Articles | Volume 18, issue 4
https://doi.org/10.5194/os-18-1131-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-18-1131-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The role of wind, mesoscale dynamics, and coastal circulation in the interannual variability of the South Vietnam Upwelling, South China Sea – answers from a high-resolution ocean model
Thai To Duy
LEGOS, IRD, UMR5566, IRD/CNES/CNRS/Université de Toulouse,
31400 Toulouse, France
LOTUS Laboratory, University of Science and Technology of Hanoi
(USTH), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc
Viet, Cau Giay, Hanoi, Vietnam
Institute of Oceanography (IO), Vietnam Academy of Science and
Technology (VAST), Nha Trang, Vietnam
LEGOS, IRD, UMR5566, IRD/CNES/CNRS/Université de Toulouse,
31400 Toulouse, France
LOTUS Laboratory, University of Science and Technology of Hanoi
(USTH), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc
Viet, Cau Giay, Hanoi, Vietnam
Claude Estournel
LEGOS, IRD, UMR5566, IRD/CNES/CNRS/Université de Toulouse,
31400 Toulouse, France
Patrick Marsaleix
LEGOS, IRD, UMR5566, IRD/CNES/CNRS/Université de Toulouse,
31400 Toulouse, France
Thomas Duhaut
LEGOS, IRD, UMR5566, IRD/CNES/CNRS/Université de Toulouse,
31400 Toulouse, France
Long Bui Hong
Institute of Oceanography (IO), Vietnam Academy of Science and
Technology (VAST), Nha Trang, Vietnam
Ngoc Trinh Bich
LOTUS Laboratory, University of Science and Technology of Hanoi
(USTH), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc
Viet, Cau Giay, Hanoi, Vietnam
Related authors
No articles found.
Thanh Huyen Tran, Alexei Sentchev, Thai To Duy, Marine Herrmann, Sylvain Ouillon, and Kim Cuong Nguyen
Ocean Sci., 21, 1–18, https://doi.org/10.5194/os-21-1-2025, https://doi.org/10.5194/os-21-1-2025, 2025
Short summary
Short summary
For the first time, high-resolution surface current data from high-frequency radar have been obtained along the central and southern coasts of Vietnam, and combined with a modelling approach, this is helping scientists to understand coastal processes. The research showed that the surface circulation is driven not only by winds, but also by other factors. This can enrich public knowledge of the coastal dynamics that govern other environmental impacts along the coasts.
Adrien Garinet, Marine Herrmann, Patrick Marsaleix, and Juliette Pénicaud
Geosci. Model Dev., 17, 6967–6986, https://doi.org/10.5194/gmd-17-6967-2024, https://doi.org/10.5194/gmd-17-6967-2024, 2024
Short summary
Short summary
Mixing is a crucial aspect of the ocean, but its accurate representation in computer simulations is made challenging by errors that result in unwanted mixing, compromising simulation realism. Here we illustrate the spurious effect that tides can have on simulations of south-east Asia. Although they play an important role in determining the state of the ocean, they can increase numerical errors and make simulation outputs less realistic. We also provide insights into how to reduce these errors.
Marine Herrmann, Thai To Duy, and Patrick Marsaleix
Ocean Sci., 20, 1013–1033, https://doi.org/10.5194/os-20-1013-2024, https://doi.org/10.5194/os-20-1013-2024, 2024
Short summary
Short summary
In summer, deep, cold waters rise to the surface along and off the Vietnamese coast. This upwelling of water lifts nutrients, inducing biological activity that is important for fishery resources. Strong tides occur on the shelf off the Mekong Delta. By increasing the mixing of ocean waters and modifying currents, they are a major factor in the development of upwelling on the shelf, accounting for ~75 % of its average summer intensity.
Ngoc B. Trinh, Marine Herrmann, Caroline Ulses, Patrick Marsaleix, Thomas Duhaut, Thai To Duy, Claude Estournel, and R. Kipp Shearman
Geosci. Model Dev., 17, 1831–1867, https://doi.org/10.5194/gmd-17-1831-2024, https://doi.org/10.5194/gmd-17-1831-2024, 2024
Short summary
Short summary
A high-resolution model was built to study the South China Sea (SCS) water, heat, and salt budgets. Model performance is demonstrated by comparison with observations and simulations. Important discards are observed if calculating offline, instead of online, lateral inflows and outflows of water, heat, and salt. The SCS mainly receives water from the Luzon Strait and releases it through the Mindoro, Taiwan, and Karimata straits. SCS surface interocean water exchanges are driven by monsoon winds.
