Articles | Volume 18, issue 5
https://doi.org/10.5194/os-18-1263-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-18-1263-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
On the uncertainty associated with detecting global and local mean sea level drifts on Sentinel-3A and Sentinel-3B altimetry missions
Rémi Jugier
CORRESPONDING AUTHOR
MAGELLIUM, Ramonville Saint-Agne, 31520, France
Michaël Ablain
MAGELLIUM, Ramonville Saint-Agne, 31520, France
Robin Fraudeau
MAGELLIUM, Ramonville Saint-Agne, 31520, France
Adrien Guerou
CLS Collecte Localisation Satellites, Ramonville Saint-Agne, 31520,
France
Pierre Féménias
ESA/ESRIN, Frascati, Italy
Related authors
Florence Marti, Alejandro Blazquez, Benoit Meyssignac, Michaël Ablain, Anne Barnoud, Robin Fraudeau, Rémi Jugier, Jonathan Chenal, Gilles Larnicol, Julia Pfeffer, Marco Restano, and Jérôme Benveniste
Earth Syst. Sci. Data, 14, 229–249, https://doi.org/10.5194/essd-14-229-2022, https://doi.org/10.5194/essd-14-229-2022, 2022
Short summary
Short summary
The Earth energy imbalance at the top of the atmosphere due to the increase in greenhouse gases and aerosol concentrations is responsible for the accumulation of energy in the climate system. With its high thermal inertia, the ocean accumulates most of this energy excess in the form of heat. The estimation of the global ocean heat content through space geodetic observations allows monitoring of the energy imbalance with realistic uncertainties to better understand the Earth’s warming climate.
Zacharie Barrou Dumont, Simon Gascoin, Olivier Hagolle, Michaël Ablain, Rémi Jugier, Germain Salgues, Florence Marti, Aurore Dupuis, Marie Dumont, and Samuel Morin
The Cryosphere, 15, 4975–4980, https://doi.org/10.5194/tc-15-4975-2021, https://doi.org/10.5194/tc-15-4975-2021, 2021
Short summary
Short summary
Since 2020, the Copernicus High Resolution Snow & Ice Monitoring Service has distributed snow cover maps at 20 m resolution over Europe in near-real time. These products are derived from the Sentinel-2 Earth observation mission, with a revisit time of 5 d or less (cloud-permitting). Here we show the good accuracy of the snow detection over a wide range of regions in Europe, except in dense forest regions where the snow cover is hidden by the trees.
Florence Marti, Benoit Meyssignac, Victor Rousseau, Michaël Ablain, Robin Fraudeau, Alejandro Blazquez, and Sébastien Fourest
State Planet, 4-osr8, 3, https://doi.org/10.5194/sp-4-osr8-3-2024, https://doi.org/10.5194/sp-4-osr8-3-2024, 2024
Short summary
Short summary
As space geodetic observations are used to monitor the global ocean heat content change, they allow estimating the Earth energy imbalance (EEI). Over 1993–2022, the space geodetic EEI estimate shows a positive trend of 0.29 W m−2 per decade, indicating accelerated warming of the ocean in line with other independent estimates. The study highlights the importance of comparing various estimates and their uncertainties to reliably assess EEI changes.
Michaël Ablain, Noémie Lalau, Benoit Meyssignac, Robin Fraudeau, Anne Barnoud, Gérald Dibarboure, Alejandro Egido, and Craig James Donlon
EGUsphere, https://doi.org/10.5194/egusphere-2024-1802, https://doi.org/10.5194/egusphere-2024-1802, 2024
Short summary
Short summary
This study proposes a novel cross-validation method to assess the instrumental stability in sea level trends. The method involves implementing a second tandem flight phase between two successive altimeter missions a few years after the first. The trend in systematic instrumental differences made during the two tandem phases can be estimated below ±0.1 mm/yr (16–84 % confidence level) on a global scale, for time intervals between the tandem phases of four years or more.
Jérémie Aublanc, François Boy, Franck Borde, and Pierre Féménias
EGUsphere, https://doi.org/10.5194/egusphere-2024-1323, https://doi.org/10.5194/egusphere-2024-1323, 2024
Short summary
Short summary
In this study we developed an innovative algorithm to derive the ice sheet topography from Sentinel-3 altimetry measurements. The processing chain is named the “Altimeter data Modelling and Processing for Land Ice” (AMPLI). The performance improvement is substantial compared to the official data generated by the ESA ground segment. With AMPLI, we show that Sentinel-3 is able to estimate the Surface Elevation Change of the Antarctic ice sheet with a high level of agreement to ICESat-2.
