Articles | Volume 18, issue 5
https://doi.org/10.5194/os-18-1377-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-18-1377-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
An update on dissolved methane distribution in the subtropical North Atlantic Ocean
UMR 7144 CNRS Sorbonne Université, Station Biologique de
Roscoff, 29680 Roscoff, France
MARUM, Center for Marine Environmental Sciences, 28359 Bremen,
Germany
Lukas Marx
School of the Environment, Geography and Geosciences, University of
Portsmouth, PO1 2UP Portsmouth, UK
Sarah Reynolds
School of the Environment, Geography and Geosciences, University of
Portsmouth, PO1 2UP Portsmouth, UK
Thierry Cariou
UMR 7144 CNRS Sorbonne Université, Station Biologique de
Roscoff, 29680 Roscoff, France
IRD, UAR191, Instrumentation, Moyens Analytiques, Observatoires en
Géophysique et Océanographie (IMAGO), Technopôle de
Brest-Iroise, 29280 Plouzané, France
Edward Mawji
National Oceanography Centre, European Way, Southampton, SO14 3ZH,
UK
Cedric Boulart
UMR 7144 CNRS Sorbonne Université, Station Biologique de
Roscoff, 29680 Roscoff, France
Related authors
No articles found.
Gilles Reverdin, Claire Waelbroeck, Catherine Pierre, Camille Akhoudas, Giovanni Aloisi, Marion Benetti, Bernard Bourlès, Magnus Danielsen, Jérôme Demange, Denis Diverrès, Jean-Claude Gascard, Marie-Noëlle Houssais, Hervé Le Goff, Pascale Lherminier, Claire Lo Monaco, Herlé Mercier, Nicolas Metzl, Simon Morisset, Aïcha Naamar, Thierry Reynaud, Jean-Baptiste Sallée, Virginie Thierry, Susan E. Hartman, Edward W. Mawji, Solveig Olafsdottir, Torsten Kanzow, Anton Velo, Antje Voelker, Igor Yashayaev, F. Alexander Haumann, Melanie J. Leng, Carol Arrowsmith, and Michael Meredith
Earth Syst. Sci. Data, 14, 2721–2735, https://doi.org/10.5194/essd-14-2721-2022, https://doi.org/10.5194/essd-14-2721-2022, 2022
Short summary
Short summary
The CISE-LOCEAN seawater stable isotope dataset has close to 8000 data entries. The δ18O and δD isotopic data measured at LOCEAN have uncertainties of at most 0.05 ‰ and 0.25 ‰, respectively. Some data were adjusted to correct for evaporation. The internal consistency indicates that the data can be used to investigate time and space variability to within 0.03 ‰ and 0.15 ‰ in δ18O–δD17; comparisons with data analyzed in other institutions suggest larger differences with other datasets.
Cited articles
Acker, M., Hogle, S. L., Berube, P. M., Hackl, T., Coe, A., Stepanauskas,
R., Chisholm, S. W., and Repeta, D. J.: Phosphonate production by marine
microbes: Exploring new sources and potential function, P. Natl. Acad.
Sci. USA, 119, e2113386119, https://doi.org/10.1073/pnas.2113386119, 2022.
Bange, H. W., Bell, F. T. G., Cornejo, B. M., and Freing, C. A.: MEMENTO: A
proposal to develop a database of marine nitrous oxide and methane
measurements MEMENTO: a proposal to develop a database of marine nitrous
oxide and methane measurements, Environ. Chem., 6, 195–197, https://doi.org/10.1071/EN09033,
2009.