Caroline Ulses, Claude Estournel, Patrick Marsaleix, Karline Soetaert, Marine Fourrier, Laurent Coppola, Dominique Lefèvre, Franck Touratier, Catherine Goyet, Véronique Guglielmi, Fayçal Kessouri, Pierre Testor, and Xavier Durrieu de Madron
Biogeosciences, 20, 4683–4710, https://doi.org/10.5194/bg-20-4683-2023, https://doi.org/10.5194/bg-20-4683-2023, 2023
Short summary
Short summary
Deep convection plays a key role in the circulation, thermodynamics, and biogeochemical cycles in the Mediterranean Sea, considered to be a hotspot of biodiversity and climate change. In this study, we investigate the seasonal and annual budget of dissolved inorganic carbon in the deep-convection area of the northwestern Mediterranean Sea.
Joelle Habib, Caroline Ulses, Claude Estournel, Milad Fakhri, Patrick Marsaleix, Mireille Pujo-Pay, Marine Fourrier, Laurent Coppola, Alexandre Mignot, Laurent Mortier, and Pascal Conan
Biogeosciences, 20, 3203–3228, https://doi.org/10.5194/bg-20-3203-2023, https://doi.org/10.5194/bg-20-3203-2023, 2023
Short summary
Short summary
The Rhodes Gyre, eastern Mediterranean Sea, is the main Levantine Intermediate Water formation site. In this study, we use a 3D physical–biogeochemical model to investigate the seasonal and interannual variability of organic carbon dynamics in the gyre. Our results show its autotrophic nature and its high interannual variability, with enhanced primary production, downward exports, and onward exports to the surrounding regions during years marked by intense heat losses and deep mixed layers.
Alice Carret, Florence Birol, Claude Estournel, and Bruno Zakardjian
Ocean Sci., 19, 903–921, https://doi.org/10.5194/os-19-903-2023, https://doi.org/10.5194/os-19-903-2023, 2023
Short summary
Short summary
This study presents a methodology to investigate the ability of satellite altimetry to observe a coastal current, the Northern Current, in the NW Mediterannean Sea. We use a high-resolution regional model, validated with HF radars and in situ data. The model is used as a reference and compared to three different missions (Jason 2, SARAL and Sentinel-3), studying both the surface velocity and the sea surface height signature of the current. The performance of the three missions was also compared.
Marine Herrmann, Thai To Duy, and Claude Estournel
Ocean Sci., 19, 453–467, https://doi.org/10.5194/os-19-453-2023, https://doi.org/10.5194/os-19-453-2023, 2023
Short summary
Short summary
The South Vietnam upwelling develops in summer along and off the Vietnamese coast. It brings cold and nutrient-rich waters to the surface, allowing photosynthesis essential to marine ecosystems and fishing resources. We show here that its daily variations are mainly due to the wind, thus predictable, in the southern shelf and coastal regions. However, they are more chaotic in the offshore area, and especially in the northern area, due to the influence of eddies of a highly chaotic nature.
Gaël Many, Caroline Ulses, Claude Estournel, and Patrick Marsaleix
Biogeosciences, 18, 5513–5538, https://doi.org/10.5194/bg-18-5513-2021, https://doi.org/10.5194/bg-18-5513-2021, 2021
Short summary
Short summary
The Gulf of Lion shelf is one of the most productive areas in the Mediterranean. A model is used to study the mechanisms that drive the particulate organic carbon (POC). The model reproduces the annual cycle of primary production well. The shelf appears as an autotrophic ecosystem with a high production and as a source of POC for the adjacent basin. The increase in temperature induced by climate change could impact the trophic status of the shelf.
Caroline Ulses, Claude Estournel, Marine Fourrier, Laurent Coppola, Fayçal Kessouri, Dominique Lefèvre, and Patrick Marsaleix
Biogeosciences, 18, 937–960, https://doi.org/10.5194/bg-18-937-2021, https://doi.org/10.5194/bg-18-937-2021, 2021
Short summary
Short summary
We analyse the seasonal cycle of O2 and estimate an annual O2 budget in the north-western Mediterranean deep-convection region, using a numerical model. We show that this region acts as a large sink of atmospheric O2 and as a major source of O2 for the western Mediterranean Sea. The decrease in the deep convection intensity predicted in recent projections may have important consequences on the overall uptake of O2 in the Mediterranean Sea and on the O2 exchanges with the Atlantic Ocean.
