Articles | Volume 18, issue 6
https://doi.org/10.5194/os-18-1573-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-18-1573-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A numerical study of near-inertial motions in the Mid-Atlantic Bight area induced by Hurricane Irene (2011)
Peida Han
Department of Hydraulic Engineering,
Tsinghua University, Beijing, China
Department of Ocean Science and Engineering, Southern
University of Science and Technology, Shenzhen, China
Related authors
No articles found.
Yue Xu and Xiping Yu
Geosci. Model Dev., 16, 2811–2831, https://doi.org/10.5194/gmd-16-2811-2023, https://doi.org/10.5194/gmd-16-2811-2023, 2023
Short summary
Short summary
An accurate description of the wind energy input into ocean waves is crucial to ocean wave modeling, and a physics-based consideration of the effect of wave breaking is absolutely necessary to obtain such an accurate description, particularly under extreme conditions. This study evaluates the performance of a recently improved formula, taking into account not only the effect of breaking but also the effect of airflow separation on the leeside of steep wave crests in a reasonably consistent way.
Cited articles
Alford, M. H.: Redistribution of energy available for ocean mixing by
long-range propagation of internal waves, Nature, 423, 159–162,
https://doi.org/10.1038/nature01628, 2003a.
Alford, M. H.: Improved global maps and 54-year history of wind-work on
ocean inertial motions, Geophys. Res. Lett., 30, 1424,
https://doi.org/10.1029/2002GL016614, 2003b.
Alford, M. H., MacKinnon, J. A., Simmons, H. L., and Nash, J. D.:
Near-Inertial Internal Gravity Waves in the Ocean, Annu. Rev. Mar.
Sci., 8, 95–123, https://doi.org/10.1146/annurev-marine-010814-015746, 2016.
Allahdadi, M.: Numerical Experiments of Hurricane Impact on Vertical Mixing
and De-Stratification of the Louisiana Shelf Waters, PhD, Louisiana State
University, Baton Rouge, https://doi.org/10.31390/gradschool_dissertations.3268, 2014.
Amante, C. and Eakins, B. W.: ETOPO1 1 Arc-Minute Global Relief Model:
Procedures, Data Sources and Analysis, National Geophysical Data Center [data set],
NOAANOAA Technical Memorandum NESDIS NGDC-24, https://doi.org/10.7289/V5C8276M, 2009.
Avila, L. A. and Cangialosia, J.: Tropical cyclone report: hurricane Irene:
August 21–28, 2011, US National Oceaninc and Atmospheric Administration's
National Weather ServiceNational Hurricane Center Report AL0920011,
http://www.nhc.noaa.gov/data/tcr/AL092011_Irene.pdf (last access: 30 June 2022), 2011.
Brunner, K. and Lwiza, K. M. M.: Tidal velocities on the Mid-Atlantic Bight
continental shelf using high-frequency radar, J. Oceanogr., 76,
289–306, https://doi.org/10.1007/s10872-020-00545-7, 2020.
Chang, S. W. and Anthes, R. A.: Numerical simulations of the ocean's
nonlinear, baroclinic response to translating hurricanes, J.
Phys. Oceanogr., 8, 468–480, https://doi.org/10.1175/1520-0485(1978)008<0468:NSOTON>2.0.CO;2, 1978.
Chant, R. J.: Evolution of near-inertial waves during an upwelling event on
the New Jersey inner shelf, J. Phys. Oceanogr., 31, 746–764, https://doi.org/10.1175/1520-0485(2001)031<0746:EONIWD>2.0.CO;2, 2001.
Chassignet, E. P., Hurlburt, H. E., Smedstad, O. M., Halliwell, G. R.,
Hogan, P. J., Wallcraft, A. J., Baraille, R., and Bleck, R.: The HYCOM
(HYbrid Coordinate Ocean Model) data assimilative system, J. Marine
Syst., 65, 60–83, https://doi.org/10.1016/j.jmarsys.2005.09.016, 2007.
Chen, C. and Xie, L.: A numerical study of wind-induced, near-inertial
oscillations over the Texas-Louisiana shelf, J. Geophys.
