Articles | Volume 18, issue 6
https://doi.org/10.5194/os-18-1781-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-18-1781-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Reconstruction of Mediterranean coastal sea level at different timescales based on tide gauge records
Jorge Ramos-Alcántara
CORRESPONDING AUTHOR
Institut Mediterrani d'Estudis Avançats, IMEDEA (UIB-CSIC), Esporles (Mallorca), 07190, Spain
Centre Oceanogràfic de Balears, C.N. Instituto Español de
Oceanografía (CSIC), Palma de Mallorca, 07015, Spain
Damià Gomis
Institut Mediterrani d'Estudis Avançats, IMEDEA (UIB-CSIC), Esporles (Mallorca), 07190, Spain
Gabriel Jordà
Centre Oceanogràfic de Balears, C.N. Instituto Español de
Oceanografía (CSIC), Palma de Mallorca, 07015, Spain
Related authors
No articles found.
Gabriel Jordà and Javier Soto-Navarro
Ocean Sci., 19, 485–498, https://doi.org/10.5194/os-19-485-2023, https://doi.org/10.5194/os-19-485-2023, 2023
Short summary
Short summary
We develop a forecasting system for marine-litter concentration (MLC) in the Mediterranean based on a simple statistical method. The idea is that similar meteorological situations yield similar MLC patterns. We train our model with a historical meteorological dataset and MLCs from numerical simulations to recognize these situations and patterns and use them to forecast the future MLC. The results are promising; the approach has potential to become a suitable, cost-effective forecasting method.
Ivan Manso-Narvarte, Erick Fredj, Gabriel Jordà, Maristella Berta, Annalisa Griffa, Ainhoa Caballero, and Anna Rubio
Ocean Sci., 16, 575–591, https://doi.org/10.5194/os-16-575-2020, https://doi.org/10.5194/os-16-575-2020, 2020
Short summary
Short summary
Our main aim is to study the feasibility of reconstructing oceanic currents by extending the data obtained from coastal multiplatform observatories to nearby areas in 3D in the SE Bay of Biscay. To that end, two different data-reconstruction methods with different approaches were tested, providing satisfactory results. This work is a first step towards the real applicability of these methods in this study area, and it shows the capabilities of the methods for a wide range of applications.
Miguel Agulles, Gabriel Jordà, Burt Jones, Susana Agustí, and Carlos M. Duarte
Ocean Sci., 16, 149–166, https://doi.org/10.5194/os-16-149-2020, https://doi.org/10.5194/os-16-149-2020, 2020
Short summary
Short summary
The Red Sea holds one of the most diverse marine ecosystems in the world, although fragile and vulnerable to ocean warming. To better understand the long-term variability and trends of temperature in the whole water column, we produce a 3-D gridded temperature product (TEMPERSEA) for the period 1958–2017, based on a large number of in situ observations, covering the Red Sea and the Gulf of Aden.
Antonio Sanchez-Roman, Gabriel Jorda, Gianmaria Sannino, and Damia Gomis
Ocean Sci., 14, 1547–1566, https://doi.org/10.5194/os-14-1547-2018, https://doi.org/10.5194/os-14-1547-2018, 2018
Short summary
Short summary
We explore the vertical transfers of heat, salt and mass between the inflowing and outflowing layers at the Strait of Gibraltar by using a 3-D model with very high spatial resolution that allows for a realistic representation of the exchange. Results show a significant transformation of the water mass properties along their path through the strait, mainly induced by the recirculation of water between layers, while mixing seems to have little influence on the heat and salt exchanged.
Mathieu Hamon, Jonathan Beuvier, Samuel Somot, Jean-Michel Lellouche, Eric Greiner, Gabriel Jordà, Marie-Noëlle Bouin, Thomas Arsouze, Karine Béranger, Florence Sevault, Clotilde Dubois, Marie Drevillon, and Yann Drillet
Ocean Sci., 12, 577–599, https://doi.org/10.5194/os-12-577-2016, https://doi.org/10.5194/os-12-577-2016, 2016
Short summary
Short summary
The paper describes MEDRYS, a MEDiterranean sea ReanalYsiS at high resolution for the period 1992–2013. The NEMOMED12 ocean model is forced at the surface by a new high resolution atmospheric forcing dataset (ALDERA). Altimeter data, satellite SST and temperature and salinity vertical profiles are jointly assimilated. The ability of the reanalysis to represent the sea surface high-frequency variability, water mass characteristics and transports through the Strait of Gibraltar is shown.