Victor Rousseau, Robin Fraudeau, Matthew Hammond, Odilon Joël Houndegnonto, Michaël Ablain, Alejandro Blazquez, Fransisco Mir Calafat, Damien Desbruyères, Giuseppe Foti, William Llovel, Florence Marti, Benoît Meyssignac, Marco Restano, and Jérôme Benveniste
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-236, https://doi.org/10.5194/essd-2023-236, 2023
Preprint withdrawn
Short summary
Short summary
The estimation of regional Ocean Heat Content (OHC) is crucial for climate analysis and future climate predictions. In our study, we accurately estimate regional OHC changes in the Atlantic Ocean using satellite and in situ data. Findings reveal significant warming in the Atlantic basin from 2002 to 2020 with a mean trend of 0.17W/m², representing 230 times the power of global nuclear plants. The product has also been successfully validated in the North Atlantic basin using in situ data.
Adrien Guérou, Benoit Meyssignac, Pierre Prandi, Michaël Ablain, Aurélien Ribes, and François Bignalet-Cazalet
Ocean Sci., 19, 431–451, https://doi.org/10.5194/os-19-431-2023, https://doi.org/10.5194/os-19-431-2023, 2023
Short summary
Short summary
Based on the latest satellite observations published by the French space agency CNES, we present the current state of the sea level at the scale of the planet and assess its rise and acceleration over the past 29 years. To support scientific research we provide updated estimations of our confidence in our estimations and highlight key technological and scientific fields. Making progress on that will help to better characterize the sea level in the future.
Karina von Schuckmann, Audrey Minière, Flora Gues, Francisco José Cuesta-Valero, Gottfried Kirchengast, Susheel Adusumilli, Fiammetta Straneo, Michaël Ablain, Richard P. Allan, Paul M. Barker, Hugo Beltrami, Alejandro Blazquez, Tim Boyer, Lijing Cheng, John Church, Damien Desbruyeres, Han Dolman, Catia M. Domingues, Almudena García-García, Donata Giglio, John E. Gilson, Maximilian Gorfer, Leopold Haimberger, Maria Z. Hakuba, Stefan Hendricks, Shigeki Hosoda, Gregory C. Johnson, Rachel Killick, Brian King, Nicolas Kolodziejczyk, Anton Korosov, Gerhard Krinner, Mikael Kuusela, Felix W. Landerer, Moritz Langer, Thomas Lavergne, Isobel Lawrence, Yuehua Li, John Lyman, Florence Marti, Ben Marzeion, Michael Mayer, Andrew H. MacDougall, Trevor McDougall, Didier Paolo Monselesan, Jan Nitzbon, Inès Otosaka, Jian Peng, Sarah Purkey, Dean Roemmich, Kanako Sato, Katsunari Sato, Abhishek Savita, Axel Schweiger, Andrew Shepherd, Sonia I. Seneviratne, Leon Simons, Donald A. Slater, Thomas Slater, Andrea K. Steiner, Toshio Suga, Tanguy Szekely, Wim Thiery, Mary-Louise Timmermans, Inne Vanderkelen, Susan E. Wjiffels, Tonghua Wu, and Michael Zemp
Earth Syst. Sci. Data, 15, 1675–1709, https://doi.org/10.5194/essd-15-1675-2023, https://doi.org/10.5194/essd-15-1675-2023, 2023
Short summary
Short summary
Earth's climate is out of energy balance, and this study quantifies how much heat has consequently accumulated over the past decades (ocean: 89 %, land: 6 %, cryosphere: 4 %, atmosphere: 1 %). Since 1971, this accumulated heat reached record values at an increasing pace. The Earth heat inventory provides a comprehensive view on the status and expectation of global warming, and we call for an implementation of this global climate indicator into the Paris Agreement’s Global Stocktake.