Res.-Oceans, 102, 15583–15593, https://doi.org/10.1029/97JC00228, 1997.
Chen, C., Reid, R. O., and Nowlin Jr., W. D.: Near-inertial oscillations over
the Texas-Louisiana shelf, J. Geophys. Res.-Oceans, 101,
3509–3524, https://doi.org/10.1029/95JC03395, 1996.
Chen, S., Chen, D., and Xing, J.: A study on some basic features of inertial oscillations and near-inertial internal waves, Ocean Sci., 13, 829–836, https://doi.org/10.5194/os-13-829-2017, 2017.
Chen, Y. and Yu, X.: Enhancement of wind stress evaluation method under
storm conditions, Clim. Dynam., 47, 3833–3843, https://doi.org/10.1007/s00382-016-3044-4, 2016.
Chen, Y. J., Zhang, F. Q., Green, B. W., and Yu, X. P.: Impacts of ocean
cooling and reduced wind drag on Hurricane Katrina (2005) based on numerical
simulations, Mon. Weather Rev., 146, 287–306,
https://doi.org/10.1175/mwr-d-17-0170.1, 2018.
Churchill, J. H., Wirick, C. D., Flagg, C. N., and Pietrafesa, L. J.:
Sediment resuspension over the continental shelf east of the Delmarva
Peninsula, Deep-Sea Res. Pt. II, 41,
341–363, https://doi.org/10.1016/0967-0645(94)90027-2, 1994.
Copernicus Marine Service: Global Ocean Gridded L4 sea surface heights and derived variables reprocessed, Copernicus Marine Service [data set], https://resources.marine.copernicus.eu/product-detail/SEALEVEL_GLO_PHY_CLIMATE_L4_MY_008_057/INFORMATION,
last access: 30 June 2022.
Cummings, J. A.: Operational multivariate ocean data assimilation, Q.
J. Roy. Meteor. Soc., 131, 3583–3604,
https://doi.org/10.1256/qj.05.105, 2005.
D'Asaro, E. A.: The energy flux from the wind to near-inertial motions in
the surface mixed layer, J. Phys. Oceanogr., 15, 1043–1059,
1985.
Davies, A. M. and Xing, J.: On the interaction between internal tides and
wind-induced near-inertial currents at the shelf edge, J.
Geophys. Res.-Oceans, 108, 3099, https://doi.org/10.1029/2002JC001375,
2003.
Dorostkar, A., Boegman, L., Diamessis, P., and Pollard, A.: Sensitivity of
MITgcm to different model parameters in application to Cayuga Lake,
Proceedings of the 6th International Symposium on Environmental Hydraulics,
Two Volume Set, edited by: Christodoulou, G. C. and
Stamou, A. L., 373–378, CRC Press, https://doi.org/10.1201/b10553-58, 2010.
Fairall, C. W., Bradley, E. F., Rogers, D. P., Edson, J. B., and Young, G.
S.: Bulk parameterization of air-sea fluxes for Tropical Ocean-Global
Atmosphere Coupled-Ocean Atmosphere Response Experiment, J.
Geophys. Res.-Oceans, 101, 3747–3764,
https://doi.org/10.1029/95JC03205, 1996.
Freeman, N. G., Hale, A. M., and Danard, M. B.: A modified sigma equations'
approach to the numerical modeling of Great Lakes hydrodynamics, J.
Geophys. Res., 77, 1050–1060, https://doi.org/10.1029/JC077i006p01050,
1972.
Furuichi, N., Hibiya, T., and Niwa, Y.: Model-predicted distribution of
wind-induced internal wave energy in the world's oceans, J.
Geophys. Res.-Oceans, 113, C09034, https://doi.org/10.1029/2008JC004768,
2008.
Garrett, C.: What is the “Near-Inertial” Band and Why Is It Different from
the Rest of the Internal Wave Spectrum?, J. Phys. Oceanogr.,
31, 962–971, https://doi.org/10.1175/1520-0485(2001)031<0962:WITNIB>2.0.CO;2, 2001.
