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Abstract. The tested data assimilation (DA) method based
on EOF (Empirical Orthogonal Functions) reconstruction of
observations decreased centred root-mean-square difference
(RMSD) of surface temperature (SST) and salinity (SSS) in
reference to observations in the NE Baltic Sea by 22 % and
34 %, respectively, compared to the control run without DA.
The method is based on the covariance estimates from long-
term model data. The amplitudes of the pre-calculated domi-
nating EOF modes are estimated from point observations us-
ing least-squares optimization; the method builds the vari-
ables on a regular grid. The study used a large number of
in situ FerryBox observations along four ship tracks from 1
May to 31 December 2015, and observations from research
vessels. Within DA, observations were reconstructed as daily
SST and SSS maps on the coarse grid with a resolution of
5× 10 arcmin by N and E (ca. 5 nautical miles) and sub-
sequently were interpolated to the fine grid of the prognos-
tic model with a resolution of 0.5× 1 arcmin by N and E
(ca. 0.5 nautical miles). The fine-grid observational fields
were used in the DA relaxation scheme with daily interval.
DA with EOF reconstruction technique was found to be fea-
sible for further implementation studies, since (1) the method
that works on the large-scale patterns (mesoscale features are
neglected by taking only the leading EOF modes) improves
the high-resolution model performance by a comparable or
even better degree than in the other published studies, and
(2) the method is computationally effective.

1 Introduction

In the coastal oceans and marginal seas, basin-scale obser-
vation, modelling and forecasting of oceanographic and bio-
geochemical variables is a continuing challenge. As an ex-
ample from the Baltic Sea, large-scale nutrient dynamics
(Andersen et al., 2017; Savchuk, 2018) control the level of
eutrophication and hypoxia, affected by nutrient loads and
changing climate (Meier et al., 2019). Placke et al. (2018)
have recently shown, by comparison of different models,
that temperature is much better reproduced than salinity. A
similar evaluation has been obtained earlier by Golbeck et
al. (2015), based on 13 operational models used routinely in
the Baltic and North seas.

Data assimilation (DA) is a key element to improve the
model accuracy with respect to observations, both in the op-
erational forecast and the reanalysis context (Martin et al.,
2015; Buizza et al., 2018; Moore et al., 2019). DA meth-
ods are built upon dynamical models and they are based on
some kind of minimization (minimum variance, variational
cost function formulation etc.) of modelling errors (Carrassi
et al., 2018), using estimated statistical characteristics of the
studied variables. Most of the widespread methods (optimal
interpolation, 3DVar, 4DVar, various options of the Kalman
filter, including their ensemble formulations) use covariance
as the basic statistical characteristic. Recent overviews on
different DA applications in the Baltic Sea can be found in
the papers by Liu and Fu (2018), Zujev and Elken (2018),
Goodliff et al. (2019) and She et al. (2020). Whereas there
are several results from Baltic Sea reanalysis studies avail-
able (Axell and Liu, 2016; Liu et al., 2017), the operational
Baltic Sea forecasts within CMEMS (Copernicus Marine En-
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vironment Monitoring Service) do not presently include DA
(Huess, 2020) and there is ongoing work to implement an au-
tomated DA system which would be robust, reliable and well
validated.

Results of DA-based forecasting depend heavily on the
spatio-temporal configuration of the observing system (Le-
Traon et al., 2019). Unlike the regular weather observing net-
works, observation systems in marginal seas are rather frag-
mented, where areas and periods of dense sampling can be
neighboured by large observation gaps. Therefore, special
OSE (observing system experiment) studies have been ini-
tiated, to find optimal observation network configurations to
achieve best skill of DA (Fuji et al., 2019). However, most
of the observations of the Baltic Sea surface variables, not
yet detectable by remote sensing (like salinity, nutrients etc.),
stem from the FerryBox systems installed on board regularly
cruising commercial passenger or cargo ships (She, 2018),
and planning can be done only within the existing routes.
Therefore, development of improved gap-filling techniques
is a challenge and it would be highly beneficial for a region
with sparse observations.

Recently, a novel method for EOF reconstruction of grid-
ded sea surface temperature (SST) and salinity (SSS) fields,
using the data from (mostly) irregular and (often) sparse ob-
servations, was presented and thoroughly tested in the NE
Baltic Sea (Elken et al., 2019). The method relies on the es-
timate of covariance matrix from the long-term model data,
which is decomposed into the full set of EOF modes. The
mode values at observation points, together with the ob-
served values, enable least-squares estimation of observa-
tional amplitudes. The method is able to follow on the regu-
lar grid the pointwise observed temporal changes of the mean
state and of the major basin-scale gradients. The aim of the
present study is to implement this statistical reconstruction
technique into the data assimilation of the forecast model,
and to study the feasibility of such an assimilation method.

The paper is organized as follows. In the section on data
and methods, an overview of the sub-regional oceanographic
background and a short model description are presented.
Observational in situ data have been compiled from three
sources, and they contain shipborne monitoring and Ferry-
Box platforms. The reconstruction method is presented in
detail, and the section ends with the description of the data
assimilation method used. The results section starts with the
presentation of experiments in order to find the optimized pa-
rameters for reconstruction of gridded fields. The rest of the
section is devoted to the analysis of the results of data assim-
ilation experiments, ending with the performance evaluation.
Finally, discussion and conclusions are presented.

2 Data and methods

2.1 Study area and the circulation model

We have chosen the study area in the NE Baltic within
56.9417–60.725◦ N, 21.55–30.35◦ E (Fig. 1), motivated by
several Estonian national interests within the operational
forecast of sea state and assessments of the marine environ-
ment. The region covers the Gulf of Finland, the Gulf of Riga
and part of the Baltic Proper adjacent to these gulfs. The re-
gion is rather shallow: the mean and maximum depths are 26
and 62 m in the Gulf of Riga (Yurkovskis et al., 1993) and
37 and 123 m in the Gulf of Finland (Alenius et al., 1998),
respectively.

The region lies in the temperate climatic zone. During
the summer, SST exceeds usually 15 ◦C in July or August
(Alenius et al., 1998), with highest values up to 25 ◦C ob-
served in some years in the shallow coastal zones (Stram-
ska and Białogrodzka, 2015). The warm upper layer of 10–
20 m thickness is well mixed down to the thermocline or
bottom, whichever of them is shallower. Occasionally, wind-
driven coastal upwelling processes disrupt this warm layer
(Uiboupin and Laanemets, 2009). Nearly every winter, sea
ice forms with variable extent and thickness; during severe
winters, the Gulf of Finland and the Gulf of Riga are fully
ice-covered (Jevrejeva et al., 2004). The region is impacted
by large rivers: the Gulf of Finland and the Gulf of Riga to-
gether receive 34 % of the total freshwater discharge to the
Baltic Sea as can be calculated from the data by Johansson
(2017). As a result, there is an estuarine increase in SSS from
east to west (Alenius et al., 1998; Yurkovskis et al., 1993),
reaching 7–8 g kg−1 in the Baltic Proper (Kõuts and Omst-
edt, 1993). The Gulf of Finland has a free connection to the
Baltic Proper without a sill or any other topographic restric-
tion; therefore deeper more saline waters of the Baltic Proper
penetrate into the Gulf of Finland and form an estuarine halo-
cline (Liblik et al., 2013). A shallow sill with a depth of 15 m
connects the Gulf of Riga with the Baltic Proper; therefore
deep layers of the Gulf of Riga can receive only surface wa-
ters of the Baltic Proper (Lilover et al., 1998). The two gulfs,
located in the NE Baltic, play an essential role in the dynam-
ics of the whole Baltic Sea (Omstedt and Axell, 2003).

