Articles | Volume 18, issue 6
https://doi.org/10.5194/os-18-1763-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-18-1763-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Planktonic cnidarian responses to contrasting thermohaline and circulation seasonal scenarios in a tropical western boundary current system
Everton Giachini Tosetto
CORRESPONDING AUTHOR
MARBEC, Univ Montpellier, CNRS, IFREMER, IRD, Sète, 34200, France
Institut de Recherche pour le Développement, Sète, 34200,
France
Departamento de Oceanografia, Universidade Federal de Pernambuco,
Recife, 50670-901, Brazil
Arnaud Bertrand
MARBEC, Univ Montpellier, CNRS, IFREMER, IRD, Sète, 34200, France
Institut de Recherche pour le Développement, Sète, 34200,
France
Departamento de Oceanografia, Universidade Federal de Pernambuco,
Recife, 50670-901, Brazil
Departamento de Pesca e Aquicultura, Universidade Federal Rural de
Pernambuco, Recife, 52171-900, Brazil
Sigrid Neumann-Leitão
Departamento de Oceanografia, Universidade Federal de Pernambuco,
Recife, 50670-901, Brazil
Alex Costa da Silva
Departamento de Oceanografia, Universidade Federal de Pernambuco,
Recife, 50670-901, Brazil
Miodeli Nogueira Júnior
Departamento de Sistemática e Ecologia, Universidade Federal da
Paraíba, João Pessoa, 58051-900, Brazil
Related authors
No articles found.
Fabius Kouogang, Ariane Koch-Larrouy, Jorge Magalhaes, Alex Costa da Silva, Daphne Kerhervé, Arnaud Bertrand, Evan Cervelli, Jean-François Ternon, Pierre Rousselot, James Lee, Marcelo Rollnic, and Moacyr Araujo
EGUsphere, https://doi.org/10.5194/egusphere-2024-2548, https://doi.org/10.5194/egusphere-2024-2548, 2024
Short summary
Short summary
The first time direct measurements of turbulent dissipation from AMAZOMIX revealed high energy dissipations within [10-6,10-4] W.kg-1 caused at 65 % apart from internal tides in their generation zone, and [10-8,10-7] W.kg-1 caused at 50.4 % by mean circulation of surrounding water masses far fields. Finally, estimates of nutrient fluxes showed a very high flux of nitrate ([10-2, 10-0] mmol N m-2.s-1) and phosphate ([10-3, 10-1] mmol P m-2.s-1), due to both processes in Amazon region.
Fernand Assene, Ariane Koch-Larrouy, Isabelle Dadou, Michel Tchilibou, Guillaume Morvan, Jérôme Chanut, Alex Costa da Silva, Vincent Vantrepotte, Damien Allain, and Trung-Kien Tran
Ocean Sci., 20, 43–67, https://doi.org/10.5194/os-20-43-2024, https://doi.org/10.5194/os-20-43-2024, 2024
Short summary
Short summary
Twin simulations, with and without tides, are used to assess the impact of internal tides (ITs) on ocean temperature off the Amazon mouth at a seasonal scale. We found that in the surface layers, ITs and barotropic tides cause a cooling effect on sea surface temperature, subsequently leading to an increase in the net heat flux between the atmosphere and ocean. Vertical mixing is identified as the primary driver, followed by vertical and horizontal advection.
Ramilla Vieira Assunção, Anne Lebourges-Dhaussy, Alex Costa da Silva, Bernard Bourlès, Gary Vargas, Gildas Roudaut, and Arnaud Bertrand
Ocean Sci. Discuss., https://doi.org/10.5194/os-2021-101, https://doi.org/10.5194/os-2021-101, 2021
Publication in OS not foreseen
Short summary
Short summary
Active acoustics has been used to characterize physical structures and processes in the ocean, typically attributed to biological dispersion or turbulent structures. We take advantage of acoustic data from the Southwest Atlantic to test the feasibility of this approach in an oligotrophic region. The results show that the thermohaline structure impacts the vertical distribution of acoustic scatterers, however the methods tested did not allow a robust estimate of the thermohaline limits.
Cited articles
Anderson, M. J., Gorley, R. N., and Clarke, K. R.: Permanova For Primer:
Guide to Software and Statiscal Methods, PRIMER-E, Plymouth, 214 pp., 2008.
