–18532, https://doi.org/10.1029/96jc01573, 1996.
Panagiotopoulos, C., Goutx, M., Suroy, M., and Moriceau, B.: Phosphorus
limitation affects the molecular composition of Thalassiosira weissflogii leading to increased
biogenic silica dissolution and high degradation rates of cellular
carbohydrates, Org. Geochem., 148, 104068, https://doi.org/10.1016/j.orggeochem.2020.104068, 2020.
Ragueneau, O., Schultes, S., Bidle, K., Claquin, P., and Moriceau, B.: Si
and C interactions in the world ocean: Importance of ecological processes
and implications for the role of diatoms in the biological pump, Global
Biogeochem. Cy., 20, GB4S02, https://doi.org/10.1029/2006GB002688, 2006.
Ren, H., Brunelle, B. G., Sigman, D. M., and Robinson, R. S.: Diagenetic
aluminum uptake into diatom frustules and the preservation of diatom-bound
organic nitrogen, Mar. Chem., 155, 92–101, https://doi.org/10.1016/j.marchem.2013.05.016, 2013.
Ren, J. L., Zhang, G.-L., Zhang, J., Shi, J.-H., Liu, S.-M., Li, F.-M., Jin,
J., and Liu, C.-G.: Distribution of dissolved aluminum in the Southern
Yellow Sea: Influences of a dust storm and the spring bloom, Mar.
Chem., 125, 69–81, https://doi.org/10.1016/j.marchem.2011.02.004, 2011.
Riebesell, U.: Photosynthesis – Carbon fix for a diatom, Nature, 407,
959–960, https://doi.org/10.1038/35039665, 2000.
Schlitzer, R., Anderson, R. F., Dodas, E. M., Lohan, M., Geibert, W.,
Tagliabue, A., and Zurbrick, C.: The GEOTRACES Intermediate Data Product 2017,
Chem. Geol., 493, 210–223, https://doi.org/10.1016/j.chemgeo.2018.05.040, 2018.
Shi, R., Li, G., Zhou, L., Liu, J., and Tan, Y.: The increasing aluminum
content affects the growth, cellular chlorophyll a and oxidation stress of
cyanobacteria Synechococcus sp. WH7803, Oceanol. Hydrobiol. Stud., 44,
343–351, https://doi.org/10.1515/OHS-2015-0033, 2015.
Smetacek, V.: Diatoms and the ocean carbon cycle, Protist, 150, 25–32,
https://doi.org/10.1016/s1434-4610(99)70006-4, 1999.
Stallard, R. F.: Terrestrial sedimentation and the carbon cycle: Coupling
weathering and erosion to carbon burial, Global Biogeochem. Cy., 12,
231–257, https://doi.org/10.1029/98gb00741, 1998.
Taylor, S. R.: Abundance of chemical elements in the continental crust – a
new table, Geochim. Cosmochim. Ac., 28, 1273–1285, https://doi.org/10.1016/0016-7037(64)90129-2, 1964.
Tréguer, P. and Pondaven, P.: Silica control of carbon dioxide, Nature,
406, 358–359, https://doi.org/10.1038/35019236, 2000.
Tréguer, P., Bowler, C., Moriceau, B., Dutkiewicz, S., Gehlen, M.,
Aumont, O., Bittner, L., Dugdale, R., Finkel, Z., Iudicone, D., Jahn, O.,
Guidi, L., Lasbleiz, M., Leblanc, K., Levy, M., and Pondaven, P.: Influence
of diatom diversity on the ocean biological carbon pump, Nat. Geosci.,
11, 27–37, https://doi.org/10.1038/s41561-017-0028-x, 2017.
Twining, B. S., Baines, S. B., Vogt, S., and de Jonge, M. D.: Exploring
ocean biogeochemistry by single-cell microprobe analysis of protist
elemental composition, J. Eukaryot. Microbiol., 55, 151–162,
https://doi.org/10.1111/j.1550-7408.2008.00320.x, 2008.
van Cappellen, P., Dixit, S., and van Beusekom, J.: Biogenic silica
dissolution in the oceans: Reconciling experimental and field-based
dissolution rates, Global Biogeochem. Cy., 16, 23-21–23-10, https://doi.org/10.1029/2001GB001431, 2002.
Van Bennekom, A. J., Buma, A. G. J., and Nolting R. F.: Dissolved aluminum in the Weddell-Scotia Confluence and effect of Al on the dissolution kinetics of biogenic silica, Mar. Chem., 35, 423–434, https://doi.org/10.1016/S0304-4203(09)90034-2, 1991.
van Hulten, M. M. P., Sterl, A., Middag, R., de Baar, H. J. W., Gehlen, M., Dutay, J.-C., and Tagliabue, A.: On the effects of circulation, sediment resuspension and biological incorporation by diatoms in an ocean model of aluminium, Biogeosciences, 11, 3757–3779, https://doi.org/10.5194/bg-11-3757-2014, 2014.
Wallmann, K., Aloisi, G., Haeckel, M., Tishchenko, P., Pavlova, G.,
Greinert, J., Kutterolf, S., and Eisenhauer, A.: Silicate weathering in
anoxic marine sediments, Geochim. Cosmochim. Ac., 72, 2895–2918,
https://doi.org/10.1016/j.gca.2008.03.026, 2008.
Xie, J., Bai, X., Lavoie, M., Lu, H., Fan, X., Pan, X., Fu, Z., and Qian,
H.: Analysis of the proteome of the marine diatom Phaeodactylum tricornutum exposed to aluminum
providing insights into aluminum toxicity mechanisms, Environ. Sci.
Technol., 49, 11182–11190, https://doi.org/10.1021/acs.est.5b03272, 2015.
Yuan, P., Liu, D., Zhou, J. M., Tian, Q., Song, Y. R., Wei, H. H., Wang, S.,
Zhou, J. Y., Deng, L. L., and Du, P. X.: Identification of the occurrence of
minor elements in the structure of diatomaceous opal using FIB and TEM-EDS,
Am. Mineral., 104, 1323–1335, https://doi.org/10.2138/am-2019-6917, 2019.
Short summary
In this study, we present visible direct evidence for Al occurrence in biogenic silica (BSi). Homogeneous distribution of Al was shown in BSi, and the average Al / Si atomic ratio was 0.011. Considering structural Al has dissolution–inhibition for BSi, the fundamental results not only indicate the significant contribution of marine diatoms to the biogeochemical migration of marine Al, but also imply the contribution mechanism of Al on the carbon sequestration of marine diatoms.
In this study, we present visible direct evidence for Al occurrence in biogenic silica (BSi)....