Articles | Volume 17, issue 1
https://doi.org/10.5194/os-17-91-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-17-91-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Data assimilation of sea surface temperature and salinity using basin-scale reconstruction from empirical orthogonal functions: a feasibility study in the northeastern Baltic Sea
Mihhail Zujev
Department of Marine Systems, Tallinn University of Technology,
Tallinn, EE12618, Estonia
Department of Marine Systems, Tallinn University of Technology,
Tallinn, EE12618, Estonia
Priidik Lagemaa
Department of Marine Systems, Tallinn University of Technology,
Tallinn, EE12618, Estonia
Related authors
No articles found.
Amirhossein Barzandeh, Marko Rus, Matjaž Ličer, Ilja Maljutenko, Jüri Elken, Priidik Lagemaa, and Rivo Uiboupin
EGUsphere, https://doi.org/10.5194/egusphere-2024-3691, https://doi.org/10.5194/egusphere-2024-3691, 2024
Short summary
Short summary
We evaluated a deep-learning model, HIDRA2, for predicting sea levels along the Estonian coast and compared it to traditional numerical models. HIDRA2 performed better overall, offering faster forecasts and valuable uncertainty estimates using ensemble predictions.
Jüri Elken, Ilja Maljutenko, Priidik Lagemaa, Rivo Uiboupin, and Urmas Raudsepp
State Planet, 4-osr8, 9, https://doi.org/10.5194/sp-4-osr8-9-2024, https://doi.org/10.5194/sp-4-osr8-9-2024, 2024
Short summary
Short summary
Baltic deep water is generally warmer than surface water during winter when district heating is required. Depending on the location, depth, and oceanographic situation, bottom water of Tallinn Bay can be used as an energy source for seawater heat pumps until the end of February, covering the major time interval when heating is needed. Episodically, there are colder-water events when seawater heat extraction has to be complemented by other sources of heating energy.
Anja Lindenthal, Claudia Hinrichs, Simon Jandt-Scheelke, Tim Kruschke, Priidik Lagemaa, Eefke M. van der Lee, Ilja Maljutenko, Helen E. Morrison, Tabea R. Panteleit, and Urmas Raudsepp
State Planet, 4-osr8, 16, https://doi.org/10.5194/sp-4-osr8-16-2024, https://doi.org/10.5194/sp-4-osr8-16-2024, 2024
Short summary
Short summary
In 2022, large parts of the Baltic Sea experienced the third-warmest to warmest summer and autumn temperatures since 1997 and several marine heatwaves (MHWs). Using remote sensing, reanalysis, and in situ data, this study characterizes regional differences in MHW properties in the Baltic Sea in 2022. Furthermore, it presents an analysis of long-term trends and the relationship between atmospheric warming and MHW occurrences, including their propagation into deeper layers.
Karina von Schuckmann, Lorena Moreira, Mathilde Cancet, Flora Gues, Emmanuelle Autret, Ali Aydogdu, Lluis Castrillo, Daniele Ciani, Andrea Cipollone, Emanuela Clementi, Gianpiero Cossarini, Alvaro de Pascual-Collar, Vincenzo De Toma, Marion Gehlen, Rianne Giesen, Marie Drevillon, Claudia Fanelli, Kevin Hodges, Simon Jandt-Scheelke, Eric Jansen, Melanie Juza, Ioanna Karagali, Priidik Lagemaa, Vidar Lien, Leonardo Lima, Vladyslav Lyubartsev, Ilja Maljutenko, Simona Masina, Ronan McAdam, Pietro Miraglio, Helen Morrison, Tabea Rebekka Panteleit, Andrea Pisano, Marie-Isabelle Pujol, Urmas Raudsepp, Roshin Raj, Ad Stoffelen, Simon Van Gennip, Pierre Veillard, and Chunxue Yang
State Planet, 4-osr8, 2, https://doi.org/10.5194/sp-4-osr8-2-2024, https://doi.org/10.5194/sp-4-osr8-2-2024, 2024
Urmas Raudsepp, Ilja Maljutenko, Priidik Lagemaa, and Karina von Schuckmann
State Planet Discuss., https://doi.org/10.5194/sp-2024-19, https://doi.org/10.5194/sp-2024-19, 2024
Preprint under review for SP
Short summary
Short summary
Over the last three decades, the Baltic Sea has experienced rising temperature and salinity, reflecting broader atmospheric warming. Heat content fluctuations are driven by subsurface temperature changes in the upper 100 meters, including the thermocline and halocline, influenced by air temperature, evaporation, and wind stress. Freshwater content changes mainly result from salinity shifts in the halocline, with saline water inflow, precipitation, and wind stress as key factors.