Apablaza, P. and Palma, S.: Efecto de la zona de mínimo oxígeno
sobre la migración vertical de zooplancton gelatinoso en la bahía
de Mejillones (Effect of the oxygen minimum zone on the vertical migration
of gelatinous zooplankton in Mejillones Bay), Investig. Mar., 34, 81–95,
https://doi.org/10.4067/S0717-71782006000200009, 2006.
Assunção, R. V., Silva, A. C., Roy, A., Bourlès, B., Silva, C.
H. S., Ternon, J.-F., Araujo, M., and Bertrand, A.: 3D characterisation of
the thermohaline structure in the southwestern tropical Atlantic derived
from functional data analysis of in situ profiles, Prog. Oceanogr., 187,
102399, https://doi.org/10.1016/j.pocean.2020.102399, 2020.
Ayala, D. J., Munk, P., Lundgreen, R. B. C., Traving, S. J., Jaspers, C.,
Jørgensen, T. S., Hansen, L. H., and Riemann, L.: Gelatinous plankton is
important in the diet of European eel (Anguilla anguilla) larvae in the
Sargasso Sea, Sci. Rep., 8, 6156,
https://doi.org/10.1038/s41598-018-24388-x, 2018.
Bertrand, A.: ABRACOS cruise, R/V Antea, https://doi.org/10.17600/15005600,
2015.
Bertrand, A.: ABRACOS 2 cruise, R/V Antea, https://doi.org/10.17600/17004100,
2017.
Boero, F.: Review of Jellyfish Blooms in the Mediterranean and Black Sea.
Studies and Reviews, General Fisheries Commission for the Mediterranean No
92, FAO, Rome, 64 pp., 2013.
Bouillon, J.: Hydromedusae, in: South Atlantic zooplankton, edited by:
Boltovskoy, D., Backhuys Publishers, Leiden, 424–512, 1999.
Bourles, B., Molinari, R. L., Johns, E., Wilson, W. D., and Leaman, K. D.:
Upper layer currents in the western tropical North Atlantic (1989–1991), J.
Geophys. Res.-Oceans, 104, 1361–1375, https://doi.org/10.1029/1998JC900025,
1999.
Brandini, F. P., Lopes, R. M., Gutseit, K. S., and Sassi, R.: Planctonologia
na plataforma continental do Brasil: diagnose e revisão
bibliográfica (Planktonology on the continental shelf of Brazil:
diagnosis and literature review), CEMAR/MMA/CIRM/FEMAR, Brasilia, ISBN 85-86576-01-8, 1997.
Carr, M.-E. and Kearns, E. J.: Production regimes in four Eastern Boundary
Current systems, Deep Sea Res. Pt. II, 50, 3199–3221,
https://doi.org/10.1016/j.dsr2.2003.07.015, 2003.
Castro, B. M., Brandini, F. P., Pires-Vanin, A. M. S., and Miranda, L. B.:
Multidisciplinary oceanographic processes on the Western Atlantic
continental shelf between 4∘ N and 34∘ S, The Sea, 14,
1–39, 2006.
Clarke, K. R. and Gorley, R. N.: PRIMER 6 + PERMANOVA, 2006.
Condon, R. H., Graham, W. M., Duarte, C. M., Pitt, K. A., Lucas, C. H.,
Haddock, S. H. D., Sutherland, K. R., Robinson, K. L., Dawson, M. N.,
Decker, M. B., Mills, C. E., Purcell, J. E., Malej, A., Mianzan, H., Uye,
S., Gelcich, S., and Madin, L. P.: Questioning the Rise of Gelatinous
Zooplankton in the World's Oceans, BioScience, 62, 160–169,
https://doi.org/10.1525/bio.2012.62.2.9, 2012.
Cotté, C. and Simard, Y.: Formation of dense krill patches under tidal
forcing at whale feeding hot spots in the St. Lawrence Estuary, Mar. Ecol.
Prog. Ser., 288, 199–210, https://doi.org/10.3354/meps288199, 2005.
Dossa, A. N., Silva, A. C., Chaigneau, A., Eldin, G., Araujo, M., and
Bertrand, A.: Near-surface western boundary circulation off Northeast
Brazil, Prog. Oceanogr., 190, 102475,
https://doi.org/10.1016/j.pocean.2020.102475, 2021.
Ekau, W. and Knoppers, B.: An introduction to the pelagic system of the
Northeast and East Brazilian shelf, Arch. Fish. Mar. Res., 47, 5–24,
1999.
Ekau, W., Westhaus-Ekau, P., and Medeiros, C.: Large scale distribution of
fish larvae in the continental shelf waters off North-East Brazil, Arch.