Glenn, S. M., Miles, T. N., Seroka, G. N., Xu, Y., Forney, R. K., Yu, F.,
Roarty, H., Schofield, O., and Kohut, J.: Stratified coastal ocean
interactions with tropical cyclones, Nat. Commun., 7, 10887, https://doi.org/10.1038/ncomms10887, 2016.
Gregg, M. C.: Diapycnal mixing in the thermocline: A review, J.
Geophys. Res.-Oceans, 92, 5249–5286,
https://doi.org/10.1029/JC092iC05p05249, 1987.
Haidvogel, D. B., Arango, H., Budgell, W. P., Cornuelle, B. D., Curchitser,
E., Di Lorenzo, E., Fennel, K., Geyer, W. R., Hermann, A. J., Lanerolle, L.,
Levin, J., McWilliams, J. C., Miller, A. J., Moore, A. M., Powell, T. M.,
Shchepetkin, A. F., Sherwood, C. R., Signell, R. P., Warner, J. C., and
Wilkin, J.: Ocean forecasting in terrain-following coordinates: Formulation
and skill assessment of the Regional Ocean Modeling System, J.
Comput. Phys., 227, 3595–3624,
https://doi.org/10.1016/j.jcp.2007.06.016, 2008.
Hedstrom, K., Mack, S., Hadfield, M., Pender, J., and Hetland, R.: Regional Ocean Modeling System (with ice), GitHub [code],
https://github.com/kshedstrom/roms (last access: 30 June 2022), 2021.
Holliday, D. and McIntyre, M. E.: On potential energy density in an
incompressible, stratified fluid, J. Fluid Mech., 107, 221–225, https://doi.org/10.1017/S0022112081001742, 1981.
Hopkins, J. E., Stephenson Jr., G. R., Green, J. A. M., Inall, M. E., and
Palmer, M. R.: Storms modify baroclinic energy fluxes in a seasonally
stratified shelf sea: Inertial-tidal interaction, J. Geophys.
Res.-Oceans, 119, 6863–6883, https://doi.org/10.1002/2014JC010011,
2014.
Hormann, V., Centurioni, L. R., Rainville, L., Lee, C. M., and Braasch, L.
J.: Response of upper ocean currents to Typhoon Fanapi, Geophys. Res.
Lett., 41, 3995–4003, https://doi.org/10.1002/2014GL060317, 2014.
Jackett, D. R. and McDougall, T. J.: Minimal adjustment of hydrographic
profiles to achieve static stability, J. Atmos. Ocean.
Tech., 12, 381–389, https://doi.org/10.1175/1520-0426(1995)012<0381:MAOHPT>2.0.CO;2, 1995.
Janjic, Z. I., Black, T. L., Pyle, M. E., Chuang, H. Y., Rogers, E., and
DiMego, G. J.: The NCEP WRF core, 20th Conference on Weather Analysis and
Forecasting/16th Conference on Numerical Weather Prediction, June 2004, Seattle,
Washington, https://ams.confex.com/ams/84Annual/techprogram/paper_70036.htm (last access: 30 June 2022), 2004.
Jochum, M., Briegleb, B. P., Danabasoglu, G., Large, W. G., Norton, N. J.,
Jayne, S. R., Alford, M. H., and Bryan, F. O.: The impact of oceanic
near-inertial waves on climate, J. Climate, 26, 2833–2844, https://doi.org/10.1175/JCLI-D-12-00181.1, 2013.
Kang, D. and Fringer, O.: On the calculation of available potential energy
in internal wave fields, J. Phys. Oceanogr., 40, 2539–2545, https://doi.org/10.1175/2010JPO4497.1, 2010.
Kawaguchi, Y., Wagawa, T., and Igeta, Y.: Near-inertial internal waves and
multiple-inertial oscillations trapped by negative vorticity anomaly in the
central Sea of Japan, Prog. Oceanogr., 181, 102240,
https://doi.org/10.1016/j.pocean.2019.102240, 2020.
Kim, S. Y. and Kosro, P. M.: Observations of near-inertial surface currents
off Oregon: Decorrelation time and length scales, J. Geophys.
Res.-Oceans, 118, 3723–3736, https://doi.org/10.1002/jgrc.20235, 2013.
