Articles | Volume 17, issue 3
https://doi.org/10.5194/os-17-651-2021
https://doi.org/10.5194/os-17-651-2021
Research article
 | 
06 May 2021
Research article |  | 06 May 2021

The mesoscale eddy field in the Lofoten Basin from high-resolution Lagrangian simulations

Johannes S. Dugstad, Pål Erik Isachsen, and Ilker Fer

Related authors

Eddy kinetic energy and baroclinic and barotropic energy conversion rates along the Atlantic Water boundary current north of Svalbard
Kjersti Kalhagen, Ilker Fer, Till M. Baumann, Jon Albretsen, and Lukas Frank
EGUsphere, https://doi.org/10.5194/egusphere-2025-4402,https://doi.org/10.5194/egusphere-2025-4402, 2025
This preprint is open for discussion and under review for Ocean Science (OS).
Short summary
Uncertainties in the finite-time Lyapunov exponent in an ocean ensemble prediction model
Mateusz Matuszak, Johannes Röhrs, Pål Erik Isachsen, and Martina Idžanović
Ocean Sci., 21, 401–418, https://doi.org/10.5194/os-21-401-2025,https://doi.org/10.5194/os-21-401-2025, 2025
Short summary
Merging of a mesoscale eddy into the Lofoten Vortex in the Norwegian Sea captured by an ocean glider and SWOT observations
Gillian Mary Damerell, Anthony Bosse, and Ilker Fer
EGUsphere, https://doi.org/10.5194/egusphere-2025-433,https://doi.org/10.5194/egusphere-2025-433, 2025
Short summary
An emerging pathway of Atlantic Water to the Barents Sea through the Svalbard Archipelago: drivers and variability
Kjersti Kalhagen, Ragnheid Skogseth, Till M. Baumann, Eva Falck, and Ilker Fer
Ocean Sci., 20, 981–1001, https://doi.org/10.5194/os-20-981-2024,https://doi.org/10.5194/os-20-981-2024, 2024
Short summary
The Polar Front in the northwestern Barents Sea: structure, variability and mixing
Eivind H. Kolås, Ilker Fer, and Till M. Baumann
Ocean Sci., 20, 895–916, https://doi.org/10.5194/os-20-895-2024,https://doi.org/10.5194/os-20-895-2024, 2024
Short summary

Cited articles

Andersson, M., Orvik, K. A., Lacasce, J. H., Koszalka, I., and Mauritzen, C.: Variability of the Norwegian Atlantic Current and associated eddy field from surface drifters, J. Geophys. Res.-Oceans, 116, 1–16, https://doi.org/10.1029/2011JC007078, 2011. a
Bashmachnikov, I. L., Belonenko, T. V., Kuibin, P., Volkov, D. L., and Foux, V.: Pattern of vertical velocity in the Lofoten vortex (the Norwegian Sea), Ocean Dynam., 68, 1711–1725, https://doi.org/10.1007/s10236-018-1213-1, 2018. a, b
Bosse, A., Fer, I., Søiland, H., and Rossby, T.: Atlantic Water transformation along its poleward pathway across the Nordic Seas, J. Geophys. Res.-Oceans, 123, 6428–6448, https://doi.org/10.1029/2018JC014147, 2018. a, b, c, d, e, f, g
Bosse, A., Fer, I., Lilly, J., and Søiland, H.: Dynamical controls on the longevity of a non-linear vortex: The case of the Lofoten Basin Eddy, Sci. Rep., 9, 13448, https://doi.org/10.1038/s41598-019-49599-8, 2019. a
Broomé, S., Chafik, L., and Nilsson, J.: Mechanisms of decadal changes in sea surface height and heat content in the eastern Nordic Seas, Ocean Sci., 16, 715–728, https://doi.org/10.5194/os-16-715-2020, 2020. a
Download
Short summary
We quantify the mesoscale eddy field in the Lofoten Basin using Lagrangian model trajectories and aim to estimate the relative importance of eddies compared to the ambient flow in transporting warm Atlantic Water to the Lofoten Basin as well as modifying it. Water properties are largely changed in eddies compared to the ambient flow. However, only a relatively small fraction of eddies is detected in the basin. The ambient flow therefore dominates the heat transport to the Lofoten Basin.
Share