Urmas Raudsepp, Ilja Maljutenko, Amirhossein Barzandeh, Rivo Uiboupin, and Priidik Lagemaa
State Planet, 1-osr7, 7, https://doi.org/10.5194/sp-1-osr7-7-2023, https://doi.org/10.5194/sp-1-osr7-7-2023, 2023
Short summary
Short summary
The freshwater content in the Baltic Sea has wide sub-regional variability characterized by the local climate dynamics. The total freshwater content trend is negative due to the recent increased inflows of saltwater, but there are also regions where the increase in runoff and decrease in ice content have led to an increase in the freshwater content.
Tuomas Kärnä, Patrik Ljungemyr, Saeed Falahat, Ida Ringgaard, Lars Axell, Vasily Korabel, Jens Murawski, Ilja Maljutenko, Anja Lindenthal, Simon Jandt-Scheelke, Svetlana Verjovkina, Ina Lorkowski, Priidik Lagemaa, Jun She, Laura Tuomi, Adam Nord, and Vibeke Huess
Geosci. Model Dev., 14, 5731–5749, https://doi.org/10.5194/gmd-14-5731-2021, https://doi.org/10.5194/gmd-14-5731-2021, 2021
Short summary
Short summary
We present Nemo-Nordic 2.0, a novel operational marine model for the Baltic Sea. The model covers the Baltic Sea and the North Sea with approximately 1 nmi resolution. We validate the model's performance against sea level, water temperature, and salinity observations, as well as sea ice charts. The skill analysis demonstrates that Nemo-Nordic 2.0 can reproduce the hydrographic features of the Baltic Sea.
T. Liblik, J. Laanemets, U. Raudsepp, J. Elken, and I. Suhhova
Ocean Sci., 9, 917–930, https://doi.org/10.5194/os-9-917-2013, https://doi.org/10.5194/os-9-917-2013, 2013
Cited articles
Alenius, P., Myrberg, K., and Nekrasov, A.: The physical oceanography of the
Gulf of Finland: a review, Boreal Environ. Res., 3, 97–125, 1998.
Andersen, J. H., Carstensen, J., Conley, D. J., Dromph, K., Fleming-Lehtinen,
V., Gustafsson, B. G., Josefson, A. B., Norkko, A., Villnäs, A., and
Murray, C.: Long-term temporal and spatial trends in eutrophication status
of the Baltic Sea, Biol. Rev., 92, 135–149, https://doi.org/10.1111/brv.12221, 2017.
Axell, L. and Liu, Y.: Application of 3-D ensemble variational data
assimilation to a Baltic Sea reanalysis 1989–2013, Tellus A, 68, 24220, https://doi.org/10.3402/tellusa.v68.24220, 2016.
Berg, P. and Poulsen, J. W.: Implementation details for HBM, DMI Technical
report No. 12–11, Copenhagen, 2012.
Buizza, R., Brönnimann, S., Haimberger, L., Laloyaux, P., Martin, M. J.,
Fuentes, M., Alonso-Balmaseda, M., Becker, A., Blaschek, M., Dahlgren, P.,
and De Boisseson, E.: The EU-FP7 ERA-CLIM2 project contribution to advancing
science and production of earth system climate reanalyses, B.
Am. Meteorol. Soc., 99, 1003–1014, https://doi.org/10.1175/BAMS-D-17-0199.1, 2018.