Anne Barnoud, Julia Pfeffer, Anny Cazenave, Robin Fraudeau, Victor Rousseau, and Michaël Ablain
Ocean Sci., 19, 321–334, https://doi.org/10.5194/os-19-321-2023, https://doi.org/10.5194/os-19-321-2023, 2023
Short summary
Short summary
The increase in ocean mass due to land ice melting is responsible for about two-thirds of the global mean sea level rise. The ocean mass variations are monitored by GRACE and GRACE Follow-On gravimetry satellites that faced instrumental issues over the last few years. In this work, we assess the robustness of these data by comparing the ocean mass gravimetry estimates to independent observations (other satellite observations, oceanographic measurements and land ice and water models).
Florence Marti, Alejandro Blazquez, Benoit Meyssignac, Michaël Ablain, Anne Barnoud, Robin Fraudeau, Rémi Jugier, Jonathan Chenal, Gilles Larnicol, Julia Pfeffer, Marco Restano, and Jérôme Benveniste
Earth Syst. Sci. Data, 14, 229–249, https://doi.org/10.5194/essd-14-229-2022, https://doi.org/10.5194/essd-14-229-2022, 2022
Short summary
Short summary
The Earth energy imbalance at the top of the atmosphere due to the increase in greenhouse gases and aerosol concentrations is responsible for the accumulation of energy in the climate system. With its high thermal inertia, the ocean accumulates most of this energy excess in the form of heat. The estimation of the global ocean heat content through space geodetic observations allows monitoring of the energy imbalance with realistic uncertainties to better understand the Earth’s warming climate.
Zacharie Barrou Dumont, Simon Gascoin, Olivier Hagolle, Michaël Ablain, Rémi Jugier, Germain Salgues, Florence Marti, Aurore Dupuis, Marie Dumont, and Samuel Morin
The Cryosphere, 15, 4975–4980, https://doi.org/10.5194/tc-15-4975-2021, https://doi.org/10.5194/tc-15-4975-2021, 2021
Short summary
Short summary
Since 2020, the Copernicus High Resolution Snow & Ice Monitoring Service has distributed snow cover maps at 20 m resolution over Europe in near-real time. These products are derived from the Sentinel-2 Earth observation mission, with a revisit time of 5 d or less (cloud-permitting). Here we show the good accuracy of the snow detection over a wide range of regions in Europe, except in dense forest regions where the snow cover is hidden by the trees.
Heike Peter, Jaime Fernández, and Pierre Féménias
Adv. Geosci., 50, 87–100, https://doi.org/10.5194/adgeo-50-87-2020, https://doi.org/10.5194/adgeo-50-87-2020, 2020
Short summary
Short summary
The SAR Copernicus Sentinel-1 satellites require a high orbit accuracy of 5 cm in comparison to external processing facilities. Orbit analyses showed discrepancies between the results of the two Sentinel-1 satellites being identical in construction. Follow-up estimation of GPS antenna offsets shows the sensitivity to different orbit and observation models. Consistent results may be achieved for both satellites when applying estimated antenna offsets considering self-shadowing assumptions.
Michaël Ablain, Benoît Meyssignac, Lionel Zawadzki, Rémi Jugier, Aurélien Ribes, Giorgio Spada, Jerôme Benveniste, Anny Cazenave, and Nicolas Picot
Earth Syst. Sci. Data, 11, 1189–1202, https://doi.org/10.5194/essd-11-1189-2019, https://doi.org/10.5194/essd-11-1189-2019, 2019
Short summary
Short summary
A description of the uncertainties in the Global Mean Sea Level (GMSL) record has been performed; 25 years of satellite altimetry data were used to estimate the error variance–covariance matrix for the GMSL record to derive its confidence envelope. Then a least square approach was used to estimate the GMSL trend and acceleration uncertainties over any time periods. A GMSL trend of 3.35 ± 0.4 mm/yr and a GMSL acceleration of 0.12 ± 0.07 mm/yr² have been found within a 90 % confidence level.
Related subject area
Approach: Remote Sensing | Properties and processes: Sea level | Depth range: All Depths | Geographical range: All Geographic Regions | Challenges: Oceans and climate
Current observed global mean sea level rise and acceleration estimated from satellite altimetry and the associated measurement uncertainty
Revisiting the global mean ocean mass budget over 2005–2020
Adrien Guérou, Benoit Meyssignac, Pierre Prandi, Michaël Ablain, Aurélien Ribes, and François Bignalet-Cazalet
Ocean Sci., 19, 431–451, https://doi.org/10.5194/os-19-431-2023, https://doi.org/10.5194/os-19-431-2023, 2023
Short summary
Short summary
Based on the latest satellite observations published by the French space agency CNES, we present the current state of the sea level at the scale of the planet and assess its rise and acceleration over the past 29 years. To support scientific research we provide updated estimations of our confidence in our estimations and highlight key technological and scientific fields. Making progress on that will help to better characterize the sea level in the future.