Violaine Piton, Marine Herrmann, Florent Lyard, Patrick Marsaleix, Thomas Duhaut, Damien Allain, and Sylvain Ouillon
Geosci. Model Dev., 13, 1583–1607, https://doi.org/10.5194/gmd-13-1583-2020, https://doi.org/10.5194/gmd-13-1583-2020, 2020
Short summary
Short summary
Consequences of tidal dynamics on hydro-sedimentary processes are a recurrent issue in estuarine and coastal processes studies, and accurate tidal solutions are a prerequisite for modeling sediment transport. This study presents the implementation and optimization of a model configuration in terms of bathymetry and bottom friction and assess the influence of these parameters on tidal solutions, in a macro-tidal environment: the Gulf of Tonkin (Vietnam).
Cited articles
Ablain, M., Cazenave, A., Larnicol, G., Balmaseda, M., Cipollini, P.,
Faugère, Y., Fernandes, M. J., Henry, O., Johannessen, J. A., Knudsen,
P., Andersen, O., Legeais, J., Meyssignac, B., Picot, N., Roca, M., Rudenko,
S., Scharffenberg, M. G., Stammer, D., Timms, G., and Benveniste, J.:
Improved sea level record over the satellite altimetry era (1993–2010) from
the Climate Change Initiative project, Ocean Sci., 11, 67–82,
https://doi.org/10.5194/OS-11-67-2015, 2015.
Belharet, M., Estournel, C., and Charmasson, S.: Ecosystem model-based approach for modeling the dynamics of 137Cs transfer to marine plankton populations: application to the western North Pacific Ocean after the Fukushima nuclear power plant accident, Biogeosciences, 13, 499–516, https://doi.org/10.5194/bg-13-499-2016, 2016.
Bombar, D., Dippner, J. W., Doan, H. N., Ngoc, L. N., Liskow, I.,
Loick-Wilde, N., and Voss, M.: Sources of new nitrogen in the Vietnamese
upwelling region of the South China Sea, J. Geophys. Res.-Ocean., 115, 6018,
https://doi.org/10.1029/2008JC005154, 2010.
Boutin, J., Vergely, J. L., Marchand, S., D'Amico, F., Hasson, A.,
Kolodziejczyk, N., Reul, N., Reverdin, G., and Vialard, J.: New SMOS Sea
Surface Salinity with reduced systematic errors and improved variability,
Remote Sens. Environ., 214, 115–134,
https://doi.org/10.1016/J.RSE.2018.05.022, 2018.
Center for International Earth Science Information Network – CIESIN –
Columbia University: Gridded Population of the World, Version 4 (GPWv4),
Population Density, Revision 11, https://doi.org/10.7927/H49C6VHW, 2018.
Chao, S. Y., Shaw, P. T., and Wu, S. Y.: El Niño modulation of the South
China Sea circulation, Prog. Oceanogr., 38, 51–93,
https://doi.org/10.1016/S0079-6611(96)00010-9, 1996.
Chen, C. and Wang, G.: Interannual variability of the eastward current in
the western South China Sea associated with the summer Asian monsoon, J.
Geophys. Res.-Ocean., 119, 5745–5754, https://doi.org/10.1002/2014JC010309,
2014.
Chen, C., Lai, Z., Beardsley, R. C., Xu, Q., Lin, H., and Viet, N. T.:
Current separation and upwelling over the southeast shelf of Vietnam in the
South China Sea, J. Geophys. Res.-Ocean., 117, 1–16,
https://doi.org/10.1029/2011JC007150, 2012.
Costa, A., Doglioli, A. M., Marsaleix, P., and Petrenko, A. A.: Comparison
of in situ microstructure measurements to different turbulence closure
schemes in a 3-D numerical ocean circulation model, Ocean Model., 120,
1–17, https://doi.org/10.1016/J.OCEMOD.2017.10.002, 2017.
Da, N. D.: The interannual variability of the South Vietnam Upwelling:
contributions of atmospheric, oceanic, hydrologic forcing and the ocean
intrinsic variability, PhD thesis, Université de Toulouse, Toulouse, France, 1–168
pp., 2018.
Da, N. D., Herrmann, M., Morrow, R., Niño, F., Huan, N. M., and Trinh,
N. Q.: Contributions of Wind, Ocean Intrinsic Variability, and ENSO to the
Interannual Variability of the South Vietnam Upwelling: A Modeling Study, J.