Cited articles
Aviso (Archiving Validation and Interpretation of Satellite Oceanographic): Dynamic atmospheric Correction, Aviso [data set],
https://doi.org/10.24400/527896/a01-2022.001, 2021.
Bonaduce, A., Pinardi, N., Oddo, P., Spada, G., and Larnicol, G.: Sea-level
variability in the Mediterranean Sea from altimetry and tide gauges, Clim.
Dynam., 47, 2851–2866, https://doi.org/10.1007/s00382-016-3001-2, 2016.
Bretherton, F. P., Davis, R. E., and Fandry, C. B.: A technique for
objective analysis and design of oceanographic experiments applied to
MODE-73*, Deep-Sea Res. Oceanogr. Abstracts, 23, 559–582,
https://doi.org/10.1016/0011-7471(76)90001-2, 1976.
Bueh, C. and Nakamura, H.: Scandinavian pattern and its climatic impact, Q.
J. Roy. Meteorol. Soc., 133, 2117–2131, https://doi.org/10.1002/qj.173, 2007.
Calafat, F. M. and Gomis, D.: Reconstruction of Mediterranean sea level
fields for the period 1945–2000, Glob. Planet. Change, 66, 225–234,
https://doi.org/10.1016/j.gloplacha.2008.12.015, 2009.
Carrère, L. and Lyard, F.: Modeling the barotropic response of the
global ocean to atmospheric wind and pressure forcing – comparisons with
observations, Geophys. Res. Lett., 30, 1275, https://doi.org/10.1029/2002GL016473,
2003.
Cazenave, A., Palanisamy, H., and Ablain, M.: Contemporary sea level changes
from satellite altimetry: What have we learned? What are the new
challenges?, Adv. Space Res., 62, 1639–1653,
https://doi.org/10.1016/j.asr.2018.07.017, 2018.
Cipollini, P., Calafat, F. M., Jevrejeva, S., Melet, A., and Prandi, P.:
Monitoring Sea Level in the Coastal Zone with Satellite Altimetry and Tide
Gauges, Springer, Cham, 35–59,
https://doi.org/10.1007/978-3-319-56490-6_3, 2017.
CMEMS (Copernicus Marine Environment Monitoring Service): SEALEVEL_MED_PHY_L4_REP_OBSERVATIONS_008_051 [data set] (now included as part of
SEALEVEL_EUR_PHY_L4_MY_008_068), https://doi.org/10.48670/moi-00141, last access: 6 May 2021.
Dangendorf, S., Marcos, M., Wöppelmann, G., Conrad, C. P., Frederikse,
T., and Riva, R.: Reassessment of 20th century global mean sea level rise,
P. Natl. Acad. Sci. USA, 114, 5946–5951,
https://doi.org/10.1073/pnas.1616007114, 2017.
Douglas, B. C.: Sea Level Change in the Era of the Recording Tide Gauge, in:
Sea Level Rise: History and Consequences, Vol. 75, edited by: Douglas, B.
C., Kearney, M. S., and Leatherman, S. P., Academic Press, 37–64,
https://doi.org/10.1016/S0074-6142(01)80006-1, 2001.
FitzGerald, D. M., Fenster, M. S., Argow, B. A., and Buynevich, I. v.:
Coastal impacts due to sea-level rise, Annu. Rev. Earth Pl. Sc., 36,
601–647, https://doi.org/10.1146/annurev.earth.35.031306.140139, 2008.
Gomis, D. and Pedder, M. A.: Errors in dynamical fields inferred from
oceanographic cruise data: Part I. The impact of observation errors and the
sampling distribution, J. Mar. Syst., 56, 317–333,
https://doi.org/10.1016/j.jmarsys.2005.02.002, 2005.