For the modelling, an Estonian sub-regional set-up (Fig. 1)
of the Baltic-wide HBM model was applied with a resolu-
tion of 0.5× 1 arcmin by N and E (ca. 0.5 nautical miles)
containing the entire Gulf of Finland, Gulf of Riga and
NE portion of Baltic Proper (Lagemaa, 2012; Zujev and
Elken, 2018). The model fields are three-dimensional hav-
ing 455× 529× 39 grid cells (by latitude, longitude and
depth correspondingly), with 750 088 wet points and 71 986
of them on the surface with a layer thickness of 3 m.
At the western open boundary, the data were taken from
the Baltic-wide HBM model (Huess, 2020), operated by
the Copernicus Marine Environment Monitoring Service
(CMEMS, https://marine.copernicus.eu/, last access: 2 May
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Figure 1. Map of the study area in the NE Baltic with depth contours. Shown are the sea areas of Gulf of Finland, Gulf of Riga and part of
the NE Baltic Proper. Insert presents the map of surface salinity of the Baltic and North seas by Rohde (1998). Location of our study area is
shown in the insert by a red box.

2020). Atmospheric forcing was provided by the Estonian
implementation of HIRLAM (Männik and Merilain, 2007).
HBM uses the Arakawa C-grid and produces a forecast for
16 ocean variables including temperature, salinity, current
speed and ice concentration. A detailed description of the
HBM model and its validation can be found by Berg and
Poulsen (2012); further analysis and evaluations are given
by Golbeck et al. (2015), Hernandez et al. (2015), Tuomi et
al. (2018), Huess (2020) and She et al. (2020). In particu-
lar, the CMEMS Quality Information Document (Golbeck et
al., 2018) concludes that temperature forecast between the
surface and about 100 m depth is one of the major strengths
of the CMEMS-V4 product, below which the halocline de-
viations of forecast from observations increase. Regarding
salinity, the values are slightly underestimated and the un-
derestimation increases with depth.

The model set-up has been designed for operational fore-
casting. For computational reasons, it was decided to keep
the operational 0.5 nautical mile grid resolution and to
perform shorter feasibility experiments, instead of choos-
ing larger grid steps and making longer experiments. The
model is used routinely by the Estonian Weather Service
(implemented by one of the authors, Priidik Lagemaa);
SST is displayed on the web page https://ilmateenistus.
ee/meri/mereprognoosid/merevee-temperatuur/ (last access:
8 May 2020) and SSS is shown on the page https://
ilmateenistus.ee/meri/mereprognoosid/soolsus/ (last access:
8 May 2020). In compliance and for comparability rea-

sons with the recent study by Zujev and Elken (2018), we
chose the study period from 1 May to 31 December 2015,
to be used for the DA experiments. The model experiments
were conducted in the framework of operational forecasting,
where the forcing files were updated daily. There were no
gaps during the study period in meteorological data nor in
open-boundary conditions nor any other input.

2.2 Observational data

All available SST and SSS data from three sources were com-
piled:

1. The Copernicus Marine Environment Monitoring
Service (CMEMS, https://marine.copernicus.eu/,
last access: 8 May 2020) contains among other
data sources the quality-checked data set of Baltic
in situ near-real-time multiparameter observations:
https://resources.marine.copernicus.eu/?option=com_
csw&view=details&product_id=INSITU_BAL_NRT_
OBSERVATIONS_013_032 (last access: 24 October
2019). This data set, accessible through free-of-charge
registration, contains in our study region data from
several FerryBox systems (automatic observations
made from ferries and other ships crossing the sea areas
on a regular basis). There are also a number of coastal
stations, but they record mainly sea level and water
temperature, whereas salinity observations are missing;
therefore we are not using coastal stations. In our study

https://doi.org/10.5194/os-17-91-2021 Ocean Sci., 17, 91–109, 2021

https://ilmateenistus.ee/meri/mereprognoosid/merevee-temperatuur/
https://ilmateenistus.ee/meri/mereprognoosid/merevee-temperatuur/
https://ilmateenistus.ee/meri/mereprognoosid/soolsus/
https://ilmateenistus.ee/meri/mereprognoosid/soolsus/
https://marine.copernicus.eu/
https://resources.marine.copernicus.eu/?option=com_csw&view=details&product_id=INSITU_BAL_NRT_OBSERVATIONS_013_032
https://resources.marine.copernicus.eu/?option=com_csw&view=details&product_id=INSITU_BAL_NRT_OBSERVATIONS_013_032
https://resources.marine.copernicus.eu/?option=com_csw&view=details&product_id=INSITU_BAL_NRT_OBSERVATIONS_013_032


94 M. Zujev et al.: A feasibility study in the NE Baltic Sea

Figure 2. Distribution of observations. (a) Map of FerryBox observation points along ship tracks (blue) and shipborne monitoring ob-
servations (red) over the study period. Shown are also the locations for time–latitude graphs and time series (black contours with yellow
background). (b) Observation frequency over longitude and time. FerryBox data are shown by colour image; each image cell presents the
number of initial observations over intervals of 10 d and 18 arcmin of longitude (ca. 16.7 km). Shipborne observations are shown by black
dots.

area and time interval, there were not any operating
buoy stations, gliders or Argo floats.

2. HELCOM/ICES database contains the results from the
HELCOM marine monitoring programme and is hosted
by ICES, together with other oceanographic data (https:
//ocean.ices.dk/HydChem/HydChem.aspx?, last access:
22 October 2019). It mainly includes the data from ship-
borne monitoring stations, where SST and SSS are eas-
ily extracted.

3. National monitoring database KESE (https://kese.envir.
ee/kese/viewProgramNew.action?uid=473556, last ac-
cess: 11 December 2020, search for “mereseire”) con-
tains detailed records of all variables observed under
the national environmental monitoring programme. The
data that were downloaded on 18 October 2019 con-
tain different data records for every environmental vari-
able. Except for a few cases, these data are also found
in the ICES/HELCOM database. Duplicate entries were
avoided from the composite data set by averaging over
small time and space intervals.

The largest amount of synchronous SST and SSS data orig-
inates from the FerryBox systems, accessed through the
CMEMS (Table 1). There were about 330 000 initial observa-
tion points from FerryBox, distributed over a few ship lanes
(Fig. 2a) with a resolution of a few hundred metres and from
daily to a few days interval. The analysed water is strongly
mixed in the surface layer by the moving ship. Typical ob-
servation depth may be considered 5 m, although variations
between the ships and due to the variable shipload exist (Lips
et al., 2008; Karlson et al., 2016). There were also about
370 observations from shipborne monitoring stations. Dis-
tribution of the amounts of observations in selected temporal
and longitude intervals (Fig. 2b) reveals a highly irregular

pattern. Most of the observations were concentrated on the
Tallinn–Helsinki transect located across the Gulf of Finland
between the longitudes 24.6–25◦ E. FerryBox observations
were missing in the Gulf of Riga and in the eastern part of
the Gulf of Finland, east from 26.5◦ E. In the southern part
of the Gulf of Riga, available data were missing during the
study period.

Two sets of compressed (averaged) FerryBox data were
created for further data analysis, containing mean observed
values, coordinates and observation times over the se-
lected intervals. Firstly, for the model validation study, daily
mean spatial averages over a fine grid with a resolution of
0.5× 1 arcmin by N and E (as in the used model) cells
were created, resulting in about 110 000 values. Secondly,
for the EOF pattern analysis and reconstruction of SST and
SSS fields, daily mean spatial averages over the coarse grid
(5× 10 arcmin by N and E, about 5 nautical miles) were cre-
ated. The main benefit of the coarse grid is to save compu-
tational costs while keeping the large-scale patterns well re-
solved (see Sect. 2.4 for more details on the advantages and
disadvantages of using the coarse grid). In this procedure,
the initial observations were compressed on the coarse grid
by roughly 25 times yielding about 13 000 average values for
SST and SSS. Within the temporal averaging, it was chosen
not to apply any diurnal cycle correction, and all the observa-
tions at different hours were averaged to the closest midnight.