Geophys. Res.-Ocean., 124, 6545–6574, https://doi.org/10.1029/2018JC014647,
2019.
Damien, P., Bosse, A., Testor, P., Marsaleix, P., and Estournel, C.:
Modeling Postconvective Submesoscale Coherent Vortices in the Northwestern
Mediterranean Sea, J. Geophys. Res.-Ocean., 122, 9937–9961,
https://doi.org/10.1002/2016JC012114, 2017.
Dippner, J. W. and Loick-Wilde, N.: A redefinition of water masses in the
Vietnamese upwelling area, J. Mar. Syst., 84, 42–47,
https://doi.org/10.1016/J.JMARSYS.2010.08.004, 2011.
Dippner, J. W., Nguyen, K. V., Hein, H., Ohde, T., and Loick, N.:
Monsoon-induced upwelling off the Vietnamese coast, Ocean Dynam., 57, 46–62,
https://doi.org/10.1007/S10236-006-0091-0, 2007a.
Dippner, J. W., Nguyen, K. V., Hein, H., Ohde, T., and Loick, N.:
Monsoon-induced upwelling off the Vietnamese coast, Ocean Dynam., 57, 46–62,
https://doi.org/10.1007/s10236-006-0091-0, 2007b.
Estournel, C., Bosc, E., Bocquet, M., Ulses, C., Marsaleix, P., Winiarek,
V., Osvath, I., Nguyen, C., Duhaut, T., Lyard, F., Michaud, H., and Auclair,
F.: Assessment of the amount of cesium-137 released into the Pacific Ocean
after the Fukushima accident and analysis of its dispersion in Japanese
coastal waters, J. Geophys. Res.-Ocean., 117, 11014,
https://doi.org/10.1029/2012JC007933, 2012.
Estournel, C., Marsaleix, P., and Ulses, C.: A new assessment of the
circulation of Atlantic and Intermediate Waters in the Eastern
Mediterranean, Prog. Oceanogr., 198, 102673,
https://doi.org/10.1016/J.POCEAN.2021.102673, 2021.
Fang, G., Wang, Y., Wei, Z., Fang, Y., Qiao, F., and Hu, X.: Interocean
circulation and heat and freshwater budgets of the South China Sea based on
a numerical model, Dynam. Atmos. Ocean., 47, 55–72,
https://doi.org/10.1016/J.DYNATMOCE.2008.09.003, 2009.
Fang, G., Wang, G., Fang, Y., and Fang, W.: A review on the South China Sea
western boundary current, Acta Oceanol. Sin., 31, 1–10,
https://doi.org/10.1007/s13131-012-0231-y, 2012.
Fang, W., Fang, G., and Shi, P.: Seasonal structures of upper layer
circulation in the southern South China Sea from in situ observations, J.
Geophys. Res. Lett., 107, 3202, https://doi.org/10.1029/2002JC001343,
2002.
Gentemann, C. L., Wentz, F. J., Mears, C. A., and Smith, D. K.: In situ
validation of Tropical Rainfall Measuring Mission microwave sea surface
temperatures, J. Geophys. Res.-Ocean., 109, 4021,
https://doi.org/10.1029/2003JC002092, 2004.
Griffies, S. M. and Hallberg, R. W.: Biharmonic Friction with a
Smagorinsky-Like Viscosity for Use in Large-Scale Eddy-Permitting Ocean
Models, Mon. Weather Rev., 128, 2935–2946,
https://doi.org/10.1175/1520-0493(2000)128<2935:BFWASL>2.0.CO;2, 2000.
Herrmann, M., Estournel, C., Déqué, M., Marsaleix, P., Sevault, F.,
and Somot, S.: Dense water formation in the Gulf of Lions shelf: Impact of
atmospheric interannual variability and climate change, Cont. Shelf Res.,
28, 2092–2112, https://doi.org/10.1016/J.CSR.2008.03.003, 2008.
Herrmann, M., Estournel, C., Adloff, F., and Diaz, F.: Impact of climate
change on the northwestern Mediterranean Sea pelagic planktonic ecosystem
and associated carbon cycle, J. Geophys. Res.-Ocean., 119, 5815–5836,
https://doi.org/10.1002/2014JC010016, 2014.
Herrmann, M., Auger, P. A., Ulses, C., and Estournel, C.: Long-term
monitoring of ocean deep convection using multisensors altimetry and ocean
color satellite data, J. Geophys. Res.-Ocean., 122, 1457–1475,
https://doi.org/10.1002/2016JC011833, 2017.