Gomis, D., Ruiz, S., Sotillo, M. G., Álvarez-Fanjul, E., and Terradas,
J.: Low frequency Mediterranean sea level variability: The contribution of
atmospheric pressure and wind, Glob. Planet. Change, 63, 215–229,
https://doi.org/10.1016/j.gloplacha.2008.06.005, 2008.
Gomis, D., Tsimplis, M., Marcos, M., Fenoglio-Marc, L., Pérez, B.,
Raicich, F., Vilibić, I., Wöppelmann, G., and Monserrat, S.:
Mediterranean Sea Level Variability and trends, in: The climate of the
Mediterranena region: From the past to the future, edited by: Lionello, P.,
Elsevier, 257–299, https://doi.org/10.1016/B978-0-12-416042-2.00004-5, 2012.
Hasselmann, S., Lionello, P., and Hasselmann, K.: An optimal interpolation
scheme for the assimilation of spectral wave data, J. Geophys. Res.-Ocean.,
102, 15823–15836, https://doi.org/10.1029/96JC03453, 1997.
Hastie, T., Tibshirani, R., and Friedman, J.: Model Assessment and
Selection, in: The Elements of Statistical Learning, Data Mining, Inference,
and Prediction, Springer Series in Statistics, 219–260, Springer New York, NY,
https://doi.org/10.1007/978-0-387-21606-5, 2008.
Holgate, S. J. and Woodworth, P. L.: Evidence for enhanced coastal sea level
rise during the 1990s, Geophys. Res. Lett., 31, L07305,
https://doi.org/10.1029/2004GL019626, 2004.
Holgate, S. J., Matthews, A., Woodworth, P. L., Rickards, L. J., Tamisiea,
M. E., Bradshaw, E., Foden, P. R., Gordon, K. M., Jevrejeva, S., and Pugh,
J.: New data systems and products at the permanent service for mean sea
level, J. Coast. Res., 29, 493–504,
https://doi.org/10.2112/JCOASTRES-D-12-00175.1, 2013.
Jordà, G., Gomis, D., and Álvarez-Fanjul, E.: The VANI2-ERA hindcast
of sea-level residuals: atmospheric forcing of sea-level variability in the
Mediterranean Sea (1958–2008), Sci. Mar., 76, 133–146,
https://doi.org/10.3989/scimar.03612.19C, 2012.
Josey, S. A., Somot, S., and Tsimplis, M.: Impacts of atmospheric modes of
variability on Mediterranean Sea surface heat exchange, J. Geophys.
Res.-Ocean., 116, C02032, https://doi.org/10.1029/2010JC006685, 2011.
Juza, M., Mourre, B., Renault, L., Gómara, S., Sebastián, K., Lora,
S., Beltran, J. P., Frontera, B., Garau, B., Troupin, C., Torner, M.,
Heslop, E., Casas, B., Escudier, R., Vizoso, G., and Tintoré, J.: SOCIB
operational ocean forecasting system and multi-platform validation in the
western mediterranean sea, J. Oper. Oceanogr., 9, s155–s166,
https://doi.org/10.1080/1755876X.2015.1117764, 2016.
Kaplan, A., Kushnir, Y., Cane, M. A., and Blumenthal, M. B.: Reduced space
optimal analysis for historical data sets: 136 years of Atlantic sea surface
temperatures, J. Geophys. Res.-Ocean., 102, 27835–27860,
https://doi.org/10.1029/97JC01734, 1997.
Kirwan, M. L., Guntenspergen, G. R., D'Alpaos, A., Morris, J. T., Mudd, S.
M., and Temmerman, S.: Limits on the adaptability of coastal marshes to
rising sea level, Geophys. Res. Lett., 37, L23401,
https://doi.org/10.1029/2010GL045489, 2010.
le Cozannet, G., Nicholls, R. J., Hinkel, J., Sweet, W. v., McInnes, K. L.,
van de Wal, R. S. W., Slangen, A. B. A., Lowe, J. A., and White, K. D.: Sea
level change and coastal climate services: The way forward, J.
Mar. Sci. Eng., 5, 49, https://doi.org/10.3390/jmse5040049,
2017.
Lyu, K., Zhang, X., Church, J. A., Slangen, A. B. A., and Hu, J.: Time of
emergence for regional sea-level change, Nat. Clim. Change, 4, 1006–1010,
https://doi.org/10.1038/nclimate2397, 2014.