For the interpretation of model and DA results, meteo-
rological data were taken from the model forcing fields.
For the occasional comparison, CMEMS remote sensing
SST Level 4 data were retrieved from the service portfo-
lio https://resources.marine.copernicus.eu/?option=com_
csw&view=details&product_id=SST_BAL_SST_L4_NRT_
OBSERVATIONS_010_007_b (last access: 8 May 2020).
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Table 1. FerryBox data from 1 May to 31 December 2015 in the NE Baltic used in the present study.

Ship Main route Operating institute Number of initial
observations

Baltic Queen Tallinn–Helsinki Marine Systems Institute, 63 368
Tallinn University of Technology

FinnMaid Helsinki (Vuosaari)–Travemünde Finnish Environment Institute 142 235

Silja Serenade Helsinki–Mariehamn–Stockholm Finnish Environment Institute 60 228

Victoria Tallinn–Mariehamn–Stockholm Estonian Marine Institute, 65 037
University of Tartu

2.3 Reconstruction of gridded data from point
observations

For the purpose of DA, we chose to use EOF reconstruction
of large-scale SST and SSS fields, using the orthogonal pat-
terns from models following the detailed outline by Elken et
al. (2019), and subsequent relaxation of gridded observations
within the model time-stepping. In order to correct the mod-
elled basin-scale patterns towards observations, the spatio-
temporal distribution of in situ data was too irregular to use
standard interpolation and filtering algorithms like the Cress-
man method or optimal interpolation with approximated co-
variance (see an example from the same region by Zujev and
Elken, 2018). In this section, we summarize the well-known
EOF decomposition and present general features of EOF re-
construction as a problem when the number of observations
is less than the number of EOF modes (equal to the number
of model grid cells).

The basic option of EOF reconstruction uses at each DA
time step time-fixed amplitudes (Elken et al., 2018), encoun-
tering the observations spanning over a certain time frame
(which can be longer than DA time step) that are transferred
to the fixed times by some interpolation or filtering/averaging
procedure. The amplitudes are estimated using time-fixed
observations by minimizing the root-mean-square-difference
between the observations and the EOF reconstruction. The
amplitudes at adjacent time moments are not directly related,
but in the case of longer temporal filters when observations
overlap on different DA time steps, indirect relations between
adjacent amplitudes become evident.

Elken at al. (2019) also proposed an advanced method with
time-dependent amplitudes. Within this approach, the ampli-
tudes and their time derivatives are estimated together with
observations within a selected time interval, in order to find
least squares between the observations and EOF reconstruc-
tion in the observational framework.

The main steps of EOF reconstruction are as follows.
During the standard EOF decomposition, the orthonormal
eigenvector matrix E (contains the spatial eigenvectors ek)
is found from the eigenvalue problem BE=3E, where B
is M ×M spatial covariance matrix, calculated from the

M ×N spatio-temporal matrix X of the “values of interest”
by time averaging, and 3 is a diagonal matrix that contains
eigenvalues λk . The data set X contains time slices xi that
are spatial state vectors at time i. Although in the present
study we use the data set X selection as 2D sub-sets of indi-
vidual oceanographic fields, applications towards multivari-
ate analysis and/or extending over the 3D physical domain
are straightforward. While E is non-dimensional, the dimen-
sional amplitudes (or in other words, factors) of EOF decom-
position are found by ãi = ETxi , and the decomposition is
reconstructed to the “values of interest” by xi = Eãi . Here
we have used the notation ãi =3ai , where ai is the non-
dimensional amplitude. The eigenvalues λk present the vari-
ance (energy) of the eigenvectors ek over the whole period,
and the sum of all eigenvalues is equal to σ 2, the variance of
X. EOF decomposition offers the possibility to keep only the
most energetic modes in the reconstruction and truncate the
higher modes in E. When L most energetic modes are taken
into account in the sorted list of eigenvalues and vectors, the
sum from λ1 to λL presents the explained variance, and the
contribution of truncated modes forms the error variance. If
white noise with a variance ε2 is present in the decomposed
data due to sub-grid-scale processes and/or sampling errors,
the noise variance appears only as additive to the diagonal
elements of the covariance matrix. The eigenvalue problem
becomes

(
B+ ε2I

)
E=3E, where I is a unity matrix. Pat-

terns of spatial modes remain unaffected by adding the white
noise, but the eigenvalues and energy share of the modes de-
crease according to a factor

(
1+ ε2/σ 2)−1. When the sum

of eigenvalues of the included dominating modes is less than
σ 2
− ε2, the contribution of noise is effectively smoothed.

During EOF reconstruction from observations yi , the
number of observations K is assumedly smaller than the
number of points M in the spatial eigenvectors ek that are
determined on the model grid and evaluated from the model
statistics. For the comparison with observations, the model
data xi are transformed to the observation points by the ob-
servation operator Hi by the formula Hi x̂i =HiEâi , where
âi denotes the “observational” amplitudes. Further, the âi

values should follow least-square minimization of recon-
struction error in relation to observations

∥∥yi −HiEâi

∥∥2
⇒
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min. The expressions to find observational amplitudes and
reconstructed fields are

âi =

(
ETHT

i HiE
)−1

ETHT
i yi, x̂i = Eâi . (1)

In the reconstruction by Eq. (1), the critical point is a
possibility of spurious amplitudes based on few and un-
favourably spaced observation points. Experiments with
pseudo-observations (Elken et al., 2019) revealed that the
values of âi of dominating L modes should match the lim-
its derived from statistics of ãi , whereas higher modes with
outlying amplitudes should be neglected.

Most of the oceanographic observations are not made at
the same time. It may take several days or even weeks to
cover a larger sea area with shipborne monitoring. When P
observations yp are taken at different times p, then construct
an observation operator Ĥp that allows pointwise compari-
son of yp and Ĥpxi converted from gridded values at speci-
fied time i. Assume that within the short time span the ampli-
tudes depend linearly on time and introduce b̂p = âi+d i ·δtp,
where âi is the time-fixed amplitude, d i is the rate of change
vector, and δtp = tp − ti is the difference between the ob-
servation and reference times. The function to be minimized
regarding reconstruction errors is Q=

∥∥∥yp − ĤpEb̂p

∥∥∥2
=∥∥∥yp − ĤpE

(
âi + d i · δtp

)∥∥∥2
, which for fixed time i yields

a system of 2L linear equations obtained from ∂Q/∂âl = 0,
∂Q/∂dl = 0, l = 1. . .L:

Gz= w, Gmn =

P∑
p=1

f
p
mf

p
n , wn =

P∑
p=1

ypf
p
n . (2)

Here the vector of unknowns combines the amplitudes
and their rates of change z=

{
â1. . .âL,d1. . .dL

}
. Instead

of the full set of EOF mode values, as would be
used during standard decomposition, we take the modi-
fied/interpolated mode values at observation points; then
f

p
m =

{
ê

p
1. . .ê

p
L, ê

p
1δtp. . .ê

p
Lδtp

}
. We note that when all obser-

vations have the same time stamp and δtp = 0, Eq. (2) is re-
duced to Eq. (1).

Time-dependent reconstruction allows the reference time
and length of time interval to be selected. As with the time-
fixed reconstruction, the highest “usable” mode is deter-
mined by checking the amplitude values with statistical lim-
its. The method also allows estimation of amplitudes and re-
construction only by backward observational data. This fea-
ture makes the method useful in operational forecasts, where
only past observations can be taken into account for drawing
the present nowcast maps.