Anne Barnoud, Julia Pfeffer, Anny Cazenave, Robin Fraudeau, Victor Rousseau, and Michaël Ablain
Ocean Sci., 19, 321–334, https://doi.org/10.5194/os-19-321-2023, https://doi.org/10.5194/os-19-321-2023, 2023
Short summary
Short summary
The increase in ocean mass due to land ice melting is responsible for about two-thirds of the global mean sea level rise. The ocean mass variations are monitored by GRACE and GRACE Follow-On gravimetry satellites that faced instrumental issues over the last few years. In this work, we assess the robustness of these data by comparing the ocean mass gravimetry estimates to independent observations (other satellite observations, oceanographic measurements and land ice and water models).
Cited articles
Ablain, M.: Estimating of Any Altimeter Mean Sea Level (MSL) drifts between
1993 and 2017 by Comparison with Tide-Gauges Measurements, 25 years of
progress in altimetry radar symposium,
https://drive.google.com/file/d/1Wt7nDLBOwtjGYtDPoO1ofFoisyuFv1yu/view?usp=sharing
(last access: 10 June 2022), 2018.
Ablain, M., Meyssignac, B., Zawadzki, L., Jugier, R., Ribes, A., Spada, G., Benveniste, J., Cazenave, A., and Picot, N.: Uncertainty in satellite estimates of global mean sea-level changes, trend and acceleration, Earth Syst. Sci. Data, 11, 1189–1202, https://doi.org/10.5194/essd-11-1189-2019, 2019.
Ablain, M., Jugier, R., Marti, F., Dibarboure, G., Couhert, A., Meyssignac, B., and Cazenave, A.: Benefit of a second calibration phase to estimate the relative global and regional
mean sea level drifts between Jason-3 and Sentinel-6a, Earth and Space Science Open Archive [preprint], https://doi.org/10.1002/essoar.10502856.2, 2020.
Aublanc, J.: Impact of the range walk processing in the Sentinel-3A sea
level trend, OSTST,
https://meetings.aviso.altimetry.fr/fileadmin/user_upload/tx_ausyclsseminar/files/S3A_range_drift_OSTST_3.pdf (last
access: 10 June 2022), 2020.
AVISO: Along-track Sea Level Anomalies Level-2+ (L2P), https://www.aviso.altimetry.fr/en/data/products/sea-surface-height-products/global/along-track-sea-level-anomalies-l2p.html, last access: 27 July 2022 (login required).
Chambers, D. P., Cazenave, A., Champollion, N., Dieng, H., Llovel, W.,
Forsberg, R., von Schuckmann, K., and Wada, Y.: Evaluation of the Global
Mean Sea Level Budget between 1993 and 2014, Surv. Geophys., 38, 309–327,
https://doi.org/10.1007/s10712-016-9381-3, 2017.
Couhert, A., Cerri, L., Legeais, J.-F., Ablain, M., Zelensky, N. P., Haines,
B. J., Lemoine, F. G., Bertiger, W. I., Desai, S. D., and Otten, M.: Towards
the 1 mm/y stability of the radial orbit error at regional scales, Adv. Space
Res., 55, 2–23, https://doi.org/10.1016/j.asr.2014.06.041, 2015.
Dinardo, S.: Sentinel-3 Mission Performance Center, https://www-cdn.eumetsat.int/files/2021-12/Sentinel-3B USO sign correction.pdf
(last access: 10 June 2022), 2021.
Dufau, C., Orsztynowicz, M., Dibarboure, G., Morrow, R., and Le Traon, P.:
Mesoscale resolution capability of altimetry: Present and future, J.
Geophys. Res.-Oceans, 121, 4910–4927, https://doi.org/10.1002/2015JC010904,
2016.
Frery, M.-L., Siméon, M., Goldstein, C., Féménias, P., Borde,
F., Houpert, A., and Olea Garcia, A.: Sentinel-3 Microwave Radiometers:
Instrument Description, Calibration and Geophysical Products Performances,
Remote Sens., 12, 2590, https://doi.org/10.3390/rs12162590, 2020.