Marcos, M. and Tsimplis, M. N.: Forcing of coastal sea level rise patterns
in the North Atlantic and the Mediterranean Sea, Geophys. Res. Lett., 34, L18604,
https://doi.org/10.1029/2007GL030641, 2007a.
Marcos, M. and Tsimplis, M. N.: Variations of the seasonal sea level cycle
in southern Europe, J. Geophys. Res.-Ocean., 112, C12011,
https://doi.org/10.1029/2006JC004049, 2007b.
Marcos, M. and Tsimplis, M. N.: Coastal sea level trends in Southern Europe,
Geophys. J. Int., 175, 70–82,
https://doi.org/10.1111/j.1365-246X.2008.03892.x, 2008.
Marcos, M., Wöppelmann, G., Matthews, A., Ponte, R. M., Birol, F.,
Ardhuin, F., Coco, G., Santamaría-Gómez, A., Ballu, V., Testut, L.,
Chambers, D., and Stopa, J. E.: Coastal Sea Level and Related Fields from
Existing Observing Systems, Surv. Geophys., 40, 1293–1317,
https://doi.org/10.1007/s10712-019-09513-3, 2019.
Martínez-Asensio, A., Marcos, M., Tsimplis, M. N., Gomis, D., Josey,
S., and Jordà, G.: Impact of the atmospheric climate modes on
Mediterranean sea level variability, Glob. Planet. Change, 118, 1–15,
https://doi.org/10.1016/j.gloplacha.2014.03.007, 2014.
Meyssignac, B., Calafat, F. M., Somot, S., Rupolo, V., Stocchi, P., Llovel,
W., and Cazenave, A.: Two-dimensional reconstruction of the Mediterranean
sea level over 1970–2006 from tide gauge data and regional ocean circulation
model outputs, Glob. Planet. Change, 77, 49–61,
https://doi.org/10.1016/j.gloplacha.2011.03.002, 2011.
National Weather Service: Northern Hemisphere teleconnection patterns, Climate Prediction Center [data set], https://www.cpc.ncep.noaa.gov/data/teledoc/telecontents.shtml, last access: 23 September 2021.
Pedder, M. A.: Interpolation and Filtering of Spacial Observations Using
Successive Corrections and Gaussian Filters, Mon. Weather Rev., 121,
2889–2902,
https://doi.org/10.1175/1520-0493(1993)121<2889:IAFOSO>2.0.CO;2, 1993.
Pejic, D. and Arsic, M.: Minimization and Maximization of Functions:
Golden-Section Search in One Dimension, in: Exploring the DataFlow
Supercomputing Paradigm. Computer Communications and Networks, edited by:
Milutinovic, V. and Kotlar, M., Springer, Cham, 55–90,
https://doi.org/10.1007/978-3-030-13803-5_3, 2019.
Piccioni, G., Dettmering, D., Bosch, W., and Seitz, F.: TICON: TIdal
CONstants based on GESLA sea-level records from globally located tide
gauges, Geosci. Data J., 6, 97–104, https://doi.org/10.1002/gdj3.72, 2019.
Pozzi, F., di Matteo, T., and Aste, T.: Exponential smoothing weighted
correlations, Eur. Phys. J. B, 85, 175,
https://doi.org/10.1140/epjb/e2012-20697-x, 2012.
Ramos Alcántara, J., Gomis, D., and Jordà, G.: Reconstruction of Mediterranean coastal sea level at different timescales based on tide gauge records, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.945345, 2022.
Rasmussen, C. E.: Evaluation of gaussian processes and other methods for
non-linear regression, PhD thesis, University of Toronto, ISBN: 0-612-28300-3, https://hdl.handle.net/1807/10840 (last access: 29 July 2021), 1996.
Ross, T., Garrett, C., and Traon, P. Y. le: Western Mediterranean sea-level
rise: Changing exchange flow through the strait of Gibraltar, Geophys. Res.
Lett., 27, 2949–2952, https://doi.org/10.1029/2000GL011653, 2000.