2.4 Method for data assimilation

Many DA techniques use (irregular) point observations of a
variableψ as the input source. In our approach, gridded maps
ψo are used; they are optimized by EOF reconstruction as de-
scribed in Sect. 2.3. Therefore, in the continuous equivalent,
DA is performed by Newtonian relaxation (e.g. Holland and
Malanotte-Rizzoli, 1989):

∂ψ/∂t = F (ψ)−
1
τ

(
ψ −ψo) , (3)

a discrete form of which has been applied for DA, for exam-
ple, using gridded climate data (Moore and Reason, 1993) or
using optimally interpolated daily satellite-based SST data
(Ravichandran et al., 2013). Equation (3) is then written for
DA time step 1t in two stages as

ψ f
= ψa−1

+1t F
(
ψa−1

)
, ψa

= (1−α)ψ f
+αψo, (4)

where ψ f is the raw forecast field calculated from the pre-
vious analysis field ψa–1 using only the model operator F
without DA during this time step, and ψa is the new analy-
sis field. Equation (3) contains adjustable relaxation time τ
that is transformed in Eq. (4) to non-dimensional α =1t/τ .
This is the main DA calibration parameter, since extensive
use of covariance statistics, including the effects of observa-
tion errors, has been included in the estimation of gridded
reconstruction of point observations. Newtonian relaxation
of gridded observations, applied during the model run at DA
time steps is also named “analysis nudging” (e.g. Stauffer
and Seaman, 1990), which has had recent meteorological ap-
plications (Bullock et al., 2018).

In practical calculations, SST and SSS observational data
were reconstructed on the coarser grid with a resolution of
5× 10 arcmin by N and E (ca. 5 nautical miles) and interpo-
lated or extrapolated by bilinear procedure to the finer model
grid with a resolution of 0.5× 1 arcmin by N and E (ca. 0.5
nautical miles). Such a simple transition of data from a coarse
to a finer grid includes smoothing, since ψo lacks the de-
tails that are present on the finer grid. We have tested that
the effect of added smoothing is smaller than the physical
diffusion. In our study area, generation of meso- and small-
scale features is of high intensity; therefore relaxation to the
smooth observation fields does not apparently damp the fine-
grid variability. The approach of using two grids with differ-
ent resolutions is justified by irregular distribution of obser-
vations; reliable estimation is possible only for large-scale
patterns of SST and SSS fields. The computationally more
efficient coarser grid resolves these patterns with enough de-
tails.

The above DA method is computationally efficient. The
EOF modes are calculated prior to DA cycles. For each DA
time step, only one system of linear equations of rank of the
number of EOF modes (about 3–6) has to be solved for the
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entire grid. The coefficients of the matrix are found by sum-
mation of the products of EOF mode values over the obser-
vation points (Eq. 2). For comparison, optimal interpolation
requires solving the system of linear equations of rank of the
number of observation points (about 100) for each grid cell
(about 1000), with a single inverse matrix calculated for the
time step.

The model performance with respect to observations was
evaluated over those grid cells – time span pairs when ob-
servations were available. Since observations covered only a
small part of the study domain, DA results were also com-
pared with the control run without DA, but then it is pos-
sible to only analyse the changes due to DA, without evi-
dence of possible improvement. Standard statistical charac-
teristics were calculated for individual fields such as mean
and standard deviation, and in the case of differences (for
example, relative to observations) bias, RMSD (centred root-
mean-square difference that equals to the standard deviation
of difference field) and the Pearson correlation.

3 Results

3.1 Experiments on EOF reconstruction

3.1.1 Covariance, modes and reconstruction tests

The EOF modes were calculated on the coarse grid (5× 10
arcmin by N and E) on the basis of space-averaged results
from the fine-grid (0.5× 1 arcmin by N and E) model, run-
ning from 1 July 2010 to 30 June 2015 (Elken et al., 2019).
This analysis revealed that mean distributions of modelled
SST and SSS, serving as the basis for calculation of devi-
ations in the variability studies, were close to the climato-
logical maps calculated on the basis of observations (Janssen
et al., 1999). The highest temporal variability was found in
the shallow coastal areas for SST, whereas the largest SSS
variations were revealed near the larger river mouths and in
the NE area of the Gulf of Finland. While temporal changes
strongly dominate in the variability of SST, spatial changes
prevail in SSS variability.

Calculated SST and SSS covariance matrices have sig-
nificant spreading of individual values over pairs of points,
especially for the dominating gravest modes where big co-
variance values may occur over large distances. Covariance
of residual fields (sum of higher EOF modes) has a decay
scale of about 30 km with increasing space lag, both for SST
and SSS. The first, most energetic EOF modes have nearly
“flat” patterns without sign change (energy share 97.6 % for
SST and 36.2 % for SSS); their amplitudes are dominated
by a seasonal signal. A space-dependent mean biharmonic
seasonal cycle was not removed from the model time series
prior to the analysis, since special experiments revealed only
a small effect of seasonality suppression on EOF mode pat-
terns. The second EOF mode of SST (1.3 %) presents dif-

ferential heating and cooling in shallow areas, compared to
the deeper offshore waters. Transverse anomaly stripes near
northern or southern coasts, like those due to coherent up-
welling and downwelling in the region, were evident in the
second SSS mode pattern (16.9 %) and third SST mode pat-
tern (0.31 %). There is also a pattern of SSS changes in the
freshwater spreading pathway near the northern coast of the
Gulf of Finland (third SSS mode, 7.1 %) and longitudinal
SST changes in the east–west direction (fourth SST mode,
0.14 %).

The data set used in the present DA study (Fig. 2) is
rather irregular, compared to the reconstruction experiments
by Elken et al. (2019). Therefore, we revisit the covariance is-
sues and perform additional reconstruction tests, before find-
ing in the next subsection the best options for the automatic
reconstruction procedure. Spatial interrelation of observed
values at a specific point to the values in the rest of the re-
gion is found from the extract of the spatial covariance ma-
trix, which can be shown as a map. One example of SSS
covariance with a frequently sampled HELCOM monitor-
ing station BMP F3 is shown in Fig. 3. The covariance of
three dominating EOF modes (Fig. 3b) comprises most of
the unfiltered data covariance (Fig. 3a) at large distances.
High covariance locations have clear basin-scale geograph-
ical explanations: under the similar weather and seasonal
forcing, which is spatially nearly uniform, SSS changes in
distant river influence areas are closely interlinked. Correla-
tion (not shown) may exceed 0.4 at distances greater than
500 km; therefore, assumptions of fast decay of correlation
with space lag (like using the Gaussian covariance approx-
imation), adopted in offshore areas with negligible coastal
influence, are not valid. Covariance of residuals to the large-
scale variations are presented by higher EOF modes (Fig. 3c).
Such smaller-scale variations have nearly Gaussian struc-
ture, with elliptical anisotropy stretched along the axis of the
basins similar to the results by Høyer and She (2007): spatial
scales in Fig. 3c are 30 and 15 km along the main axis and
perpendicular to the axis, respectively. Similar regularities –
physically explained high covariance at large distances, lo-
calized covariance patterns for the higher EOF modes – were
found for other points of reference, both for SSS and SST
fields.

The EOF reconstruction method relies on the full covari-
ance matrix, without any approximation. Covariance is fur-
ther treated using EOF modes. For the reconstruction pro-
cedure, we keep the lowest EOF modes without any ap-
proximation, and covariance from higher modes as shown
in Fig. 3c is not taken into account. The large-scale features
of the EOF reconstruction and associated DA exclude the
possibility of creating spurious “bullseye” patterns around
observation points, which may happen for instance during
unfavourable selection of optimal interpolation parameters.
Subsequently, our DA method handles the large-scale fea-
tures and excludes the possibility to assimilate smaller-scale
features, which can be described by the higher modes.
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Figure 3. Spatial covariance of SSS with the values in the grid cell near the HELCOM monitoring station BMP F3 (59.8383◦ N, 24.8383◦ E),
extracted from the full covariance matrix calculated from the model data over 5 years. Covariance is decomposed by EOF modes: covariance
of unfiltered data with all the modes included (a), the sum of covariance of the first three modes (b) and of the remaining higher modes,
starting from the fourth mode (c).