Becker, S., Aoyama, M., Woodward, E. M. S., Bakker, K., Coverly, S., Mahaffey, C., and Tanhua, T.: GO-SHIP Repeat Hydrography Nutrient Manual: The Precise and Accurate Determination of Dissolved Inorganic Nutrients in Seawater, Using Continuous Flow Analysis Methods, Front. Mar. Sci., 7, 908, https://doi.org/10.3389/fmars.2020.581790, 2020
Beversdorf, L. J., White, A. E., Björkman, K. M., Letelier, R. M., and
Karl, D. M.: Phosphonate metabolism by Trichodesmium IMS101 and the production of
greenhouse gases, Limnol. Oceanogr., 55, 1768–1778,
https://doi.org/10.4319/lo.2010.55.4.1768, 2010.
Bižić-Ionescu, M., Klintzsch, T., Ionescu, D., Hindiyeh, M. Y.,
Günthel, M., Muro-Pastor, A. M., Eckert, W., Keppler, F., and Grossart,
H. P.: Widespread formation of methane by Cyanobacteria in aquatic and
terrestrial environments, Sci. Adv., 6, 398958, https://doi.org/10.1101/398958, 2018.
Bižić, M., Klintzsch, T., Ionescu, D., Hindiyeh, M. Y., Günthel,
M., Muro-Pastor, A. M., Eckert, W., Urich, T., Keppler, F., and Grossart, H.
P.: Aquatic and terrestrial cyanobacteria produce methane, Sci. Adv., 6,
1–10, https://doi.org/10.1126/sciadv.aax5343, 2020.
Borges, A. V., Champenois, W., Gypens, N., Delille, B., and Harlay, J.:
Massive marine methane emissions from near-shore shallow coastal areas, Sci.
Rep., 6, 2–9, https://doi.org/10.1038/srep27908, 2016.
Brown, I. J., Torres, R., and Rees, A. P.: Dynamics of Atmospheres and
Oceans The origin of sub-surface source waters define the sea – air flux of
methane in the Mauritanian Upwelling, NW Africa, Dynam. Atmos. Ocean., 67,
39–46, https://doi.org/10.1016/j.dynatmoce.2014.06.001, 2014.
Bui, O. T. N., Kameyama, S., Yoshikawa-Inoue, H., Ishii, M., Sasano, D.,
Uchida, H., and Tsunogai, U.: Estimates of methane emissions from the
Southern Ocean from quasi-continuous underway measurements of the partial
pressure of methane in surface seawater during the 2012/13 austral summer,
Tellus B, 70, 1–15,
https://doi.org/10.1080/16000889.2018.1478594, 2018.
Carini, P., White, A., Campbell, E., and Giovannoni, S. J.: Methane production by phosphate-starved SAR11 chemoheterotrophic marine bacteria, Nat. Commun., 5, 4346, https://doi.org/10.1038/ncomms5346, 2014.
Conrad, R. and Seiler, W.: Methane and hydrogen in seawater (Atlantic
Ocean), Deep-Sea Res. Pt. A, 35, 1903–1917,
https://doi.org/10.1016/0198-0149(88)90116-1, 1988.
Cox, A. D. and Saito, M. A.: Proteomic responses of oceanic Synechococcus
WH8102 to phosphate and zinc scarcity and cadmium additions, Front.
Microbiol., 4, 387, https://doi.org/10.3389/FMICB.2013.00387, 2013.
Dang, H. and Li, J.: Climate tipping-point potential and paradoxical
production of methane in a changing ocean, Sci. China Earth Sci., 61,
1714–1727, https://doi.org/10.1007/s11430-017-9265-y, 2018.
de la Paz, M., Huertas, I. E., Flecha, S., Ríos, A. F., and Pérez,
F. F.: Nitrous oxide and methane in Atlantic and Mediterranean waters in the
Strait of Gibraltar: Air-sea fluxes and inter-basin exchange, Prog.
Oceanogr., 138, 18–31, https://doi.org/10.1016/j.pocean.2015.09.009, 2015.
Feingersch, R., Philosof, A., Mejuch, T., Glaser, F., Alalouf, O., Shoham,
Y., and Béjà, O.: Potential for phosphite and phosphonate
utilization by Prochlorococcus, ISME J., 6, 827–834,
https://doi.org/10.1038/ismej.2011.149, 2012.