Henry, O., Ablain, M., Meyssignac, B., Cazenave, A., Masters, D., Nerem, S.,
and Garric, G.: Effect of the processing methodology on satellite
altimetry-based global mean sea level rise over the Jason-1 operating
period, J. Geodesy, 88, 351–361, 2014.
Jettou, G. and Rousseau, M.: SARAL/Altika validation and cross-calibration
activities, https://www.aviso.altimetry.fr/fileadmin/user_upload/SALP-RP-MA-EA-23472-CLS_Executive_Summary_SARAL_2020.pdf (last access: 10 June
2022), 2020.
Legeais, J.-F., Ablain, M., Zawadzki, L., Zuo, H., Johannessen, J. A., Scharffenberg, M. G., Fenoglio-Marc, L., Fernandes, M. J., Andersen, O. B., Rudenko, S., Cipollini, P., Quartly, G. D., Passaro, M., Cazenave, A., and Benveniste, J.: An improved and homogeneous altimeter sea level record from the ESA Climate Change Initiative, Earth Syst. Sci. Data, 10, 281–301, https://doi.org/10.5194/essd-10-281-2018, 2018.
Legeais, J.-F., Meyssignac, B., Faugère, Y., Guerou, A., Ablain, M.,
Pujol, M.-I., Dufau, C., and Dibarboure, G.: Copernicus sea level space
observations: a basis for assessing mitigation and developing adaptation
strategies to sea level rises, Front. Mar. Sci., 8, 1668, https://doi.org/10.3389/fmars.2021.704721, 2021.
Meyssignac, B.: How accurate is accurate enough?, OSTST,
https://ostst.aviso.altimetry.fr/fileadmin/user_upload/2019/OPEN_11_2019_how_accurate.pdf (last access: 10 June 2022), 2019.
Meyssignac, B., Boyer, T., Zhao, Z., Hakuba, M. Z., Landerer, F. W.,
Stammer, D., Köhl, A., Kato, S., L'Ecuyer, T., Ablain, M., Abraham, J.
P., Blazquez, A., Cazenave, A., Church, J. A., Cowley, R., Cheng, L.,
Domingues, C. M., Giglio, D., Gouretski, V., Ishii, M., Johnson, G. C.,
Killick, R. E., Legler, D., Llovel, W., Lyman, J., Palmer, M. D.,
Piotrowicz, S., Purkey, S. G., Roemmich, D., Roca, R., Savita, A.,
Schuckmann, K. von, Speich, S., Stephens, G., Wang, G., Wijffels, S. E., and
Zilberman, N.: Measuring Global Ocean Heat Content to Estimate the Earth
Energy Imbalance, Front. Mar. Sci., 6, 432,
https://doi.org/10.3389/fmars.2019.00432, 2019.
Mitchum, G. T.: Monitoring the Stability of Satellite Altimeters with Tide
Gauges, J. Atmos. Ocean. Tech., 15, 721–730,
https://doi.org/10.1175/1520-0426(1998)015<0721:MTSOSA>2.0.CO;2, 1998.
Ollivier, A., Faugere, Y., Picot, N., Ablain, M., Femenias, P., and
Benveniste, J.: Envisat Ocean Altimeter Becoming Relevant for Mean Sea Level
Trend Studies, Mar. Geod., 35, 118–136,
https://doi.org/10.1080/01490419.2012.721632, 2012.
Poisson, J. C., Piras, F., Raynal, M., Cadier, E., Thibaut, P., Boy, F.,
Picot, N., Borde, F., Féménias, P., Dinardo, S., Recchia, L., and
Scagliola, M.: SENTINEL-3A instrumental drift and its impacts on geophysical
estimates, OSTST,
https://ostst.aviso.altimetry.fr/fileadmin/user_upload/2019/IPM_02_Poisson_OSTST2019_PTR_Drift.pdf (last access: 10 June 2022), 2019.
Prandi, P., Meyssignac, B., Ablain, M., Spada, G., Ribes, A., and
Benveniste, J.: Local sea level trends, accelerations and uncertainties over
1993–2019, Sci. Data, 8, 1, https://doi.org/10.1038/s41597-020-00786-7,
2021.