Kohut, J., Roarty, H., Randall-Goodwin, E., Glenn, S., and Lichtenwalner, C.
S.: Evaluation of two algorithms for a network of coastal HF radars in the
Mid-Atlantic Bight, Ocean Dynam., 62, 953–968, https://doi.org/10.1007/s10236-012-0533-9,
2012.
Lentz, S. J.: Seasonal warming of the Middle Atlantic Bight Cold Pool,
J. Geophys. Res.-Oceans, 122, 941–954,
https://doi.org/10.1002/2016JC012201, 2017.
Li, M., Zhong, L., Boicourt, W. C., Zhang, S., and Zhang, D.-L.:
Hurricane-induced destratification and restratification in a partially-mixed
estuary, J. Marine Res., 65, 169–192, https://doi.org/10.1357/002224007780882550, 2007.
Luettich, R., Westerink, J., Blanton, B., Cobell, Z., Dawson, C., Dietrich, C., Fleming, J., Kolar, R., and Massey, C.: ADCIRC Tidal Databases, https://adcirc.org/products/adcirc-tidal-databases (last access: 30 June 2022), 2015.
MacCready, P. and Giddings, S. N.: The mechanical energy budget of a
regional ocean model, J. Phys. Oceanogr., 46, 2719–2733, https://doi.org/10.1175/JPO-D-16-0086.1, 2016.
MacKinnon, J. A. and Gregg, M. C.: Near-inertial waves on the New England
shelf: The role of evolving stratification, turbulent dissipation, and
bottom drag, J. Phys. Oceanogr., 35, 2408–2424, 2005.
Marchesiello, P., McWilliams, J. C., and Shchepetkin, A.: Open boundary
conditions for long-term integration of regional oceanic models, Ocean
Model., 3, 1–20, https://doi.org/10.1016/S1463-5003(00)00013-5, 2001.
Miles, T., Seroka, G., and Glenn, S.: Coastal ocean circulation during
Hurricane Sandy, J. Geophys. Res.-Oceans, 122, 7095–7114,
https://doi.org/10.1002/2017JC013031, 2017.
Mulligan, R. P. and Hanson, J. L.: Alongshore momentum transfer to the
nearshore zone from energetic ocean waves generated by passing hurricanes,
J. Geophys. Res.-Oceans, 121, 4178–4193,
https://doi.org/10.1002/2016JC011706, 2016.
Munk, W. and Wunsch, C.: Abyssal recipes II: energetics of tidal and wind
mixing, Deep-Sea Res. Pt. I, 45,
1977–2010, https://doi.org/10.1016/S0967-0637(98)00070-3, 1998.
Naval Research Laboratory: HYCOM + NCODA Global 1/12∘ Reanalysis (GLBu0.08/expt_19.1), Naval Research Laboratory [data set], https://www.hycom.org/data/glbu0pt08/expt-19pt1 (last access: 30 June 2022), 2012.
NCEP (National Centers for Environmental Prediction): NCEP North American Mesoscale model, NCEP [data set], https://tds.marine.rutgers.edu/thredds/catalog/met/ncdc-nam-3hour/catalog.html
(last access: 30 June 2022), 2012.
Olabarrieta, M., Warner, J. C., and Kumar, N.: Wave-current interaction in
Willapa Bay, J. Geophys. Res.-Oceans, 116, C12014,
https://doi.org/10.1029/2011JC007387, 2011.
Park, J. J., Kim, K., and Schmitt, R. W.: Global distribution of the decay
timescale of mixed layer inertial motions observed by satellite-tracked
drifters, J. Geophys. Res.-Oceans, 114, C11010,
https://doi.org/10.1029/2008JC005216, 2009.
Pawlowicz, R., Beardsley, B., and Lentz, S.: Classical tidal harmonic
analysis including error estimates in MATLAB using T_TIDE,
Comput. Geosci., 28, 929–937,
https://doi.org/10.1016/S0098-3004(02)00013-4, 2002.
Pollard, R. T.: Properties of near-surface inertial oscillations, J.
Phys. Oceanogr., 10, 385–398, https://doi.org/10.1175/1520-0485(1980)010<0385:PONSIO>2.0.CO;2, 1980.