Fish. Mar. Res., 47, 183–200, 1999.
Farias, G. B., Molinero, J.-C., Carré, C., Bertrand, A., Bec, B., and
Melo, P. A. M. de C.: Uncoupled changes in phytoplankton biomass and size
structure in the western tropical Atlantic, J. Mar. Syst., 227, 103696,
https://doi.org/10.1016/j.jmarsys.2021.103696, 2022.
Farstey, V., Lazar, B., and Genin, A.: Expansion and homogeneity of the
vertical distribution of zooplankton in a very deep mixed-layer, Mar. Ecol.
Prog. Ser., 238, 91–100, https://doi.org/10.3354/meps238091, 2002.
Gamero-Mora, E., Ceballos-Corona, G., Gasca, R., and Morales-Blake, A.:
Análisis de la comunidad del zooplancton gelatinoso (Hydrozoa,
Ctenophora, Thaliacea) en el Pacífico central mexicano, abril-mayo 2011
(Analysis of the gelatinous zooplankton community (Hydrozoa, Ctenophora,
Thaliacea) in the Mexican Central Pacific, April–May 2011), Rev. Biol. Mar.
Oceanogr., 50, 111–124, https://doi.org/10.4067/S0718-19572015000100009,
2015.
Gibbons, M. J. and Buecher, E.: Short-term variability in the assemblage of
medusae and ctenophores following upwelling events in the southern Benguela
ecosystem, Mar. Ecol. Prog. Ser., 220, 169–177,
https://doi.org/10.3354/meps220169, 2001.
Gili, J. M., Pagès, F., Sabatès, A., and Ros, J. D.: Small-scale
distribution of a cnidarian population in the western Mediterranean, J.
Plankton Res., 10, 385–401, https://doi.org/10.1093/plankt/10.3.385, 1988.
Hadfield, M. and Sharples, J.: Modelling mixed-layer depth and plankton
biomass off the west coast of South Island, New Zealand, J. Mar. Syst., 8,
1–29, 1996.
Hays, G. C., Doyle, T. K., and Houghton, J. D. R.: A Paradigm Shift in the
Trophic Importance of Jellyfish?, Trends Ecol. Evol., 33, 874–884,
https://doi.org/10.1016/j.tree.2018.09.001, 2018.
Hazen, E., Friedlaender, A., Thompson, M., Ware, C., Weinrich, M., Halpin,
P., and Wiley, D.: Fine-scale prey aggregations and foraging ecology of
humpback whales Megaptera novaeangliae, Mar. Ecol. Prog. Ser., 395, 75–89,
https://doi.org/10.3354/meps08108, 2009.
Lepš, J. and Šmilauer, P.: Multivariate Analysis of Ecological Data
using CANOCO, Cambridge University Press, Cambridge, 269 pp., 2003.
Luo, J. Y., Grassian, B., Tang, D., Irisson, J. O., Greer, A., Guigand, C.
C., McClatchie, S., and Cowen, R. K.: Environmental drivers of the
fine-scale distribution of a gelatinous zooplankton community across a
mesoscale front, Mar. Ecol. Prog. Ser., 510, 129–149,
https://doi.org/10.3354/meps10908, 2014.
Mignot, A., Claustre, H., Uitz, J., Poteau, A., D'Ortenzio, F., and Xing,
X.: Understanding the seasonal dynamics of phytoplankton biomass and the
deep chlorophyll maximum in oligotrophic environments: A Bio-Argo float
investigation, Global Biogeochem. Cy., 28, 856–876,
https://doi.org/10.1002/2013GB004781, 2014.
Mills, C. E.: Jellyfish blooms: are populations increasing globally in
response to changing ocean conditions?, Hydrobiologia, 55–68,
https://doi.org/10.1007/978-94-010-0722-1_ 6, 2001.
Neumann-Leitão, S., Gusmao, L., Silva, T., do Nascimento-Vieira, D., and
Silva, A.: Mesozooplankton biomass and diversity in coastal and oceanic
waters off North-Eastern Brazil, Arch. Fish. Mar. Res., 47, 153–165, 1999.
Neumann-Leitao, S., Sant'anna, E. M. E., Gusmao, L. M. D. O., Do
Nascimento-Vieira, D. A., Paranagua, M. N., and Schwamborn, R.: Diversity
and distribution of the mesozooplankton in the tropical Southwestern
Atlantic, J. Plankton Res., 30, 795–805,
https://doi.org/10.1093/plankt/fbn040, 2008.