Flombaum, P., Gallegos, J. L., Gordillo, R. A., Rincón, J., Zabala, L.
L., Jiao, N., Karl, D. M., Li, W. K. W., Lomas, M. W., Veneziano, D., Vera,
C. S., Vrugt, J. A., and Martiny, A. C.: Present and future global
distributions of the marine Cyanobacteria Prochlorococcus and Synechococcus,
P. Natl. Acad. Sci. USA, 110, 9824–9829,
https://doi.org/10.1073/pnas.1307701110, 2013.
Florez-Leiva, L., Damm, E., and Farías, L.: Methane production induced
by dimethylsulfide in surface water of an upwelling ecosystem, Prog.
Oceanogr., 112/113, 38–48, https://doi.org/10.1016/j.pocean.2013.03.005,
2013.
Forster, G., Upstill-Goddard, R. C., Gist, N., Robinson, C., Uher, G., and
Woodward, E. M. S.: Nitrous oxide and methane in the Atlantic Ocean between
50∘ N and 52∘ S: Latitudinal distribution and sea-to-air
flux, Deep-Sea Res. Pt. II, 56, 964–976,
https://doi.org/10.1016/j.dsr2.2008.12.002, 2009.
Harvey, B. P., Gwynn-Jones, D., and Moore, P. J.: Meta-analysis reveals
complex marine biological responses to the interactive effects of ocean
acidification and warming, Ecol. Evol., 3, 1016–30,
https://doi.org/10.1002/ece3.516, 2013.
Hickman, A. E., Dutkiewicz, S., Williams, R. G., and Follows, M. J.:
Modelling the effects of chromatic adaptation on phytoplankton community
structure in the oligotrophic ocean, Mar. Ecol. Prog. Ser., 406, 1–17,
https://doi.org/10.3354/MEPS08588, 2010.
Holmes, M. E., Elizabeth, M., Sansone, J., Rust, M., and Popp, N.: Methane
production, consumption, and air-sea exchange in the open ocean: An
Evaluation based on carbon isotopic ratios Methane production, consumption, and air-sea exchange in the open ocean: An evaluation based on carbon
isotopic ratios and via the, Global Biogeochem. Cy., 14, 1–10, https://doi.org/10.1029/1999GB001209, 2014.
Karl, D. M., Beversdorf, L., Björkman, K. M., Church, M. J., Martinez,
A., and Delong, E. F.: Aerobic production of methane in the sea, Nat.
Geosci., 1, 473–478, https://doi.org/10.1038/ngeo234, 2008.
Kelley, C. A. and Jeffrey, W. H.: Dissolved methane concentration profiles
and air-sea fluxes from 41∘ S to 27∘ N, Global
Biogeochem. Cy., 16, 13-1–13-6, https://doi.org/10.1029/2001gb001809,
2002.
Kitidis, V., Upstill-Goddard, R. C., and Anderson, L. G.: Methane and
nitrous oxide in surface water along the North-West Passage, Arctic Ocean,
Mar. Chem., 121, 80–86, https://doi.org/10.1016/j.marchem.2010.03.006,
2010.
Kock, A. and Bange, H. W.: Methane Measurements in Selected Ocean Areas:
Eastern Tropical North Atlantic Ocean and Southwestern Labrador Sea,
IFM-GEOMAR, Leibniz-Institut für Meereswissenschaften, PhD thesis, Diploma, 107,
2007.
Krumhardt, K. M., Lovenduski, N. S., Freeman, N. M., and Bates, N. R.: Apparent increase in coccolithophore abundance in the subtropical North Atlantic from 1990 to 2014, Biogeosciences, 13, 1163–1177, https://doi.org/10.5194/bg-13-1163-2016, 2016.