A full covariance matrix can be implemented in opti-
mal interpolation as well. While the EOF method needs to
limit the number of included modes, smoothing in such a
way smaller-scale variability and observational errors, opti-
mal interpolation needs to include observational error vari-
ance (“nugget effect” in terms of Kriging method, equivalent
to optimal interpolation); otherwise the system of underly-
ing linear equations may become close to singular and the
result may become unrealistically spiky. In some examples
(not shown), EOF reconstruction and optimal interpolation
based on full covariance produced similar results, but these
relations need further studies. When observed values were
close to the model-computed climatological background, vi-
sual similarity was caused mainly by the dominance of spa-
tial gradients of mean SSS over the spatio-temporal vari-
ability. Optimal interpolation with Gaussian approximation
to the covariance produced realistic results in the neighbour-
hood of observation points but gave unrealistic patterns and
values in the distant SW extrapolation area.

3.1.2 Finding the parameters for reconstruction of
gridded observation fields

Multiple checks performed on our data set suggested that
only the three leading modes were included in the EOF re-
construction. In order to find the best options for reconstruc-
tion, experiments were made with different intervals (time
window) tR around the reference time ti ; including the ob-
servations within time window from ti − tR/2 to ti + tR/2.
The results were evaluated to fulfil the following goals:

– a small RMSD between the observed values and the re-
constructed fields;

– a small number of gaps in the reconstructed time series;

– a low number or missing presence of “spikes” and/or
“jumps” in the time series.

Two basic options for temporal handling of the reconstruc-
tion procedures were tested:
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a. application of procedure by Eq. (1) of time-fixed ampli-
tudes; time average of observations was taken for each
grid cell, time adopted in each grid cell as constant ref-
erence time;

b. full application of the procedure by Eq. (2) of time-
dependent amplitudes; all the daily mean observations
(average was taken also over coordinates and time) were
kept separate for each coarse grid cell where the obser-
vations existed.

In addition, the procedure by Eq. (2) was tested with an op-
tion with a time average of observations in each grid cell, and
with selection of observations closest to the reference time.
These experiments provided more spikes and 70 % higher
RMSD than the basic options (a) and (b) and they were ne-
glected from further consideration.

As a first step in all the experiments with variable time
windows, the EOF amplitudes of the mode k were checked
for the limit

∣∣âi,k∣∣< 2
√
λk = 2σ (ãk) , where σ denotes stan-

dard deviation. DA data for the days with higher amplitudes
were left blank since these reconstruction results most fre-
quently became unrealistic. In addition, when the number of
observations was less than six, reconstruction was not per-
formed and the DA step using Eq. (4) was skipped.

The time windows tR for experiments (a) and (b) were se-
lected to be 10, 20 and 30 d. Elken et al. (2019) have found
that the correlation timescales (e-folding drop, correlation
value 0.368) of EOF SST amplitudes were 65 d for the sea-
sonal first (overall heating/cooling) and second (faster heat-
ing/cooling in shallow coastal areas) modes, and 15 d for the
third “upwelling” mode. Timescales of the SSS modes were
65 d for the second and third modes, representing the large-
scale gradients, and 110 d for the first mode describing long-
term variations of mean salinity.

Methods of time-fixed (a) and time-dependent (b) recon-
structions revealed similar statistical results during the study
period in 2015, whereas RMSD between observed and re-
constructed values of (a) was by 5 % larger than that of
(b). By increasing the time window, RMSD of reconstruc-
tion slightly increases due to the stronger smoothing. The
smoothing effect can be seen from the reconstruction exam-
ples given in Fig. 4. It should be noted that the reconstruction
is designed to yield the best approximation to the observa-
tions over the entire region; therefore, it does not need to
present the local best fit at individual points.

A network of observations, available during the study pe-
riod, appeared favourable for the reconstruction, although
observations were missing in the southern part of the Gulf
of Riga and eastern part of the Gulf of Finland. With a time
window of 30 d, there were no reconstruction gaps identified
during the study period, determined for both of the methods
by the above-described amplitude limit criteria. Smaller time
windows yielded some gaps in 2015. During the longer pe-
riod from 2010–2018, gaps were found in most of the years
(except our study period), whereas shorter time windows

result in more reconstruction gaps. Detailed comparison of
the time-fixed (a) and time-dependent (b) methods revealed
that time-fixed reconstruction might create spurious “jumps”
when there is a gap in observations which has a length close
to the time window. In that case, a backward average is taken
before the gap and forward average after the gap, which
may result in “jumpy” results. Time-dependent reconstruc-
tion, which also accounts for the temporal changes within
the time window, handled such situations more smoothly.

3.2 Data assimilation experiments

We have used a two-scale DA approach (see detailed expla-
nation in Sect. 2.4), where observations were reconstructed
on the coarse grid. Results were interpolated into the fine
grid of the model and were subsequently used for relax-
ing the fine-scale model results towards basin-scale observa-
tional patterns. More specifically, gridded observational SST
and SSS data were pre-calculated each day using the time-
dependent EOF reconstruction method with a time window
tR = 30 d as presented in Sect. 3.1. Reconstructed SST and
SSS fields were interpolated bilinearly to the fine 0.5 nau-
tical mile grid and used for relaxing the model results to-
wards observational counterparts, based on Eqs. (3)–(4) with
1t = 1 d. Two basic experiments were conducted, with re-
laxation time 10 d (weight of observations 0.1, experiment
code DA01) and with a relaxation time of 5 d (weight 0.2, ex-
periment code DA02). In addition, a variety of short-term tri-
als was performed in a preparatory phase (results not graph-
ically presented) which led to the two basic experiments.
Comparison data were coded as FR for the control run with-
out DA, and FB for observed FerryBox data.

3.2.1 Example from the beginning of August

There was an interesting oceanographic situation in the be-
ginning of August, when a moderate but extensive upwelling
SST pattern at the northern coasts of the basins (Fig. 5), with
some effects on SSS (Fig. 6), was combined with fast heating
of the thin (6–9 m) surface layer (Fig. 7). Since the middle of
July, moderate winds with speeds from 4 to 6 m s−1, which
had a westerly zonal component (favouring upwelling at the
northern coasts of the basins), were blowing above the Gulf
of Finland. After 3 August 2015 (the maps in Figs. 5 and 6
are taken on this date), wind ceased and air temperatures in-
creased by 10 August across the study area up to 25–27 ◦C in
the Gulf of Finland and up to 31 ◦C in the southern Gulf of
Riga, creating a thin layer of warm surface water. Heating of
surface waters was favoured by high night-time air temper-
atures, higher than SST. Vertical profiles (not shown) in the
Gulf of Finland revealed a deep thermocline at 40 m depth
near the southern (downwelling) coast and a shallower ther-
mocline near the northern coast; the warm surface water col-
umn near Tallinn was 2 to 3 times thicker than near Helsinki.
From the end of July to 10 August, warming resulted in an
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Figure 4. Salinity time series at locations (a) 59.8383◦ N, 24.8383◦ E (HELCOM station F3) and (b) 59.794◦ N, 24.822◦ E, during the
study period. Shown by dots are the observations from FerryBox and from ship monitoring. Reconstructed time series, made using the time-
dependent method, are given by solid lines: REC – basic option with 30 d interval, all observations in window were kept as they are; R1 – the
same as previous but with time interval 10 d.

increase in SST (Fig. 7) near Tallinn from 16.5 to 18.5 ◦C
and near Helsinki from 14.5 to 18 ◦C.