Bullock Jr., O. R., Foroutan, H., Gilliam, R. C., and Herwehe, J. A.: Adding four-dimensional data assimilation by analysis nudging to the Model for Prediction Across Scales – Atmosphere (version 4.0), Geosci. Model Dev., 11, 2897–2922, https://doi.org/10.5194/gmd-11-2897-2018, 2018.
Carrassi, A., Bocquet, M., Bertino, L., and Evensen, G.: Data assimilation in
the geosciences: An overview of methods, issues, and perspectives, Wires Clim. Change, 9, e535, https://doi.org/10.1002/wcc.535, 2018.
Elken, J., Zujev, M., and Lagemaa, P.: Reconstructing sea surface temperature
and salinity fields in the northeastern Baltic from observational data,
based on sub-regional Empirical Orthogonal Function (EOF) patterns from
models, in: 2018 IEEE/OES Baltic International Symposium (BALTIC), 12–15 June 2019, Klaipeda, Lithuania, 1–8, https://doi.org/10.1109/BALTIC.2018.8634845, 2018.
Elken, J., Zujev, M., She, J., and Lagemaa, P.: Reconstruction of large-scale
sea surface temperature and salinity fields using sub-regional EOF patterns
from models, Front. Earth Sci., 7, 232, https://doi.org/10.3389/feart.2019.00232,
2019.
Fu, W., She, J., and Zhuang, S.: Application of an Ensemble Optimal
Interpolation in a North/Baltic Sea model: Assimilating temperature and
salinity profiles, Ocean Model., 40, 227–245,
https://doi.org/10.1016/j.ocemod.2011.09.004, 2011.
Fujii, Y., Remy, E., Zuo, H., Oke, P. R., Halliwell, G. R., Gasparin, F.,
Benkiran, M., Loose, N., Cummings, J., Xie, J., and Xue, Y.: Observing system
evaluation based on ocean data assimilation and prediction systems: on-going
challenges and future vision for designing/supporting ocean observational
networks, Front. Mar. Sci., 6, 417, https://doi.org/10.3389/fmars.2019.00417, 2019.
Golbeck, I., Li, X., Janssen, F., Brüning, T., Nielsen, J. W., Huess, V.,
Söderkvist, J., Büchmann, B., Siiriä, S. M.,
Vähä-Piikkiö, O., Hackett, B., Kristensen, N., Engedahl, H.,
Blockey, E., Sellar, A., Lagemaa, P., Ozer, J., Legrand, S., Ljungemyr, P.,
and Axell, L.: Uncertainty estimation for operational ocean forecast
products – a multi-model ensemble for the North Sea and the Baltic Sea,
Ocean Dyn., 65, 1603–1631, https://doi.org/10.1007/s10236-015-0897-8, 2015.
Golbeck, I., Izotova, J., Jandt, S., Janssen, F., Lagemaa, P., Brüning,
T., Huess, V., and Hartman, A.: Quality Information Document (QUID) Baltic
Sea Physical Analysis and Forecasting Product,
https://resources.marine.copernicus.eu/documents/QUID/CMEMS-BAL-QUID-003-006.pdf (last access: 10 August 2020),
2018.
Goodliff, M., Bruening, T., Schwichtenberg, F., Li, X., Lindenthal, A.,
Lorkowski, I., and Nerger, L.: Temperature assimilation into a coastal
ocean-biogeochemical model: assessment of weakly and strongly coupled data
assimilation, Ocean Dyn., 69, 1217–1237, https://doi.org/10.1007/s10236-019-01299-7, 2019.
Gregg, W. W., Friedrichs, M. A., Robinson, A. R., Rose, K. A., Schlitzer, R.,
Thompson, K. R., and Doney, S. C.: Skill assessment in ocean biological data
assimilation, J. Marine Syst., 76, 16–33, https://doi.org/10.1016/j.jmarsys.2008.05.006, 2009.
Haines, K.: Ocean Reanalyses, in: New Frontiers in Operational Oceanography, Florida State University,
545–562, https://doi.org/10.17125/gov2018.ch19, 2018.