Powell, M. D., Houston, S. H., Amat, L. R., and Morisseau-Leroy, N.: The HRD
real-time hurricane wind analysis system, J. Wind Eng.
Ind. Aerod., 77–78, 53–64,
https://doi.org/10.1016/S0167-6105(98)00131-7, 1998.
Price, J. F.: Internal wave wake of a moving storm. Part I. Scales, energy
budget and observations, J. Phys. Oceanogr., 13, 949–965, https://doi.org/10.1175/1520-0485(1983)013<0949:IWWOAM>2.0.CO;2, 1983.
Price, J. F., Sanford, T. B., and Forristall, G. Z.: Forced stage response
to a moving hurricane, J. Phys. Oceanogr., 24, 233–260, https://doi.org/10.1175/1520-0485(1994)024<0233:FSRTAM>2.0.CO;2, 1994.
Rayson, M. D., Ivey, G. N., Jones, N. L., Lowe, R. J., Wake, G. W., and
McConochie, J. D.: Near-inertial ocean response to tropical cyclone forcing
on the Australian North-West Shelf, J. Geophys. Res.-Oceans,
120, 7722–7751, https://doi.org/10.1002/2015JC010868, 2015.
Rimac, A., von Storch, J.-S., Eden, C., and Haak, H.: The influence of
high-resolution wind stress field on the power input to near-inertial
motions in the ocean, Geophys. Res. Lett., 40, 4882–4886,
https://doi.org/10.1002/grl.50929, 2013.
RMS (Risk Management Solutions): HWind: Observation-based tropical cyclone data for real-time and historical events, RMS [data set], https://www.rms.com/event-response/hwind, last access: 20 December 2019.
Roarty, H., Glenn, S., Kohut, J., Gong, D., Handel, E., Rivera, E., Garner,
T., Atkinson, L., Brown, W., Jakubiak, C., Muglia, M., Haines, S., and Seim,
H.: Operation and application of a regional high-frequency radar network in
the Mid-Atlantic Bight, Mar. Technol. Soc. J., 44, 133–145,
https://doi.org/10.4031/MTSJ.44.6.5, 2010.
Roarty, H., Glenn, S., Brodie, J., Nazzaro, L., Smith, M., Handel, E.,
Kohut, J., Updyke, T., Atkinson, L., Boicourt, W., Brown, W., Seim, H.,
Muglia, M., Wang, H., and Gong, D.: Annual and Seasonal Surface Circulation
Over the Mid-Atlantic Bight Continental Shelf Derived From a Decade of High
Frequency Radar Observations, J. Geophys. Res.-Oceans, 125,
e2020JC016368, https://doi.org/10.1029/2020JC016368, 2020.
Rodi, W.: Examples of calculation methods for flow and mixing in stratified
fluids, J. Geophys. Res.-Oceans, 92, 5305–5328,
https://doi.org/10.1029/JC092iC05p05305, 1987.
RUCOOL (Rutgers Center for Ocean Observing Leadership): AVHRR Data/Bigbight/Yearly (fast)/2011, RUCOOL [data set], https://tds.marine.rutgers.edu/thredds/cool/avhrr/catalog.html?dataset=cool-avhrr-bigbight-2011 (last access: 30 June 2022), 2011.
RUCOOL (Rutgers Center for Ocean Observing Leadership):
Gridded/20110810T1330_epa_ru16_active.nc, RUCOOL [data set], http://tds.marine.rutgers.edu/thredds/dodsC/cool/glider/mab/Gridded/20110810T1330_epa_ru16_active.nc.html (last access: 30 June 2022), 2016.
RUCOOL (Rutgers Center for Ocean Observing Leadership): Rutgers Slocum Gliders, Maracoos_5MHz_6km_Totals-FMRC/Best Time Series, RUCOOL [data set],
https://tds.marine.rutgers.edu/thredds/catalog/cool/codar/totals/5Mhz_6km_realtime_fmrc/catalog.html?dataset=cool/codar/totals/5Mhz_6km_realtime_fmrc/Maracoos_5MHz_6km_Totals-FMRC_best.ncd, last access: 30 June 2022.