Herrmann, M., Ngo-Duc, T., and Trinh-Tuan, L.: Impact of climate change on
sea surface wind in Southeast Asia, from climatological average to extreme
events: results from a dynamical downscaling, Clim. Dynam., 543,
2101–2134, https://doi.org/10.1007/S00382-019-05103-6, 2020.
Herrmann, M., Nguyen-Duy, T., Ngo-Duc, T., and Tangang, F.: Climate change
impact on sea surface winds in Southeast Asia, Int. J. Climatol., 42,
3571–3595, https://doi.org/10.1002/JOC.7433, 2021.
Ho, C. R., Zheng, Q., Soong, Y. S., Kuo, N. J., and Hu, J. H.: Seasonal
variability of sea surface height in the South China Sea observed with
TOPEX/Poseidon altimeter data, J. Geophys. Res.-Ocean., 105, 13981–13990,
https://doi.org/10.1029/2000JC900001, 2000.
Jackett, D. R., McDougall, T. J., Feistel, R., Wright, D. G., and Griffies,
S. M.: Algorithms for Density, Potential Temperature, Conservative
Temperature, and the Freezing Temperature of Seawater, J. Atmos. Ocean.
Technol., 23, 1709–1728, https://doi.org/10.1175/JTECH1946.1, 2006.
Kuo, N. J., Zheng, Q., and Ho, C. R.: Response of Vietnam coastal upwelling
to the 1997–1998 ENSO event observed by multisensor data, Remote Sens.
Environ., 89, 106–115, https://doi.org/10.1016/j.rse.2003.10.009, 2004.
Large, G. and Yeager, S.: Diurnal to decadal global forcing for ocean and
sea-ice models: The data sets and flux climatologies, NCAR/TN-460+STR, University Corporation for Atmospheric Research,
https://doi.org/10.5065/D6KK98Q6, 2004.
Leonard, B. P.: A stable and accurate convective modelling procedure based
on quadratic upstream interpolation, Comput. Methods Appl. Mech. Eng., 19,
59–98, https://doi.org/10.1016/0045-7825(79)90034-3, 1979.
Li, Y., Han, W., Wilkin, J. L., Zhang, W. G., Arango, H., Zavala-Garay, J.,
Levin, J., and Castruccio, F. S.: Interannual variability of the surface
summertime eastward jet in the South China Sea, J. Geophys. Res.-Ocean.,
119, 7205–7228, https://doi.org/10.1002/2014JC010206, 2014.
Li, Y., Han, W., and Zhang, L.: Enhanced Decadal Warming of the Southeast
Indian Ocean During the Recent Global Surface Warming Slowdown, Geophys.
Res. Lett., 44, 9876–9884, https://doi.org/10.1002/2017GL075050, 2017.
Liu, X., Wang, J., Cheng, X., and Du, Y.: Abnormal upwelling and
chlorophyll-a concentration off South Vietnam in summer 2007, J. Geophys.
Res.-Ocean., 117, 2–11, https://doi.org/10.1029/2012JC008052, 2012.
Loick, N., Dippner, J., Doan, H. N., Liskow, I., and Voss, M.: Pelagic
nitrogen dynamics in the Vietnamese upwelling area according to stable
nitrogen and carbon isotope data, Deep-Sea Res. Pt. I, 54,
596–607, https://doi.org/10.1016/j.dsr.2006.12.009, 2007.
Loick-Wilde, N., Bombar, D., Doan, H. N., Nguyen, L. N., Nguyen-Thi, A. M.,
Voss, M., and Dippner, J. W.: Microplankton biomass and diversity in the
Vietnamese upwelling area during SW monsoon under normal conditions and
after an ENSO event, Prog. Oceanogr., 153, 1–15,
https://doi.org/10.1016/j.pocean.2017.04.007, 2017.
Loisel, H., Vantrepotte, V., Ouillon, S., Ngoc, D. D., Herrmann, M., Tran,
V., Mériaux, X., Dessailly, D., Jamet, C., Duhaut, T., Nguyen, H. H.,
and Van Nguyen, T.: Assessment and analysis of the chlorophyll-a
concentration variability over the Vietnamese coastal waters from the MERIS
ocean color sensor (2002–2012), Remote Sens. Environ., 190, 217–232,
https://doi.org/10.1016/j.rse.2016.12.016, 2017.