The SST maps presented in Fig. 5 include control run,
reconstructed in situ observations, one experiment with DA
(the other experiment yielded similar results) and satellite ob-
servations. When warm waters with SST above 17 ◦C dom-
inated the study area, all the maps revealed moderate up-
welling near the northern coasts of the basins. However, the
minimum temperatures and the spatial extent of the colder
waters were different. The warmest “cold” waters were ob-
served on satellite images. While satellites measure SST of
a thin surface layer, FerryBox and models acquire tempera-
ture over a much thicker layer. It is known that in the Gulf
of Finland satellite and FerryBox can have similar SST val-
ues in cases of winds stronger than 5 m s−1 (Uiboupin and
Laanemets, 2015); at smaller wind speeds the SST bias can
be 1–3 ◦C in reference to FerryBox observations. Within
these accuracy limitations, satellite observations presented
in Fig. 5d confirm the model patterns to some extent. The
control run (Fig. 5a) was characterized by SST contrasts that
are too high, compared to the satellite data (Fig. 5d; for the
data source see Sect. 2.2). From the earlier study by Zujev
and Elken (2018), it is known that the free model without
DA forecasts faster heating and cooling of shallow coastal
areas and slower heat dynamics in offshore areas. Data as-
similation (Fig. 5c), made using the reconstructed FerryBox
data (Fig. 5b), reduced discrepancies with satellite observa-
tion. The major large-scale differences between the satellite
data (Fig. 5d) and the best DA02 (Fig. 5c) can be outlined
as follows: (1) the colder upwelling water extended on the

satellite image further to the east, (2) warmer waters were
found on the satellite images in the southern Gulf of Riga,
near the Daugava river and in the shallow areas between the
Estonian islands, and (3) in the Gulf of Riga, a strip of colder
waters was modelled along the western coast, while satellite
observations revealed warmer waters near this coast.

There were also numerous mesoscale features evident on
SST (Fig. 5) and SSS (Fig. 6) maps, like colder upwelling
filaments along the northern coasts of the Gulf of Finland
and the Gulf of Riga, and decaying anticyclonic warm-core
eddies near the southern coast of the Gulf of Finland. The
Irbe Front (Lilover et al., 1998; Raudsepp and Elken, 1999),
formed by the salinity difference between the Gulf of Riga
and the Baltic Proper, was found by the SSS maps in the out-
ward position, stretching from the strait towards the open sea.
This salinity structure was also repeated in the SST patterns;
the satellite observations confirmed the predicted outward
position during the taken snapshot. The model predicted that
in the Gulf of Riga the Daugava river waters were spreading
by narrow coastal strips of lower salinity in both the NE and
NW directions (Fig. 6).

3.2.2 Time series in the areas of dense observations

Locations with dense observations allow us to validate the
model and visually evaluate assimilation quality. We com-
pared SST and SSS data of the control run (FR) and DA op-
tions DA01 and DA02 with FerryBox data (FB) at two points
near Tallinn and Helsinki (Fig. 7). While SST followed the
seasonal cycle, with weather-dependent deviations, then SSS
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Figure 5. Maps (longitude E, latitude N) of SST in the study area on 3 August 2015: (a) free model run without DA, (b) in situ observations
reconstructed using EOF method, (c) DA with relaxation time 5 d (weight of observations 0.2), (d) CMEMS product based on satellite
observations.

behaviour was more irregular. In the given variation scales of
SST and SSS (16 ◦C and 2 g kg−1 respectively), all the com-
pared SST data sources were more similar to each other than
that of SSS. Still, most of the time the assimilation curve
(DA02) was closer to the FerryBox observations than the
control run, for both SST and SSS.

Warm conditions in the beginning of August (Sect. 3.2.1)
are clearly visible on SST time series (Fig. 7a, c). Com-
paring the values near Tallinn and Helsinki, the southern
part of the Gulf of Finland was roughly 2 ◦C warmer than
the northern part, whereas the northern part had an unsta-
ble day-to-day pattern, possibly due to the fluctuations of the
upwelling pattern. This is consistent with the spatial maps
given in Fig. 5. Near the southern coast, an upwelling event
occurred in September, reducing SST during a few days by
nearly 4 ◦C (Fig. 7a). A larger SST drop during the southern
coast upwelling (at easterly winds), compared to the northern
coast upwelling (at westerly winds of the same magnitude),
is explained by the steeper topography slopes in the southern
part of the Gulf of Finland (Laanemets at al., 2009). This up-
welling event was properly resolved by all the data sets, with

DA02 being closest to observations. In general, a free model
without DA expected warming at a lower rate during summer
and was more precise in autumn, while both assimilation ex-
periments properly corrected the SST and SSS values. How-
ever, in some cases, assimilated temperature was somewhat
higher than observed and modelled SST.

Assimilation resulted in one major SSS improvement in
early summer when the model predicted upwelling with
salinity near Helsinki that is too high. Nevertheless, in some
cases DA made minor corrections at one of the locations, ig-
noring observations and sticking to the control run (e.g. late
July to early August near Tallinn, and the middle of October
near Helsinki). When the model overshoots at both locations,
DA properly corrects temperature and salinity values. This
implies that DA of surface observations tends to correct the
mean values better than the cross-gulf gradients, for which
3D circulation (presently not assimilated) has a significant
impact.

In the salinity time series, a “freshwater event” with re-
duced salinity was observed in the Gulf of Finland at the
end of September and beginning of October. In the daily
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Figure 6. Maps (longitude E, latitude N) of SSS in the study area on 3 August 2015: (a) free model run without DA, (b) observations
reconstructed using EOF method, (c) DA with relaxation time 5 d (weight of observations 0.2).

SSS data (Fig. 7b, d) the event was spiky, possibly due to
the mesoscale features not assimilated in the present study:
without DA, the eddies tend to have a random phase, and the
spikes in the time series of different model options and obser-
vations do not need to be coherent. However, in the weekly
averaged data (not shown) the mesoscale activity was sup-
pressed and the fresh event appeared simultaneously in all
the data within the central and western part of the Gulf of
Finland.

Increasing assimilation weight in Eq. (4) two times did
not make assimilation results two times closer to the obser-
vations. As can be seen from Fig. 7, the results of assimi-
lation experiments DA01 and DA02, with relaxation times
of 10 and 5 d respectively, were not placed between the free
run and the observations proportionally to the corresponding
weights 0.1 and 0.2. They diverged as the study region ex-
perienced a temperature drop or daily trend change. Both op-
tions of assimilated SST could either coincide for a long time
or go in parallel, but DA02 was systematically closer to the
FerryBox observations. Salinity fluctuations had larger am-
plitudes in the free run without assimilation, but both DA op-
tions, with a “thumb” rule – the bigger the weight, the bigger

the change – had properly corrected them. Still, in December
DA01 showed better results, being closer to the FerryBox
salinity than assimilation DA02.

3.2.3 Spatio-temporal dynamics

We have chosen to compare assimilation with the best results
(DA02) to the control run without data assimilation (FR) and
track the continuous time–latitude changes of SST and SSS
(Fig. 8) in two sub-basins – the Gulf of Finland and Gulf of
Riga – along the coast-to-coast transects given in Fig. 2a. Us-
ing DA, temperature was corrected approximately by 1–2 ◦C,
and salinity by less than 1 g kg−1. Major systematic change
(in the Gulf of Finland this was validated as improvement;
see Sect. 3.2.4 for further details) was seen near the coasts
and in the spring and autumn periods, while summer tem-
peratures underwent minor corrections. Salinity corrections
had a more uniform distribution and smooth drifting pattern
– DA consistently increased SSS values with time in both of
the sub-basins.