Quartly, G. D., Nencioli, F., Raynal, M., Bonnefond, P., Nilo Garcia, P.,
Garcia-Mondéjar, A., Flores de la Cruz, A., Crétaux, J.-F., Taburet,
N., Frery, M.-L., Cancet, M., Muir, A., Brockley, D., McMillan, M., Abdalla,
S., Fleury, S., Cadier, E., Gao, Q., Escorihuela, M. J., Roca, M.,
Bergé-Nguyen, M., Laurain, O., Bruniquel, J., Féménias, P., and
Lucas, B.: The Roles of the S3MPC: Monitoring, Validation and Evolution of
Sentinel-3 Altimetry Observations, Remote Sens., 12, 1763,
https://doi.org/10.3390/rs12111763, 2020.
Roinard, H. and Michaud, L.: Jason-3 validation and cross-calibration
activities, https://www.aviso.altimetry.fr/fileadmin/documents/calval/validation_report/J3/SALP-RP-MA-EA-23187-CLS_Jason-3_AnnualReport2017_v1-2.pdf (last access: 10 June 2022), 2020.
Secretariat, G.C.O.S.: Systematic observation
requirements for satellite-based products for climate, GCOS Implementation Plan, https://climate.esa.int/sites/default/files/gcos-154.pdf (last access: 17 July 2022), 2011.
Spada, G.: Glacial Isostatic Adjustment and Contemporary Sea Level Rise: An
Overview, Surv. Geophys., 38, 153–185,
https://doi.org/10.1007/s10712-016-9379-x, 2017.
Taburet, G., Sanchez-Roman, A., Ballarotta, M., Pujol, M.-I., Legeais, J.-F., Fournier, F., Faugere, Y., and Dibarboure, G.: DUACS DT2018: 25 years of reprocessed sea level altimetry products, Ocean Sci., 15, 1207–1224, https://doi.org/10.5194/os-15-1207-2019, 2019.
Valladeau, G., Legeais, J. F., Ablain, M., Guinehut, S., and Picot, N.:
Comparing Altimetry with Tide Gauges and Argo Profiling Floats for Data
Quality Assessment and Mean Sea Level Studies, Mar. Geod., 35, 42–60,
https://doi.org/10.1080/01490419.2012.718226, 2012.
von Schuckmann, K., Cheng, L., Palmer, M. D., Hansen, J., Tassone, C., Aich, V., Adusumilli, S., Beltrami, H., Boyer, T., Cuesta-Valero, F. J., Desbruyères, D., Domingues, C., García-García, A., Gentine, P., Gilson, J., Gorfer, M., Haimberger, L., Ishii, M., Johnson, G. C., Killick, R., King, B. A., Kirchengast, G., Kolodziejczyk, N., Lyman, J., Marzeion, B., Mayer, M., Monier, M., Monselesan, D. P., Purkey, S., Roemmich, D., Schweiger, A., Seneviratne, S. I., Shepherd, A., Slater, D. A., Steiner, A. K., Straneo, F., Timmermans, M.-L., and Wijffels, S. E.: Heat stored in the Earth system: where does the energy go?, Earth Syst. Sci. Data, 12, 2013–2041, https://doi.org/10.5194/essd-12-2013-2020, 2020.
Watson, C. S., White, N. J., Church, J. A., King, M. A., Burgette, R. J.,
and Legresy, B.: Unabated global mean sea-level rise over the satellite
altimeter era, Nat. Clim. Change, 5, 565–568,
https://doi.org/10.1038/nclimate2635, 2015.
Watson, C. S., Legresy, B., and King, M. A.: On the uncertainty associated
with validating the global mean sea level climate record, Adv. Space Res.,
68, 487–495, https://doi.org/10.1016/j.asr.2019.09.053, 2021.
Zawadzki, L. and Ablain, M.: Accuracy of the mean sea level continuous record with future altimetric missions: Jason-3 vs. Sentinel-3a, Ocean Sci., 12, 9–18, https://doi.org/10.5194/os-12-9-2016, 2016.
Short summary
To ensure that the sea level is measured as accurately as possible by satellite altimeters, we must monitor possible sea level drifts caused by those instruments through comparison with other satellite altimeters or tide gauges. In this paper, we describe a method and estimate the associated uncertainties for detecting altimeter drifts over short time periods (from 2 to 10 years) through cross-comparison with other satellite altimeters and apply it to the recent Sentinel-3 A/B altimeters.
To ensure that the sea level is measured as accurately as possible by satellite altimeters, we...