Lu, W., Oey, L. Y., Liao, E., Zhuang, W., Yan, X. H., and Jiang, Y.:
Physical modulation to the biological productivity in the summer Vietnam
upwelling system, Ocean Sci., 14, 1303–1320,
https://doi.org/10.5194/OS-14-1303-2018, 2018.
Lyard, F., Lefevre, F., Letellier, T., and Francis, O.: Modelling the global
ocean tides: modern insights from FES2004, Ocean Dynam., 565,
394–415, https://doi.org/10.1007/S10236-006-0086-X, 2006.
Marsaleix, P., Auclair, F., and Estournel, C.: Considerations on Open
Boundary Conditions for Regional and Coastal Ocean Models, J. Atmos. Ocean.
Technol., 23, 1604–1613, https://doi.org/10.1175/JTECH1930.1, 2006.
Marsaleix, P., Auclair, F., Floor, J. W., Herrmann, M. J., Estournel, C.,
Pairaud, I., and Ulses, C.: Energy conservation issues in sigma-coordinate
free-surface ocean models, Ocean Model., 20, 61–89,
https://doi.org/10.1016/j.ocemod.2007.07.005, 2008.
Marsaleix, P., Auclair, F., and Estournel, C.: Low-order pressure gradient
schemes in sigma coordinate models: The seamount test revisited, Ocean
Model., 30, 169–177, https://doi.org/10.1016/j.ocemod.2009.06.011, 2009.
Marsaleix, P., Michaud, H., and Estournel, C.: 3D phase-resolved wave
modelling with a non-hydrostatic ocean circulation model, Ocean Model., 136,
28–50, https://doi.org/10.1016/J.OCEMOD.2019.02.002, 2019.
Masumoto, Y., Miyazawa, Y., Tsumune, D., Tsubono, T., Kobayashi, T.,
Kawamura, H., Estournel, C., Marsaleix, P., Lanerolle, L., Mehra, A., and
Garraffo, Z. D.: Oceanic Dispersion Simulations of 137Cs Released from the
Fukushima Daiichi Nuclear Power Plant, Elements, 8, 207–212,
https://doi.org/10.2113/GSELEMENTS.8.3.207, 2012.
Michaud, H., Marsaleix, P., Leredde, Y., Estournel, C., Bourrin, F., Lyard, F., Mayet, C., and Ardhuin, F.: Three-dimensional modelling of wave-induced current from the surf zone to the inner shelf, Ocean Sci., 8, 657–681, https://doi.org/10.5194/os-8-657-2012, 2012.
Ngo, M. H. and Hsin, Y. C.: Impacts of Wind and Current on the Interannual
Variation of the Summertime Upwelling Off Southern Vietnam in the South
China Sea, J. Geophys. Res.-Ocean., 126, e2020JC016892,
https://doi.org/10.1029/2020JC016892, 2021.
Nguyen-Duy, T., Ayoub, N. K., Marsaleix, P., Toublanc, F., De
Mey-Frémaux, P., Piton, V., Herrmann, M., Duhaut, T., Tran, M. C., and
Ngo-Duc, T.: Variability of the Red River Plume in the Gulf of Tonkin as
Revealed by Numerical Modeling and Clustering Analysis, Front. Mar. Sci., 8,
1636, https://doi.org/10.3389/FMARS.2021.772139, 2021.
Pairaud, I., Lyard, F., Auclair, F., Letellier, T., and Marsaleix, P.:
Dynamics of the semi-diurnal and quarter-diurnal internal tides in the Bay
of Biscay, Part 1: Barotropic tides, Cont. Shelf Res., 28, 1294–1315,
https://doi.org/10.1016/J.CSR.2008.03.004, 2008.
Pairaud, I., Staquet, C., Sommeria, J., and Mahdizadeh, M. M.: Generation of
harmonics and sub-harmonics from an internal tide in a uniformly stratified
fluid: Numerical and laboratory experiments, in: IUTAM Symposium on Turbulence in the Atmosphere and Oceans, edited by: Dritschel, D., IUTAM Bookseries, Springer, Dordrecht, 28, 51–62, 2010.
Piton, V., Herrmann, M., Marsaleix, P., Duhaut, T., Ngoc, T. B., Tran, M.
C., Shearman, K., and Ouillon, S.: Influence of winds, geostrophy and
typhoons on the seasonal variability of the circulation in the Gulf of
Tonkin: A high-resolution 3D regional modeling study, Reg. Stud. Mar. Sci.,
45, 101849, https://doi.org/10.1016/J.RSMA.2021.101849, 2021.