Hernandez, F., Blockley, E., Brassington, G. B., Davidson, F., Divakaran, P.,
Drévillon, M., Ishizaki, S., Garcia-Sotillo, M., Hogan, P. J., Lagemaa,
P., and Levier, B.: Recent progress in performance evaluations and near
real-time assessment of operational ocean products, J. Oper.
Oceanogr., 8, s221–s238, https://doi.org/10.1080/1755876X.2015.1050282, 2015.
Holland, W. R. and Malanotte-Rizzoli, P.: Assimilation of altimeter data into
an ocean circulation model: Space versus time resolution studies, J.
Phys. Oceanogr., 19, 1507–1534, https://doi.org/10.1175/1520-0485(1989)019<1507:AOADIA>2.0.CO;2, 1989.
Høyer, J. L. and She, J.: Optimal interpolation of sea surface
temperature for the North Sea and Baltic Sea, J. Mar. Syst., 65, 176–189,
https://doi.org/10.1016/j.jmarsys.2005.03.008, 2007.
Huess, V.: Product User Manual For Baltic Sea Physical Analysis and
Forecasting Product, available at:
http://marine.copernicus.eu/documents/PUM/CMEMS-BAL-PUM-003-006.pdf,
last access: 2 May 2020.
Janssen, F., Schrum, C., and Backhaus, J. O.: 1999. A climatological data set
of temperature and salinity for the Baltic Sea and the North Sea, Deutsche
Hydrographische Zeitschrift, 51, 5–245, https://doi.org/10.1007/BF02933676, 1999.
Jevrejeva, S., Drabkin, V. V., Kostjukov, J., Lebedev, A. A., Leppäranta,
M., Mironov, Y. U., Schmelzer, N., and Sztobryn, M.: Baltic Sea ice seasons in the twentieth century, Clim. Res., 25, 217–227, https://doi.org/10.3354/cr025217, 2004.
Johansson, J.: Total and regional runoff to the Baltic Sea, Baltic Sea
environment fact sheet, available at: http://www.helcom.fi/baltic-sea-trends/environment-fact-sheets/, 2017 (last access: 8 April 2020).
Karlson, B., Andersson, L. S., Kaitala, S., Kronsell, J., Mohlin, M.,
Seppälä, J., and Wranne, A. W.: A comparison of Ferrybox data vs.
monitoring data from research vessels for near surface waters of the Baltic
Sea and the Kattegat, J. Marine Syst., 162, 98–111, https://doi.org/10.1016/j.jmarsys.2016.05.002, 2016.
Kõuts, T. and Omstedt, A.: Deep water exchange in the Baltic Proper,
Tellus A, 45, 311–324, https://doi.org/10.3402/tellusa.v45i4.14895, 1993.
Kozlov, I., Dailidienė, I., Korosov, A., Klemas, V., and
Mingėlaitė, T.: MODIS-based sea surface temperature of the Baltic
Sea Curonian Lagoon, J. Marine Syst., 129, 157–165, https://doi.org/10.1016/j.jmarsys.2012.05.011, 2014.
Laanemets, J., Zhurbas, V., Elken, J., and Vahtera, E.: Dependence of
upwelling-mediated nutrient transport on wind forcing, bottom topography and
stratification in the Gulf of Finland: model experiments, Boreal Environ.
Res., 14, 213–225, 2009.
Lagemaa, P.: Operational forecasting in Estonian marine waters, Thesis on Natural and Exact Sciences, B128, Tallinn University of Technology, 2012.
Le Traon, P. Y., Reppucci, A., Alvarez Fanjul, E., Aouf, L., Behrens, A.,
Belmonte, M., Bentamy, A., Bertino, L., Brando, V. E., Kreiner, M., and
Benkiran, M.: From observation to information and users: the Copernicus
Marine Service perspective, Front. Mar. Sci., 6, 234, https://doi.org/10.3389/fmars.2019.00234, 2019.
Liblik, T., Laanemets, J., Raudsepp, U., Elken, J., and Suhhova, I.: Estuarine circulation reversals and related rapid changes in winter near-bottom oxygen conditions in the Gulf of Finland, Baltic Sea, Ocean Sci., 9, 917–930, https://doi.org/10.5194/os-9-917-2013, 2013.