Nogueira, C. R. and Oliveira Jr., S. dos R.: Siphonophora from the coast of
Brazil (17∘ S to 24∘ S), Bol. Inst. Ocean., 39, 61–69,
1991.
Nogueira Júnior, M., Brandini, F. P., and Codina, J. C. U.: Distribution
of planktonic cnidarians in response to South Atlantic Central Water
intrusion in the South Brazilian Bight, Cont. Shelf Res., 89, 93–102,
https://doi.org/10.1016/j.csr.2014.02.022, 2014.
Nogueira Júnior, M., Tosetto, E. G., Baldoni, L. C., Dutto, S., Hidaka,
M., Lindsay, D. J., and Nagata, R. M.: Gelatinous Zooplankton, in: Marine
Biology A Functional Approach to the Oceans and their Organisms, edited by:
Pan, J. and Pratolongo, P. D., CRC Press, Boca Raton, 150–179,
https://doi.org/10.1201/9780429399244, 2022.
Pagès, F.: Mesoscale coupling between planktonic cnidarian distribution
and water masses during a temporal transition between active upwelling and
abatement in the northern Benguela system, South Afr. J. Mar. Sci., 12,
41–52, https://doi.org/10.2989/02577619209504689, 1992.
Pagès, F. and Gili: Effects of large-scale advective processes on
gelatinous zooplankton populations in the northern Benguela ecosystem, Mar.
Ecol. Prog. Ser., 75, 205–215, 1991.
Pagès, F. and Gili, J.-M.: Influence of Agulhas waters on the population
structure of planktonic Cnidarians in the southern Benguela Region, Sci.
Mar., 56, 109–123, 1992.
Pagès, F., Verheye, H. M., Gili, J.-M., and Flos, J.: Short-term effects
of coastal upwelling and wind reversals on epiplanktonic cnidarians in the
southern Benguela ecosystem, South Afr. J. Mar. Sci., 10, 203–211,
https://doi.org/10.2989/02577619109504632, 1991.
Pagès, F., González, H. E., Ramón, M., Sobarzo, M., and Gili,
J.-M.: Gelatinous zooplankton assemblages associated with water masses in
the Humboldt Current System, and potential predatory impact by Bassia
bassensis (Siphonophora: Calycophorae), Mar. Ecol. Prog. Ser., 210, 13–24,
https://doi.org/10.3354/meps210013, 2001.
Palma, G. S. and Rosales G, S.: Composición, distribución y
abundancia estacional del macroplancton de la bahía de Valparaíso
(Composition, distribution and seasonal abundance of the macroplankton of
the Bay of Valparaíso), Investig. Mar., 23, 49-66,
https://doi.org/10.4067/S0717-71781995002300003, 1995.
Polovina, J. J., Mitchum, G. T., and Evans, G. T.: Decadal and basin-scale
variation in mixed-layer depth and the impact on biological production in
the Central and North Pacific, 1960-88, Deep Sea Res., 42, 1701–1716, https://doi.org/10.1016/0967-0637(95)00075-H, 1995.
Pugh, P. R.: The diel migrations and distributions within a mesopelagic
community in the North East Atlantic. 7. Siphonophores, Prog. Oceanogr., 13,
461–489, https://doi.org/10.1016/0079-6611(84)90016-8, 1984.
Pugh, P. R.: Siphonophorae, in: South Atlantic Zooplankton, edited by:
Boltovskoy, D., Backhuys Publishers, Leiden, 467–511, 1999.
Purcell, J., Uye, S., and Lo, W.: Anthropogenic causes of jellyfish blooms
and their direct consequences for humans: a review, Mar. Ecol. Prog. Ser.,
350, 153–174, https://doi.org/10.3354/meps07093, 2007.
QGIS Development Team: QGIS Geographic Information System, 2022.
Rodríguez, K. M. and Ruiz, E. C. A.: Distribución y ecología
de medusas y sifonóforos en tres estaciones de la zona marino costera de
la Península de Santa Elena (Distribution and ecology of medusae and
siphonophores in three stations of the coastal marine zone of the Santa
Elena Peninsula), Ecuador, Rev. Científica Tecnológica UPSE, 6,
24–33, https://doi.org/10.26423/rctu.v6i2.443, 2019.
Santana, J. R., Costa, A. E. S. F. D., Veleda, D., Schwamborn, S. H. L.,
Mafalda Júnior, P. O., and Schwamborn, R.: Ichthyoplankton community
structure on the shelf break off northeastern Brazil, An. Acad. Bras.