Qu, T.: Upper-Layer Circulation in the South China Sea, J. Phys. Oceanogr.,
30, 1450–1460, https://doi.org/10.1175/1520-0485(2000)030<1450:ULCITS>2.0.CO;2, 2000.
Qu, T., Kim, Y. Y., Yaremchuk, M., Tuzuka, T., Ishida, A., and Yamagata, T.:
Can Luzon Strait transport play a role in conveying the impact of ENSO to
the South China Sea?, J. Clim., 17, 3644–3657,
https://doi.org/10.1175/1520-0442(2004)017<3644:CLSTPA>2.0.CO;2, 2004.
Qu, T., Song, Y. T., and Yamagata, T.: An introduction to the South China
Sea throughflow: Its dynamics, variability, and application for climate,
Dynam. Atmos. Ocean., 47, 3–14,
https://doi.org/10.1016/j.dynatmoce.2008.05.001, 2009.
Ray, R. D. and Zaron, E. D.: M2 Internal Tides and Their Observed Wavenumber
Spectra from Satellite Altimetry, J. Phys. Oceanogr., 46, 3–22,
https://doi.org/10.1175/JPO-D-15-0065.1, 2016.
Reffray, G., Fraunié, P., and Marsaleix, P.: Secondary flows induced by
wind forcing in the Rhône region of freshwater influence, Ocean Dynam.,
542, 179–196, https://doi.org/10.1007/S10236-003-0079-Y, 2004.
Rogowski, P., Zavala-Garay, J., Shearman, K., Terrill, E., Wilkin, J., and
Lam, T. H.: Air-Sea-Land Forcing in the Gulf of Tonkin: Assessing seasonal
variability using modern tools, Oceanography, 32, 150–161,
https://doi.org/10.5670/OCEANOG.2019.223, 2019.
Sérazin, G., Meyssignac, B., Penduff, T., Terray, L., Barnier, B., and
Molines, J. M.: Quantifying uncertainties on regional sea level change
induced by multidecadal intrinsic oceanic variability, Geophys. Res. Lett.,
43, 8151–8159, https://doi.org/10.1002/2016GL069273, 2016.
Shaw, P. T., Chao, S. Y., and Fu, L. L.: Sea surface height variations in
the South China Sea from satellite altimetry, Oceanol. Acta, 22, 1–17,
https://doi.org/10.1016/S0399-1784(99)80028-0, 1999.
Siddorn, J. R. and Furner, R.: An analytical stretching function that
combines the best attributes of geopotential and terrain-following vertical
coordinates, Ocean Model., 66, 1–13,
https://doi.org/10.1016/J.OCEMOD.2013.02.001, 2013.
Siew, J. H., Tangang, F. T., and Juneng, L.: Evaluation of CMIP5 coupled
atmosphere-ocean general circulation models and projection of the Southeast
Asian winter monsoon in the 21st century, Int. J. Climatol., 34, 2872–2884,
https://doi.org/10.1002/JOC.3880, 2014.
Toublanc, F., Ayoub, N. K., Lyard, F., Marsaleix, P., and Allain, D. J.:
Tidal downscaling from the open ocean to the coast: a new approach applied
to the Bay of Biscay, Ocean Model., 124, 16–32,
https://doi.org/10.1016/J.OCEMOD.2018.02.001, 2018.
Trinh, B. N.: Cycles de l'eau, de la chaleur et du sel en mer de Chine
méridionale, de la variation saisonnière à la variabilité
interannuelle: modélisation océanique à haute résolution et
à bilan fermé, PhD thesis, Université de Toulouse, Toulouse, France, 2020.
UKMO: GHRSST Level 4 OSTIA Global Foundation Sea Surface Temperature
Analysis,
https://doi.org/10.5067/GHOST-4FK01, 2005.
Ulses, C., Auger, P. A., Soetaert, K., Marsaleix, P., Diaz, F., Coppola, L.,
Herrmann, M. J., Kessouri, F., and Estournel, C.: Budget of organic carbon
in the North-Western Mediterranean open sea over the period 2004–2008 using
3-D coupled physical-biogeochemical modeling, J. Geophys. Res.-Ocean., 121,
7026–7055, https://doi.org/10.1002/2016JC011818, 2016.
Uu, D. V. and Brankart, J.-M.: Seasonal variation of temperature and
salinity fields and water masses in the Bien Dong (South China) sea, Math.
Comput. Model., 26, 97–113, https://doi.org/10.1016/S0895-7177(97)00243-4,
1997.