Lilover, M. J., Lips, U., Laanearu, J., and Liljebladh, B.: Flow regime in the Irbe Strait, Aquat. Sci., 60, 253–265, https://doi.org/10.1007/s000270050040,
1998.
Lips, U., Lips, I., Kikas, V., and Kuvaldina, N.: May. Ferrybox measurements:
a tool to study meso-scale processes in the Gulf of Finland (Baltic Sea),
2008 IEEE/OES US/EU-Baltic International Symposium, Date 27–29 May 2008, location Tallinn, Estonia, IEEE, https://doi.org/10.1109/BALTIC.2008.4625536, 2008.
Liu, Y. and Fu, W.: Assimilating high-resolution sea surface temperature data improves the ocean forecast potential in the Baltic Sea, Ocean Sci., 14, 525–541, https://doi.org/10.5194/os-14-525-2018, 2018.
Liu, Y., Meier, H. E. M., and Eilola, K.: Nutrient transports in the Baltic Sea – results from a 30-year physical–biogeochemical reanalysis, Biogeosciences, 14, 2113–2131, https://doi.org/10.5194/bg-14-2113-2017, 2017.
Männik, A. and Merilain, M.: Verification of different precipitation
forecasts during extended winter-season in Estonia, HIRLAM Newsletter, 52,
65–70, 2007.
Martin, M. J., Balmaseda, M., Bertino, L., Brasseur, P., Brassington, G.,
Cummings, J., Fujii, Y., Lea, D. J., Lellouche, J. M., Mogensen, K., and Oke,
P. R.: Status and future of data assimilation in operational oceanography,
J. Oper. Oceanogr., 8, s28–s48,
https://doi.org/10.1080/1755876X.2015.1022055, 2015.
Meier, H. E. M., Eilola, K., Almroth-Rosell, E., Schimanke, S., Kniebusch, M., Höglund, A., Pemberton, P., Liu, Y., Väli, G., and Saraiva, S.:
Disentangling the impact of nutrient load and climate changes on Baltic Sea
hypoxia and eutrophication since 1850, Clim. Dyn., 53, 1145–1166, https://doi.org/10.1007/s00382-018-4296-y, 2019.
Moore, A. M. and Reason, C. J.: The response of a global ocean general
circulation model to climatological surface boundary conditions for
temperature and salinity, J. Phys. Oceanogr., 23, 300–328,
https://doi.org/10.1175/1520-0485(1993)023<0300:TROAGO>2.0.CO;2, 1993.
Moore, A. M., Martin, M. J., Akella, S., Arango, H., Balmaseda, M. A., Bertino, L., Ciavatta, S., Cornuelle, B., Cummings, J., Frolov, S., and Lermusiaux, P.: Synthesis of ocean observations using data assimilation for operational, real-time and reanalysis systems: A more complete picture of the state of the ocean, Front. Mar. Sci., 6, https://doi.org/10.3389/fmars.2019.00090,
2019.
Omstedt, A. and Axell, L. B.: Modeling the variations of salinity and
temperature in the large Gulfs of the Baltic Sea, Cont. Shelf
Res., 23, 265–294, https://doi.org/10.1016/S0278-4343(02)00207-8, 2003.
Placke, M., Meier, H.E., Gräwe, U., Neumann, T., Frauen, C., and Liu, Y.:
Long-term mean circulation of the Baltic Sea as represented by various ocean
circulation models, Front. Mar. Sci., 5, 287, https://doi.org/10.3389/fmars.2018.00287, 2018.
Raudsepp, U. and Elken, J.: Application of the Bryan-Cox-Type Ocean Model to
reproduce synoptic and mesoscale variability of the Irbe Strait salinity
front, Deutsche Hydrografische Zeitschrift, 51, 477–488, https://doi.org/10.1007/BF02764168, 1999.
Ravichandran, M., Behringer, D., Sivareddy, S., Girishkumar, M. S., Chacko,
N., and Harikumar, R.: Evaluation of the global ocean data assimilation
system at INCOIS: the tropical Indian Ocean, Ocean Model., 69, 123–135,
https://doi.org/10.1016/j.ocemod.2013.05.003, 2013.