Sanford, T. B., Price, J. F., and Girton, J. B.: Upper-ocean response to
Hurricane Frances (2004) observed by profiling EM-APEX floats, J.
Phys. Oceanogr., 41, 1041–1056, https://doi.org/10.1175/2010JPO4313.1, 2011.
Schofield, O., Kohut, J., Aragon, D., Creed, L., Graver, J., Haldeman, C.,
Kerfoot, J., Roarty, H., Jones, C., Webb, D., and Glenn, S.: Slocum Gliders:
Robust and ready, J. Field Robot., 24, 473–485,
https://doi.org/10.1002/rob.20200, 2007.
Schofield, O., Chant, R., Cahill, B., Castelao, R., Gong, D., Kahl, A.,
Kohut, J., Montes-Hugo, M., Ramadurai, R., Ramey, P., Yi, X. U., and Glenn,
S.: The decadal view of the mid-Atlantic bight from the COOLroom: is our
coastal system changing?, Oceanography, 21, 108–117, 2008.
Schofield, O., Kohut, J., Glenn, S., Morell, J., Capella, J., Corredor, J.,
Orcutt, J., Arrott, M., Krueger, I., Meisinger, M., Peach, C., Vernon, F.,
Chave, A., Chao, Y., Chien, S., Thompson, D., Brown, W., Oliver, M., and
Boicourt, W.: A regional Slocum glider network in the Mid-Atlantic Bight
leverages broad community engagement, Mar. Technol. Soc. J., 44,
185–195, https://doi.org/10.4031/MTSJ.44.6.20, 2010.
Seroka, G., Miles, T., Xu, Y., Kohut, J., Schofield, O., and Glenn, S.:
Hurricane Irene sensitivity to stratified coastal ocean cooling, Mon.
Weather Rev., 144, 3507–3530, https://doi.org/10.1175/MWR-D-15-0452.1, 2016.
Seroka, G., Miles, T., Xu, Y., Kohut, J., Schofield, O., and Glenn, S.:
Rapid shelf-wide cooling response of a stratified coastal ocean to
hurricanes, J. Geophys. Res.-Oceans, 122, 4845–4867,
https://doi.org/10.1002/2017JC012756, 2017.
Shay, L. K. and Brewster, J. K.: Oceanic Heat Content Variability in the
Eastern Pacific Ocean for Hurricane Intensity Forecasting, Mon. Weather
Rev., 138, 2110–2131, https://doi.org/10.1175/2010MWR3189.1, 2010.
Shchepetkin, A. F. and McWilliams, J. C.: The regional oceanic modeling
system (ROMS): a split-explicit, free-surface,
topography-following-coordinate oceanic model, Ocean Model., 9, 347–404,
https://doi.org/10.1016/j.ocemod.2004.08.002, 2005.
Shearman, R. K.: Observations of near-inertial current variability on the
New England shelf, J. Geophys. Res.-Oceans, 110, C02012,
https://doi.org/10.1029/2004JC002341, 2005.
Shen, J., Qiu, Y., Zhang, S., and Kuang, F.: Observation of tropical
cyclone-induced shallow water currents in Taiwan Strait, J.
Geophys. Res.-Oceans, 122, 5005–5021,
https://doi.org/10.1002/2017JC012737, 2017.
Steiner, A., Köhler, C., Metzinger, I., Braun, A., Zirkelbach, M.,
Ernst, D., Tran, P., and Ritter, B.: Critical weather situations for
renewable energies – Part A: Cyclone detection for wind power, Renew.
Energ., 101, 41–50, https://doi.org/10.1016/j.renene.2016.08.013, 2017.
Thiebaut, S. and Vennell, R.: Observation of a fast continental shelf wave
generated by a storm impacting Newfoundland using wavelet and cross-wavelet
analyses, J. Phys. Oceanogr., 40, 417–428, https://doi.org/10.1175/2009JPO4204.1, 2010.