Kudo, K., Yamada, K., Toyoda, S., Yoshida, N., Sasano, D., Kosugi, N.,
Ishii, M., Yoshikawa, H., Murata, A., Uchida, H., and Nishino, S.: Spatial
distribution of dissolved methane and its source in the western Arctic
Ocean, J. Oceanogr., 74, 305–317, 2018.
Lenhart, K., Klintzsch, T., Langer, G., Nehrke, G., Bunge, M., Schnell, S., and Keppler, F.: Evidence for methane production by the marine algae Emiliania huxleyi, Biogeosciences, 13, 3163–3174, https://doi.org/10.5194/bg-13-3163-2016, 2016a.
Lenhart, K., Klintzsch, T., Langer, G., Nehrke, G., Bunge, M., Schnell, S., and Keppler, F.: Evidence for methane production by the marine algae Emiliania huxleyi, Biogeosciences, 13, 3163–3174, https://doi.org/10.5194/bg-13-3163-2016, 2016b.
Luo, H., Benner, R., Long, R. A., and Hu, J.: Subcellular localization of
marine bacterial alkaline phosphatases, P. Natl. Acad. Sci. USA,
106, 21219–21223,
https://doi.org/10.1073/PNAS.0907586106,
2009.
Macovei, V. A., Torres-Valdés, S., Hartman, S. E., Schuster, U., Moore,
C. M., Brown, P. J., Hydes, D. J., and Sanders, R. J.: Temporal Variability
in the Nutrient Biogeochemistry of the Surface North Atlantic: 15 Years of
Ship of Opportunity Data, Global Biogeochem. Cy., 33, 1674–1692,
https://doi.org/10.1029/2018GB006132, 2019.
Marinov, I., Doney, S. C., and Lima, I. D.: Response of ocean phytoplankton community structure to climate change over the 21st century: partitioning the effects of nutrients, temperature and light, Biogeosciences, 7, 3941–3959, https://doi.org/10.5194/bg-7-3941-2010, 2010.
Leonte, M., Ruppel, C. D., Ruiz-Angulo, A., and Kessler, J. D.: Surface
Methane Concentrations Along the Mid-Atlantic Bight Driven by Aerobic
Subsurface Production Rather Than Seafloor Gas Seeps, JGR Ocean, 125, https://doi.org/10.1029/2019JC015989, 2020.
Muñoz-Marín, M. C., Gómez-Baena, G., López-Lozano, A.,
Moreno-Cabezuelo, J. A., Díez, J., and García-Fernández, J.
M.: Mixotrophy in marine picocyanobacteria: use of organic compounds by
Prochlorococcus and Synechococcus, ISME J., 14, 1065–1073,
https://doi.org/10.1038/s41396-020-0603-9, 2020.
Oppo, D., De Siena, L., and Kemp, D. B.: A record of seafloor methane
seepage across the last 150 million years, Sci. Rep., 10, 1–12,
https://doi.org/10.1038/s41598-020-59431-3, 2020.
Percival, S. L.: Microbiology of Waterborne Diseases: Microbiological Aspects and Risks, Enhanced Credo edition, 2nd Edn., Boston Massachusetts London England: Credo Reference Academic Press, http://www.credoreference.com/book/estmiwadi (last access: 8 September 2022), 2014.
R Core
Team: Foundation for Statistical Computing, Vienna, A. I. 3-900051-07-0, http://www.r-project.org/index.html (last access: 8 September 2022), 2013.
Ratten, J. M., LaRoche, J., Desai, D. K., Shelley, R. U., Landing, W. M.,
Boyle, E., Cutter, G. A., and Langlois, R. J.: Sources of iron and phosphate
affect the distribution of diazotrophs in the North Atlantic, Deep-Sea Res.
Pt. II, 116, 332–341,
https://doi.org/10.1016/J.DSR2.2014.11.012, 2015.
Reeburgh, W. S.: Oceanic methane biogeochemistry, Chem. Rev., 107, 486–513,
https://doi.org/10.1021/cr050362v, 2007.