Ciênc., 92, e20180851, https://doi.org/10.1590/0001-3765202020180851,
2020.
Schwamborn, R., Ekau, W., Pinto, A. S., Silva, T. A., and Saint-Paul, U.:
The contribution of estuarine decapod larvae to marine zooplankton
communities in northeast Brazil, Arch. Fish. Mar. Res., 17, 59–74, 1999.
Segura-Puertas, L., Franco-Gordo, C., Suárez-Morales, E., Gasca, R., and
Gódinez-Domínguez, E.: Summer composition and distribution of the
jellyfish (Cnidaria: Medusozoa) in the shelf area off the central Mexican
Pacific, Rev. Mex. Biodivers., 81, 103–112, 2010.
Signorini, S. R., Murtugudde, R. G., McClain, C. R., Christian, J. R.,
Picaut, J., and Busalacchi, A. J.: Biological and physical signatures in the
tropical and subtropical Atlantic, J. Geophys. Res.-Oceans, 104,
18367–18382, https://doi.org/10.1029/1999JC900134, 1999.
Silva, A. C., Chaigneau, A., Dossa, A. N., Eldin, G., Araujo, M., and
Bertrand, A.: Surface Circulation and Vertical Structure of Upper Ocean
Variability Around Fernando de Noronha Archipelago and Rocas Atoll During
Spring 2015 and Fall 2017, Front. Mar. Sci., 8, 598101,
https://doi.org/10.3389/fmars.2021.598101, 2021.
Sourisseau, M., Simard, Y., and Saucier, F.: Krill aggregation in the St.
Lawrence system, and supply of krill to the whale feeding grounds in the
estuary from the gulf, Mar. Ecol. Prog. Ser., 314, 257–270,
https://doi.org/10.3354/meps314257, 2006.
StatSoft Inc.: Statistica, version 10, Tulsa, 2011.
Stramma, L. and England, M.: On the water masses and mean circulation of the
South Atlantic Ocean, J. Geophys. Res.-Oceans, 104, 20863–20883,
https://doi.org/10.1029/1999JC900139, 1999.
Thibault-Botha, D., Lutjeharms, J. R. E., and Gibbons, M. J.: Siphonophore
assemblages along the east coast of South Africa; mesoscale distribution and
temporal variations, J. Plankton Res., 26, 1115–1128,
https://doi.org/10.1093/plankt/fbh104, 2004.
Tosetto, E. G., Bertrand, A., Neumann-Leitão, S., Costa da Silva, A.,
and Nogueira Júnior, M.: Spatial patterns in planktonic cnidarian
distribution in the western boundary current system of the tropical South
Atlantic Ocean, J. Plankton Res., 43, 270–287,
https://doi.org/10.1093/plankt/fbaa066, 2021.
Tosetto, E. G., Nogueira Junior, M., Neumann-Leitão, S., Costa Da Silva, A., and Bertrand, A.: Abundance data of planktonic cnidarians collected during the ABRACOS 1 and 2 surveys performed along the northeast Brazilian continental shelf, slope and open ocean, [data set], https://doi.org/10.17882/92011, 2022.
Xu, Z.: Dynamics of medusa abundance in the East China Sea, Acta Zool. Sin.,
52, 854–861, 2006.
Xu, Z.: Water environment adaptability amd ecological groups of hydromedusae
in East China Sea, Chin. J. Appl. Ecol., 20, 177–184, 2009.
Xu, Z. and Lin, M.: Causal analysis on diversity of medusa in the East China
Sea, Biodivers. Sci., 14, 508–516, https://doi.org/10.1360/biodiv.060066,
2006.
Yilmaz, I. N.: Collapse of zooplankton stocks during Liriope tetraphylla (Hydromedusa) blooms
and dense mucilaginous aggregations in a thermohaline stratified basin, Mar.
Ecol., 36, 595–610, https://doi.org/10.1111/maec.12166, 2015.
Short summary
In the western tropical South Atlantic, coastward currents spread oceanic cnidarians over the continental shelf. While both coastal and oceanic communities co-occur in scenarios of higher runoff and weaker boundary current intensity, oceanic species dominate almost the entire shelf during the dry season characterized by stronger currents. Meanwhile, offshore, when the mixed-layer depth is shallower, the enhanced primary productivity supports larger populations of planktonic cnidarians.
In the western tropical South Atlantic, coastward currents spread oceanic cnidarians over the...