Shchepetkin, A. F. and McWilliams, J. C.: The regional oceanic modeling
system (ROMS): A split-explicit, free-surface,
topography-following-coordinate oceanic model, Ocean Model., 9, 347–404,
https://doi.org/10.1016/j.ocemod.2004.08.002, 2005.
Spalding, M. D., Ruffo, S., Lacambra, C., Meliane, I., Hale, L. Z., Shepard,
C. C., and Beck, M. W.: The role of ecosystems in coastal protection:
Adapting to climate change and coastal hazards, Ocean Coast.
Manag., 90, 50–57, https://doi.org/10.1016/j.ocecoaman.2013.09.007,
2014.
Tintoré, J., Vizoso, G., Casas, B., Heslop, E., Pascual, A., Orfila, A., Ruiz, S., Martínez-Ledesma, M., Torner, M., Cusí, S., Diedrich, A., Balaguer, P., Gómez-Pujol, L., Álvarez-Ellacuria, A., Gómara, S., Sebastian, K., Lora, S., Beltrán, J. P., Renault, L., Juzà, M., Álvarez, D., March, D., Garau, B., Castilla, C., Cañellas, T., Roque, D., Lizarán, I., Pitarch, S., Carrasco, M. A., Lana, A., Mason, E., Escudier, R., Conti, D., Sayol, J. M., Barceló, B., Alemany, F., Reglero, P., Massuti, E., Vélez-Belchí, P., Ruiz, J., Oguz, T., Gómez, M., Álvarez, E., Ansorena, L., and Manriquez, M.: SOCIB: the Balearic Islands coastal ocean observing and forecasting system responding to science, technology and society needs, Mar. Technol. Soc. J., 47, 101–117, 2013.
Tsimplis, M. N. and Shaw, A. G. P.: Seasonal sea level extremes in the
Mediterranean Sea and at the Atlantic European coasts, Nat. Hazard. Earth
Sys., 10, 1457–1475, https://doi.org/10.5194/nhess-10-1457-2010, 2010.
Tsimplis, M. N., Shaw, A. G. P., Pascual, A., Marcos, M., Pasaric, M., and
Fenoglio-Marc, L.: Can we reconstruct the 20th century sea level variability
in the Mediterranean Sea on the basis of recent altimetric measurements?,
in: Remote Sensing of the European Seas, edited by: Barale, V. and Gade, M.,
307–318, Springer, Dordrecht,
https://doi.org/10.1007/978-1-4020-6772-3_23, 2008.
Vignudelli, S., Birol, F., Benveniste, J., Fu, L. L., Picot, N., Raynal, M.,
and Roinard, H.: Satellite Altimetry Measurements of Sea Level in the
Coastal Zone, Surv. Geophys., 40, 1319–1349,
https://doi.org/10.1007/s10712-019-09569-1, 2019.
Wolff, C., Vafeidis, A., Muis, S., Lincke, D., Satta, A., Lionello, P.,
Jimenez, J. A., Conte, D., and Hinkel, J.: A Mediterranean coastal database
for assessing the impacts of sea-level rise and associated hazards,
Sci. Data, 5, 180044, https://doi.org/10.1038/sdata.2018.44, 2018.
Woodworth, P., Melet, A., Marcos, M., Ray, R. D., Wöppelmann, G.,
Sasaki, Y. N., Cirano, M., Hibbert, A., Huthnance, J. M., Monserrat, S., and
Merrifield, M. A.: Forcing Factors Affecting Sea Level Changes at the Coast,
Sur. Geophys., 40, 1351–1397,
https://doi.org/10.1007/s10712-019-09531-1, 2019.
Woodworth, P. L., Hunter, J. R., Marcos, M., Caldwell, P., Menéndez, M.,
and Haigh, I.: Towards a global higher-frequency sea level dataset, Geosci.
Data J., 3, 50–59, https://doi.org/10.1002/gdj3.42, 2016.
Short summary
In a context of climate change, having sea level data all along the coast is essential. However, tide gauges yield pointwise observations, and satellite altimetry has limitations at the coast. We present a method that, learning from a years-long model output and using tide gauge observations only, is able to reconstruct sea level all along the coast. The accuracy of the reconstruction has been validated against independent observations and proven to be better than that of satellite altimetry.
In a context of climate change, having sea level data all along the coast is essential. However,...