Repeta, D. J., Ferrón, S., Sosa, O. A., Johnson, C. G., Repeta, L. D.,
Acker, M., Delong, E. F., and Karl, D. M.: Marine methane paradox explained
by bacterial degradation of dissolved organic matter, Nat. Geosci., 9,
884–887, https://doi.org/10.1038/ngeo2837, 2016.
Reynolds, S., Mahaffey, C., Roussenov, V., and Williams, R. G.: Evidence for
production and lateral transport of dissolved organic phosphorus in the
eastern subtropical North Atlantic, Global Biogeochem. Cy., 28, 805–824,
https://doi.org/10.1002/2013GB004801, 2014.
Rhee, T. S., Kettle, A. J., and Andreae, M. O.: Methane and nitrous oxide
emissions from the ocean: A reassessment using basin-wide observations in
the Atlantic, J. Geophys. Res.-Atmos., 114, D12304,
https://doi.org/10.1029/2008JD011662, 2009.
Sanchez-Franks, A.: CRUISE REPORT: A05 Highlights National Oceanography
Centre Cruise Report No. 70 RRS James Cook Cruise JC191 19 January–1
March 2020 Hydrographic sections from the Florida Straits to the Canaries
Current across 24∘ N in the Atlantic Ocean, 44, https://cchdo.ucsd.edu/data/16095/740H20200119_do.pdf (last access: 8 September 2022), 2020.
Schmale, O., Wäge, J., Mohrholz, V., Wasmund, N., Gräwe, U., Rehder,
G., Labrenz, M., and Loick-Wilde, N.: The contribution of zooplankton to
methane supersaturation in the oxygenated upper waters of the central Baltic
Sea, Limnol. Oceanogr., 63, 412–430, https://doi.org/10.1002/LNO.10640,
2018.
Scranton, M. I. and Brewer, P. G.: Occurrence of methane in the near-surface
waters of the western subtropical North-Atlantic, Deep-Sea Res., 24, 127–138,
https://doi.org/10.1016/0146-6291(77)90548-3, 1977.
Sea, M. A., Garcias-Bonet, N., Saderne, V., and Duarte, C. M.: Carbon dioxide and methane fluxes at the air–sea interface of Red Sea mangroves, Biogeosciences, 15, 5365–5375, https://doi.org/10.5194/bg-15-5365-2018, 2018.
Sebastian, M. and Ammerman, J. W.: The alkaline phosphatase PhoX is more
widely distributed in marine bacteria than the classical PhoA, ISME J.,
35, 563–572, https://doi.org/10.1038/ismej.2009.10, 2009.
Simon, E., Samuelsen, A., Bertino, L., and Dumont, D.: Estimation of
positive sum-to-one constrained zooplankton grazing preferences with the
DEnKF: A twin experiment, Ocean Sci., 8, 587–602,
https://doi.org/10.5194/os-8-587-2012, 2012.
Sosa, O. A., Casey, J. R., and Karl, D. M.: Methylphosphonate Oxidation in
Prochlorococcus Strain MIT9301 Supports Phosphate Acquisition, Formate
Excretion, and Carbon Assimilation into Purines, Appl. Environ. Microbiol.,
85, e00289-19, https://doi.org/10.1128/AEM.00289-19, 2019a.
Sosa, O. A., Repeta, D. J., DeLong, E. F., Ashkezari, M. D., and Karl, D.
M.: Phosphate-limited ocean regions select for bacterial populations
enriched in the carbon–phosphorus lyase pathway for phosphonate
degradation, Environ. Microbiol., 21, 2402–2414,
https://doi.org/10.1111/1462-2920.14628, 2019b.