Data assimilation had increased SST in the Gulf of Finland
in open waters during the warming period and in late autumn
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Figure 7. Time series of SST (a, c) and SSS (b, d) near Tallinn (a, b, 59.4833◦ N, 24.7667◦ E) and Helsinki (c, d, 59.9500◦ N, 24.8833◦ E),
locations shown in Fig. 2a. FerryBox data (FB) are shown by dots, black lines represent control run (FR) without DA, red lines correspond
to DA with relaxation time 5 d (weight of observations 0.2, DA02), blue lines for 10 d (weight 0.1, DA01).

all across the gulf and had decreased in the coastal areas dur-
ing the warming period, whereas near the northern coast this
decrease continued until September. In the Gulf of Riga, the
SST increase dominated throughout the study period, but it
was interrupted occasionally by basin-wide events when DA
had decreased the temperature compared to the results from
FR. The largest corrections of both SST and SSS were evi-
dent in the coastal waters. Salinity was increased by DA in
most of the cases in the Gulf of Finland, except for May–
July near Tallinn. The largest increase in SSS occurred in
November and December, when control run results dropped
compared to the earlier period.

Some unusual basin-wide events can be found on the dif-
ference charts in Fig. 9. For example, abrupt warming of the
surface around 10 August 2015 (Sect. 3.2.1) was correctly
predicted by the free run model (Fig. 7c), but it was over-
smoothed by the data assimilation. A similar line in Decem-
ber on both charts denotes the occurrence of fronts of cold
and saline water due to strong winds and storms.

As there are not enough observations available in the Gulf
of Riga for validation, we cannot definitely say whether DA
improved the situation in the region and to what extent.

3.2.4 Evaluation of DA-based forecast performance

Ocean model performance (e.g. Stow et al., 2009; Gol-
beck et al., 2015; Placke et al., 2018) is usually evaluated
by the differences between the observations and the model
results, transferred to the times and locations of observa-
tions so that they can be directly compared. The overall
mean difference (over time and space) is termed bias and
the standard deviation of differences at all the observation
points is denoted as RMSD (centred root-mean-square dif-
ference). The forecast skill is usually non-dimensional, with
the RMSD of the studied option (in our case, DA) scaled
to reference data (FR in our case) as skill= function of
[RMSD(DA,FB) /RMSD(FR,FB)].

The present ocean model has a fine resolution of about 0.5
nautical miles (930 m) (Sect. 2.1); therefore for comparison
with observations we used a simplified approach and took av-
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Figure 8. Time (months of 2015) versus latitude (N) contour graph of DA anomalies of SST (a, c) and SSS (b, d) in reference to the control
run (FR) without data assimilation at longitudes 23.7166◦ E (a, b, Gulf of Finland) and 23.5333◦ E (c, d, Gulf of Riga); locations shown in
Fig. 2a. DA data are given for relaxation time 5 d (weight of observations 0.2).

erages of observations over the model grid cells over a daily
time span (Sect. 2.2). Such a compressed fine-resolution ob-
servational data set, still having about 110 000 points for SST
and SSS, originated mainly from the FerryBox (FB) lines
(Fig. 2), and it covered central and western parts of the Gulf
of Finland and the neighbouring part of the Baltic Proper. Ar-
eas with lower salinity in the eastern Gulf of Finland and in
the Gulf of Riga had only a small number of observations.

Data from the DA experiments DA01 and DA02 were
compared to the same compressed observational FB data as
the data from the control run without assimilation (FR). Her-
nandez et al. (2015), who reviewed the problems of perfor-
mance evaluations of operational ocean models, noted that
most available observations are used to adjust models and
reduce analysis errors. Therefore, a widespread approach is
withholding part of the data set for statistical quantification
of errors. In our study, the option of withholding the observa-
tions was performed: an evaluation was made of how much
the DA result will change if DA is performed using 50 %
of the available data (Gregg et al., 2009). The present im-
plementation of EOF DA used about 13 000 observational
averages over a coarse grid of about 5 nautical miles. The
reconstruction procedure by Eqs. (1)–(2) has no direct con-
nection to the ongoing modelling (although it includes sta-

tistical results from longer model runs), and the fields of ψo

in Eqs. (3)–(4) are the only link where observations enter the
DA process. The experiments which took every second avail-
able observation “box” into account (this resulted in a mean
sampling interval along ship tracks about 20 km instead of
10 km) revealed that performing DA during the study period
with a reduced data set (6.5 000 averaged observation data in-
stead of 13 000) changed RMSD of SST by only 1 % and of
SSS by 2 %, whereas the RMSD values were 0.05 ◦C for SST
and 0.027 g kg−1 for SSS. An evaluation was made over the
full time span and domain using 182 000 coarse grid cells;
correlation between the data sets was higher than 0.999. We
have also checked reconstruction results with FerryBox data
only, excluding the data from shipborne monitoring stations.
Compared with the full data set, the largest (but still minor)
differences with RMSD of SSS up to 0.03 g kg−1 were found
in the Gulf of Riga and the eastern Gulf of Finland, where
FB data were missing. Consequently, for our large-scale ap-
proach DA results are robust to the reasonable variation of
data amount, and we used FB data for reference in the per-
formance evaluations.

Evaluated forecast performance metrics are presented in
Table 2. Only those fine-grid points which had respective
value of FerryBox observations on the same day were used
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Table 2. Statistics of daily data in 0.5× 1 arcmin (N and E) grid
cells with FerryBox (FB) observations: free model run without data
assimilation (FR), data assimilation DA01 (observation weight 0.1),
DA02 (weight 0.2) and FB. Bias, RMSD and correlation are taken
with reference to FB.

FR DA01 DA02 FB

SST (◦C)

Mean 12.03 12.15 12.25 12.48
SD 3.98 3.92 3.93 3.97
Bias −0.45 −0.33 −0.23 0
RMSD 0.72 0.59 0.56 0
Correlation 0.98 0.99 0.99 1.00

SSS (g kg−1)

Mean 5.61 5.79 5.85 5.93
SD 0.35 0.29 0.31 0.37
Bias −0.31 −0.14 −0.08 0
RMSD 0.35 0.24 0.23 0
Correlation 0.52 0.76 0.78 1.00

for metrics calculation. Wet points of the model without cor-
responding observation value were left out from the proce-
dure.

The statistical properties presented in Table 2 reflect that
DA improves the model performance significantly: RMSD of
SST was reduced by 22 % and SSS by 34 %, compared to the
control run. From DA01 to DA02, a slight improvement of
DA performance was observed; therefore we adopted DA02
as the major result. The spatial pattern of RMSD change be-
tween the DA and FR (Fig. 9) reveals that larger reduction
rates (up to 50 %), for both SST and SSS, were found in the
observation-covered areas in the Gulf of Finland. Overly cold
waters produced by FR near the northern coast of the Gulf of
Finland were effectively corrected by DA (see also Fig. 5);
therefore highest improvement percentage scores were de-
tected in this region. Near the western open boundary, non-
assimilated SST and SSS values of the larger model were
advected into the area, and therefore RMSD reduction was
small, or even negative for SSS.

The applied EOF DA method does not assimilate
mesoscale variability. Applying the weekly average statistics
like Zujev and Elken (2018) further reduced RMSD by 13 %
for SST and 9 % for SSS, compared to the daily data in Ta-
ble 2. Weekly statistics suppresses the mesoscale variability
and reveals a better match between the DA and the observa-
tions. DA decreased the bias, especially for SSS. At the same
time, the correlation of SSS between DA and observations in-
creased considerably. We may conclude that DA made major
improvements in the forecasting of SSS. Still, the forecast
RMSD in reference to the observations is 62 % of the ob-
served standard deviations, which suggests that there may be
further room for improvement. Modelling of SST is already
more accurate than SSS without DA: RMSD of the control

run (FR) makes 18 % of the standard deviation of observa-
tions for SST and 94 % for SSS.