Waldman, R., Somot, S., Herrmann, M., Sevault, F., and Isachsen, P. E.: On
the Chaotic Variability of Deep Convection in the Mediterranean Sea,
Geophys. Res. Lett., 45, 2433–2443, https://doi.org/10.1002/2017GL076319,
2018.
Wang, B., LinHo, Zhang, Y., and Lu, M. M.: Definition of South China Sea
monsoon onset and commencement of the East Asian summer monsoon, J. Clim.,
17, 699–710, https://doi.org/10.1175/2932.1, 2004.
Wang, Y., Fang, G., Wei, Z., Qiao, F., and Chen, H.: Interannual variation
of the South China Sea circulation and its relation to El Niño, as seen
from a variable grid global ocean model, J. Geophys. Res.-Ocean., 111,
1–15, https://doi.org/10.1029/2005JC003269, 2006.
Wang, Y. L. and Wu, C. R.: Nonstationary El Niño teleconnection on the
post-summer upwelling off Vietnam, Sci. Rep., 10, 13319,
https://doi.org/10.1038/S41598-020-70147-2, 2020.
Woo, H. J. and Park, K. A.: Inter-comparisons of daily sea surface
temperatures and in-situ temperatures in the coastal regions, Remote Sens.,
12, 1592, https://doi.org/10.3390/RS12101592, 2020.
Wyrtki, K.: Physical oceanography of the South East Asian Waters, Naga Rep.,
2, 1–195, 1961.
Xian, W. U., Okumura, Y. M., and Dinezio, P. N.: What controls the duration
of El Niño and La Niña events?, J. Clim., 32, 5941–5965,
https://doi.org/10.1175/JCLI-D-18-0681.1, 2019.
Xie, S.-P., Xie, Q., and Wang, D.: Summer Upwelling in the South China Sea
and its Role in Regional Climate Variations, J. Geophys. Res., 108, 1–37,
https://doi.org/10.1029/2003JC001867, 2003.
Xie, S. P., Chang, C. H., Xi, Q., and Wang, D.: Intraseasonal variability in
the summer South China Sea: Wind jet, cold filament, and recirculations, J.
Geophys. Res.-Ocean., 112, 1–11, https://doi.org/10.1029/2007JC004238,
2007.
Yu, Y., Zhang, H. R., Jin, J., and Wang, Y.: Trends of sea surface
temperature and sea surface temperature fronts in the South China Sea during
2003–2017, Acta Oceanol. Sin., 38, 106–115,
https://doi.org/10.1007/S13131-019-1416-4, 2019.
Zeng, L., Timothy Liu, W., Xue, H., Xiu, P., and Wang, D.: Freshening in the
South China Sea during 2012 revealed by Aquarius and in situ data, J.
Geophys. Res.-Ocean., 119, 8296–8314, https://doi.org/10.1002/2014JC010108,
2014.
Zeng, L., Wang, D., Xiu, P., Shu, Y., Wang, Q., and Chen, J.: Decadal
variation and trends in subsurface salinity from 1960 to 2012 in the
northern South China Sea, Geophys. Res. Lett., 43, 12181–12189,
https://doi.org/10.1002/2016GL071439, 2016.
Zeng, L., Chassignet, E. P., Schmitt, R. W., Xu, X., and Wang, D.:
Salinification in the South China Sea Since Late 2012: A Reversal of the
Freshening Since the 1990s, Geophys. Res. Lett., 45, 2744–2751,
https://doi.org/10.1002/2017GL076574, 2018.
Zheng, Z. W., Zheng, Q., Kuo, Y. C., Gopalakrishnan, G., Lee, C. Y., Ho, C.
R., Kuo, N. J., and Huang, S. J.: Impacts of coastal upwelling off east
Vietnam on the regional winds system: An air-sea-land interaction, Dynam.
Atmos. Ocean., 76, 105–115,
https://doi.org/10.1016/j.dynatmoce.2016.10.002, 2016.
Short summary
The South Vietnam Upwelling develops in the coastal and offshore regions of the southwestern South China Sea under the influence of summer monsoon winds. Cold, nutrient-rich waters rise to the surface, where photosynthesis occurs and is essential for fishing activity. We have developed a very high-resolution model to better understand the factors that drive the variability of this upwelling at different scales: daily chronology to summer mean of wind and mesoscale to regional circulation.
The South Vietnam Upwelling develops in the coastal and offshore regions of the southwestern...