Thyng, K. M., Kobashi, D., Ruiz-Xomchuk, V., Qu, L., Chen, X., and Hetland, R. D.: Performance of offline passive tracer advection in the Regional Ocean Modeling System (ROMS; v3.6, revision 904), Geosci. Model Dev., 14, 391–407, https://doi.org/10.5194/gmd-14-391-2021, 2021.
Toffoli, A., McConochie, J., Ghantous, M., Loffredo, L., and Babanin, A. V.:
The effect of wave-induced turbulence on the ocean mixed layer during
tropical cyclones: Field observations on the Australian North-West Shelf,
J. Geophys. Res.-Oceans, 117, C00J24,
https://doi.org/10.1029/2011JC007780, 2012.
Umlauf, L. and Burchard, H.: A generic length-scale equation for geophysical
turbulence models, J. Mar. Res., 61, 235–265, https://doi.org/10.1357/002224003322005087, 2003.
USGS (U.S. Geological Survey): USGS surface-water historical instantaneous data for the Nation: build time series, USGS [data set], https://waterdata.usgs.gov/nwis/uv/?referred_module=sw, last access: 30 June 2022.
Vincent, E. M., Lengaigne, M., Vialard, J., Madec, G., Jourdain, N. C., and
Masson, S.: Assessing the oceanic control on the amplitude of sea surface
cooling induced by tropical cyclones, J. Geophys. Res.-Oceans, 117, C05023, https://doi.org/10.1029/2011JC007705, 2012.
Warner, J. C., Defne, Z., Haas, K., and Arango, H. G.: A wetting and drying
scheme for ROMS, Comput. Geosci., 58, 54–61,
https://doi.org/10.1016/j.cageo.2013.05.004, 2013.
Wu, R., Zhang, H., and Chen, D.: Effect of Typhoon Kalmaegi (2014) on
northern South China Sea explored using Muti-platform satellite and buoy
observations data, Prog. Oceanogr., 180, 102218,
https://doi.org/10.1016/j.pocean.2019.102218, 2020.
Xu, J., Chao, S.-Y., Hood, R. R., Wang, H. V., and Boicourt, W. C.:
Assimilating high-resolution salinity data into a model of a partially mixed
estuary, J. Geophys. Res.-Oceans, 107, 11-11–11-14,
https://doi.org/10.1029/2000JC000626, 2002.
Xu, Y. and Yu, X.: Enhanced atmospheric wave boundary layer model for
evaluation of wind stress over waters of finite depth, Prog.
Oceanogr., 198, 102664, https://doi.org/10.1016/j.pocean.2021.102664,
2021.
Yang, B., Hou, Y., Hu, P., Liu, Z., and Liu, Y.: Shallow ocean response to
tropical cyclones observed on the continental shelf of the northwestern
South China Sea, J. Geophys. Res.-Oceans, 120, 3817–3836,
https://doi.org/10.1002/2015JC010783, 2015.
Zhai, X., Greatbatch, R. J., Eden, C., and Hibiya, T.: On the loss of
wind-induced near-inertial energy to turbulent mixing in the upper ocean,
J. Phys. Oceanogr., 39, 3040–3045, https://doi.org/10.1175/2009JPO4259.1,
2009.
Zhang, F., Li, M., and Miles, T.: Generation of near-inertial currents on
the Mid-Atlantic Bight by Hurricane Arthur (2014), J. Geophys.
Res.-Oceans, 123, 3100–3116, https://doi.org/10.1029/2017JC013584,
2018.
Zhang, H., Chen, D., Zhou, L., Liu, X., Ding, T., and Zhou, B.: Upper ocean
response to typhoon Kalmaegi (2014), J. Geophys. Res.-Oceans, 121, 6520–6535,
https://doi.org/10.1002/2016JC012064, 2016.
Short summary
Hurricane Irene generated strong near-inertial currents in ocean waters when passing over the Mid-Atlantic Bight of the US East Coast in late August 2011. It is demonstrated that a combination of valuable field data and detailed model results can be exploited to study the development and decay mechanism of this event. The near-inertial kinetic energy is shown to mainly have been gained from wind power during the hurricane event. Its decay, however, depends on several factors.
Hurricane Irene generated strong near-inertial currents in ocean waters when passing over the...