4 Discussion

The Baltic Sea is considered as one of the most studied ma-
rine areas in the world (e.g. Andersen et al., 2017). However,
the large observational data sets are distributed unevenly. If
we divide our study area into 744 eddy-averaging grid cells
of 5× 10 arcmin by N and E, then during the study period
330 000 FerryBox observations covered only 18 % of the sea
region. Shipborne monitoring added 8 % more coverage of
the area, but with a much smaller frequency of sampling.
Having in mind that the ocean models tend to deviate in the
NE Baltic from the observations not only by constant bias
but also for large-scale and longer-term responses, the intro-
duction of non-local, region-wide data assimilation is of high
importance.

It is interesting to consider how our statistical evaluations
of model and DA performance, given in Table 2, compare
with other Baltic Sea studies. For remote sensing versus
in situ reference, Kozlov et al. (2014) have found RMSD
1.31 ◦C in the Curonian Lagoon. Uiboupin and Laanemets
(2015) have estimated RMSD of various satellite products to
FerryBox in the Gulf of Finland from 0.29 to 0.98 ◦C. Our
control run gave RMSD of 0.72 ◦C. Golbeck et al. (2015)
compared SST from 13 models with satellite data and found
yearly RMSD for SST of 0.65–0.87 ◦C in the Baltic Sea.
They found a larger relative spread of SSS ensemble mem-
bers than of SST: deviations in the Gulf of Finland between
the models were up to nearly 1 g kg−1, while the average SSS
is only about 4 g kg−1. Unfortunately, there were not enough
validating observations for SSS available. Fu et al. (2011)
found even larger RMSD for SST for the control run, 1.0 ◦C,
based on satellite observations. They also used DA with en-
semble optimal interpolation and found that DA reduced
RMSD between the forecasts and observations by 25 % for
SST and 34 % for SSS. With our simpler and less compu-
tationally demanding EOF DA technique, similar RMSD re-
ductions have been obtained (Sect. 3.2.4) compared to earlier
studies.

We have developed and tested an EOF-based relaxation
technique where the large-scale observed fields to be as-
similated are pre-calculated independently from the ongoing
model. From sparse observations, it is possible to estimate
the amplitudes of only the gravest, large-scale EOF modes.
The EOF DA method handles large-scale features over the
sea basin(s), like change of mean SST, SSS and their gra-
dients, including differential heating in coastal and offshore
areas, major patterns from upwelling, and spreading of river
discharge. The method can work well with irregular data but
cannot resolve mesoscale features in the areas of dense ob-
servations, because the EOF amplitudes of higher modes get
noisy, according to our experiments. Optimal interpolation,
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Figure 9. Improvement of RMSD of DA compared to that of FR, both taken in reference to 110 000 FerryBox observations. Comparison is
made for 20× 20 grid cells (about 10 nautical miles) for SST (a) and SSS (b) over the whole study period. Legend codes: few points – less
than 100 observations in a box, small values – absolute percentage change less than 10 %, negative – DA RMSD growth more than 10 %,
positive – DA improvement (RMSD reduction) from 10 % to 30 %, large positive – improvement more than 30 %.

successive corrections and similar methods usually assume
localized covariance and/or radius of influence (e.g. Axell
and Liu, 2016); they work well in resolving mesoscale fea-
tures in dense sampling areas, but regions of rare observa-
tions remain unaffected by DA. For the mesoscale range, in
our study area there are only satellite observations of surface
variables available. They were omitted from our study, since
salinity as a variable of primary interest can be presently only
be determined in situ in the Baltic. It is possible to implement
on top of EOF DA more traditional localized DA methods
to assimilate mesoscale data when and where such data are
available. Studies on using EOF DA for handling large-scale
data are also ongoing in the UK Met Office by Daniel Lea
(Haines, 2018).

We have tested the EOF-based DA in a centred time win-
dow of 30 d, based mainly on available FerryBox data during
the study period. As shown by reconstruction experiments by
Elken et al. (2019), the time-dependent method can also work
with backward observations as if it occurs during operational
forecasts. When more observations become available, for ex-
ample from new automated buoy stations, Argo floats and
gliders, the time window can be shortened. A full covariance
matrix estimated from the model results is the backbone of
the EOF DA method. Prior and/or complementary to imple-
mentation of the method into operational practice, detailed
covariance studies using results from multiple models could
be useful, as well as additional reconstruction and DA studies
using more data sources over longer periods.

The EOF DA method has some practical advantages.
Firstly, for assimilation of basin-scale patterns, it can be im-
plemented on a coarse grid, and therefore it has small com-
putational effort compared to the localized methods (like op-
timal interpolation etc.) that should be usually implemented
on the model resolution, i.e. on the fine grid. Secondly, inter-

mediate results are in the form of maps that are easily under-
standable and can be checked visually or taught to be anal-
ysed by artificial intelligence. For optimizing the observa-
tional data needs, the concept of OSEs (observing system ex-
periments), which check various data configurations for DA
performance, is high on the agenda. Since the quality of DA
and forecasting are primarily determined by the quality of
EOF reconstruction (when extensive mesoscale observations
are not available), then it would be possible to save a signif-
icant amount of computing power and perform most of the
experiments using EOF basis vectors.

There are obvious possible extensions of the EOF DA
method to other variables and layers: improvement of stratifi-
cation modelling; extension to biogeochemical models; and
DA of oxygen, nitrogen and phosphorus. Applicability de-
pends on how well the model reproduces the studied fields
and their covariance as well as how much variance is ex-
plained by the major EOF modes. There are a number of
questions that may be addressed, such as the following: What
is the minimal amount of observations needed to produce de-
cent results? What areas are reconstructed with higher accu-
racy with given observation design, nearshore, offshore, open
basins? What areas are most problematic to reconstruct, com-
plicated coastline, straits and channels, semi-enclosed basins,
regions of river influence? Are there some specific locations
that can be used as a proxy for larger regions? Is it possible to
measure SST/SSS just at these points in order to give enough
input for successful reconstruction?
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5 Conclusions

The present study was aimed to implement EOF-based sta-
tistical reconstruction technique into the data assimilation of
the forecast model, and to study the feasibility of such assim-
ilation method. Gridded EOF modes were determined from
the 5 yr long model results. “Observational” EOF amplitudes
were found each day to minimize the RMSD between the
reconstructed and observed values at the observation points,
using a time-dependent technique where both the amplitudes
and their time rate of change were searched for the best fit.
In this procedure, a time window of 30 d was selected that
ensured acceptable SST and SSS reconstruction patterns by
three leading EOF modes throughout the whole study period
from 1 May to 31 December 2015. The study used about
330 000 FerryBox observations along four ship tracks from
1 May to 31 December 2015, and 370 observations from re-
search vessels. Statistically gridded observations were assim-
ilated into the model daily by the relaxation techniques, using
restoring times of 5 and 10 d.

The tested EOF-based data assimilation (DA) method
decreased RMSD of surface temperature (SST) and salin-
ity (SSS) in the NE Baltic Sea by 22 % and 34 %, re-
spectively, compared to the control run without DA. Using
the observation-estimated amplitudes of the pre-calculated
gravest model-based EOF modes, the method is able to fol-
low on the regular grid the pointwise observed temporal
changes of the mean state and of the major basin-scale gra-
dients. DA with EOF reconstruction technique was found to
be feasible for further implementation studies, since (1) the
method that works on the large-scale patterns (mesoscale fea-
tures are neglected by taking only the leading EOF modes)
improves the high-resolution model performance by compa-
rable or even better degree than in the other published stud-
ies, and (2) the method is computationally effective.

Code availability. The model code has been developed by the
Baltic MFC partners. Presently it is frozen and not being developed
anymore. The DA scripts and demonstrated model results can be
requested by contacting the corresponding author. All the observa-
tional data used are freely available as described in Sect. 2.2.
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