Rodhe, J.: The Baltic and North Seas: a process-oriented review of the
physical oceanography, The sea, 11, 699–732, 1998.
Savchuk, O. P.: Large-scale nutrient dynamics in the Baltic Sea, 1970–2016.
Front. Mar. Sci., 5, 95, https://doi.org/10.3389/fmars.2018.00095, 2018.
She, J.: Assessment of Baltic Sea observations for operational oceanography,
in: Proceedings of the 8th EuroGOOS International Conference (Bergen: EuroGOOS), edited by: Buch, E., Fernández, V., Eparkhina, D., Gorringe, P., and Nolan, G., 7, 79–87, 2018.
She, J., Meier, M., Darecki, M., Gorringe, P., Huess, V., Kouts, T.,
Reissmann, J. H., and Tuomi, L.: Baltic Sea Operational Oceanography-A
Stimulant for Regional Earth System Research, 3–5 October 2017, Bergen, Norway, Front. Earth Sci., 8,
https://doi.org/10.3389/feart.2020.00007, 2020.
Stauffer, D. R. and Seaman, N. L.: Use of four-dimensional data assimilation
in a limited-area mesoscale model. Part I: Experiments with synoptic-scale
data, Mon. Weather Rev., 118, 1250–1277, https://doi.org/10.1175/1520-0493(1991)119<0734:UOFDDA>2.0.CO;2, 1990.
Stow, C. A., Jolliff, J., McGillicuddy Jr., D. J., Doney, S. C., Allen, J. I.,
Friedrichs, M. A., Rose, K. A., and Wallhead, P.: Skill assessment for coupled biological/physical models of marine systems, J. Marine Syst.,
76, 4–15, https://doi.org/10.1016/j.jmarsys.2008.03.011, 2009.
Stramska, M. and Białogrodzka, J.: Spatial and temporal variability of sea
surface temperature in the Baltic Sea based on 32-years (1982–2013) of
satellite data, Oceanologia, 57, 223–235, https://doi.org/10.1016/j.oceano.2015.04.004, 2015.
Tuomi, L., She, J., Lorkowski, I., Axell, L., Lagemaa, P., Schwichtenberg,
F., and Huess, V.: Overview of CMEMS BAL MFC Service and Developments,
Proceedings of the Eight EuroGOOS International Conference, 3–5 October 2017, Bergen, Norway, 261–267,
ISBN 978-2-9601883-3-2, 2018.
Uiboupin, R. and Laanemets, J.: Upwelling characteristics derived from
satellite sea surface temperature data in the Gulf of Finland, Baltic Sea,
Boreal Environ. Res., 14, 297–304, 2009.
Uiboupin, R. and Laanemets, J.: Upwelling parameters from bias-corrected
composite satellite SST maps in the Gulf of Finland (Baltic Sea), IEEE
Geosci. Remote S., 12, 592–596, https://doi.org/10.1109/LGRS.2014.2352397, 2015.
Yurkovskis, A., Wulff, F., Rahm, L., Andruzaitis, A., and Rodriguez-Medina,
M.: A nutrient budget of the Gulf of Riga; Baltic Sea, Estuar. Coast.
Shelf S., 37, 113–127, https://doi.org/10.1006/ecss.1993.1046, 1993.
Zujev, M. and Elken, J.: Testing marine data assimilation in the
northeastern Baltic using satellite SST products from the Copernicus Marine
Environment Monitoring Service, Proceedings of the Estonian Academy of
Sciences, 67, 217–230, https://doi.org/10.3176/proc.2018.3.03, 2018.
Short summary
The proposed method of data assimilation is capable of effectively correcting basin-scale mismatch of oceanographic models when the domain is under nearly coherent external forcing. The method uses basin-scale EOF modes, calculated from the long-term model statistics. These modes are used to reconstruct gridded fields from point observations, which are further fed to the model using relaxation. Tests with sea surface temperature and salinity in the NE Baltic Sea were successful.
The proposed method of data assimilation is capable of effectively correcting basin-scale...