Sosa, O. A., Burrell, T. J., Wilson, S. T., Foreman, R. K., Karl, D. M., and
Repeta, D. J.: Phosphonate cycling supports methane and ethylene
supersaturation in the phosphate-depleted western North Atlantic Ocean,
Limnol. Oceanogr., 65, 2443–2459, https://doi.org/10.1002/LNO.11463, 2020.
Stawiarski, B., Otto, S., Thiel, V., Gräwe, U., Loick-Wilde, N., Wittenborn, A. K., Schloemer, S., Wäge, J., Rehder, G., Labrenz, M., Wasmund, N., and Schmale, O.: Controls on zooplankton methane production in the central Baltic Sea, Biogeosciences, 16, 1–16, https://doi.org/10.5194/bg-16-1-2019, 2019.
van de Waal, D. B. and Litchman, E.: Multiple global change stressor effects
on phytoplankton nutrient acquisition in a future ocean, Philos. T. R.
Soc. B, 375, 32200734, https://doi.org/10.1098/RSTB.2019.0706, 2020.
Wang, W. L., Moore, J. K., Martiny, A. C., and Primeau, F. W.: Convergent
estimates of marine nitrogen fixation, Nature, 566, 205–211,
https://doi.org/10.1038/s41586-019-0911-2, 2019.
Wanninkhof, R.: Relationship between wind speed and gas exchange over the
ocean revisited, Limnol. Oceanogr. Method., 12, 351–362,
https://doi.org/10.4319/lom.2014.12.351, 2014.
Weber, T., Wiseman, N. A., and Kock, A.: Global ocean methane emissions
dominated by shallow coastal waters, Nat. Commun., 10, 1–10,
https://doi.org/10.1038/s41467-019-12541-7, 2019.
Weller, D. I., Law, C. S., Marriner, A., Nodder, S. D., Chang, F. H.,
Stephens, J. A., Wilhelm, S. W., Boyd, P. W., and Sutton, P. J. H.: Progress
in Oceanography Temporal variation of dissolved methane in a subtropical
mesoscale eddy during a phytoplankton bloom in the southwest Pacific Ocean,
Prog. Oceanogr., 116, 193–206,
https://doi.org/10.1016/j.pocean.2013.07.008, 2013.
Williams, R. G., McDonagh, E., Roussenov, V. M., Torres-Valdes, S., King,
B., Sanders, R., and Hansell, D. A.: Nutrient streams in the North Atlantic:
Advective pathways of inorganic and dissolved organic nutrients, Global
Biogeochem. Cy., 25, 17333467, https://doi.org/10.1029/2010GB003853, 2011.
Ye, W., Zhang, G., Zhu, Z., Huang, D., Han, Y., and Wang, L.: Methane
Distribution and Sea-to-Air Flux in the East China Sea During the Summer of
2013: Impact of Hypoxia Deep-Sea Research II Methane distribution and
sea-to-air flux in the East China Sea during the summer of 2013: Impact of
hypoxia, Deep-Sea Res. Pt. II, 124, 74–83,
https://doi.org/10.1016/j.dsr2.2015.01.008, 2015.
Zheng, Y., Harris, D. F., Yu, Z., Fu, Y., Poudel, S., Ledbetter, R. N.,
Fixen, K. R., Yang, Z. Y., Boyd, E. S., Lidstrom, M. E., Seefeldt, L. C.,
and Harwood, C. S.: A pathway for biological methane production using
bacterial iron-only nitrogenase, Nat. Microbiol., 3, 281–286,
https://doi.org/10.1038/s41564-017-0091-5, 2018.
Short summary
More and more studies indicate that the open ocean can be a significant source of methane, the second greenhouse gas after CO2. Our study in the subtropical North Atlantic Ocean shows that a significant part of the methane flux to the atmosphere is related to cyanobacteria, which are ubiquitous phytoplankton that produce methane as part of their metabolic activity. This study is a response to the lack of data on the role of the oceans in the methane budget in the context of climate change.
More and more studies indicate that the open ocean can be a significant source of methane, the...