Articles | Volume 17, issue 1
Ocean Sci., 17, 59–90, 2021
https://doi.org/10.5194/os-17-59-2021
Ocean Sci., 17, 59–90, 2021
https://doi.org/10.5194/os-17-59-2021

Research article 13 Jan 2021

Research article | 13 Jan 2021

Antarctic Bottom Water and North Atlantic Deep Water in CMIP6 models

Céline Heuzé

Related authors

Southern Ocean polynyas in CMIP6 models
Martin Mohrmann, Céline Heuzé, and Sebastiaan Swart
The Cryosphere, 15, 4281–4313, https://doi.org/10.5194/tc-15-4281-2021,https://doi.org/10.5194/tc-15-4281-2021, 2021
Short summary
Freshwater in the Arctic Ocean 2010–2019
Amy Solomon, Céline Heuzé, Benjamin Rabe, Sheldon Bacon, Laurent Bertino, Patrick Heimbach, Jun Inoue, Doroteaciro Iovino, Ruth Mottram, Xiangdong Zhang, Yevgeny Aksenov, Ronan McAdam, An Nguyen, Roshin P. Raj, and Han Tang
Ocean Sci., 17, 1081–1102, https://doi.org/10.5194/os-17-1081-2021,https://doi.org/10.5194/os-17-1081-2021, 2021
Short summary
Spaceborne infrared imagery for early detection of Weddell Polynya opening
Céline Heuzé, Lu Zhou, Martin Mohrmann, and Adriano Lemos
The Cryosphere, 15, 3401–3421, https://doi.org/10.5194/tc-15-3401-2021,https://doi.org/10.5194/tc-15-3401-2021, 2021
Short summary
Influence of initial stratification, wind and sea ice on the modelled oceanic circulation in Nares Strait, northwest Greenland
Lovisa Waldrop Bergman and Céline Heuzé
Ocean Sci. Discuss., https://doi.org/10.5194/os-2018-122,https://doi.org/10.5194/os-2018-122, 2018
Preprint withdrawn
Short summary
North Atlantic deep water formation and AMOC in CMIP5 models
Céline Heuzé
Ocean Sci., 13, 609–622, https://doi.org/10.5194/os-13-609-2017,https://doi.org/10.5194/os-13-609-2017, 2017
Short summary

Cited articles

Armour, K.: Energy budget constraints on climate sensitivity in light of inconstant climate feedbacks, Nat. Clim. Change, 7, 331–335, https://doi.org/10.1038/nclimate3278, 2017. a
Årthun, M., Eldevik, T., and Smedsrud, L.: The Role of Atlantic Heat Transport in Future Arctic Winter Sea Ice Loss, J. Climate, 32, 3327–3341, https://doi.org/10.1175/JCLI-D-18-0750.1, 2019. a
Ba, J., Keenlyside, N., Latif, M., Park, W., Ding, H., Lohmann, K., Mignot, J., Menary, M., Otterå, O., Wouters, B., and Salas y Melia, D.: A multi-model comparison of Atlantic multidecadal variability, Clim. Dynam., 43, https://doi.org/10.1007/s00382-014-2056-1, 2014. a
Beadling, R., Russell, J., Stouffer, R., Mazloff, M., Talley, L., Goodman, P., Sallée, J., Hewittd, H., Hyder, P., and Pandde, A.: Representation of Southern Ocean properties across Coupled Model Intercomparison Project generations: CMIP3 to CMIP6, J. Climate, EOR, https://doi.org/10.1175/JCLI-D-19-0970.1, 2020. a, b, c, d, e, f
Behrens, E., Rickard, G., Morgenstern, O., Martin, T., Osprey, A., and Joshi, M.: Southern Ocean deep convection in global climate models: A driver for variability of subpolar gyres and Drake Passage transport on decadal timescales, J. Geophys. Res.-Oceans, 121, 3905–3925, https://doi.org/10.1002/2015JC011286, 2016. a
Download
Short summary
Dense waters sinking by Antarctica and in the North Atlantic control global ocean currents and carbon storage. We need to know how these change with climate change, and thus we need accurate climate models. Here we show that dense water sinking in the latest models is better than in the previous ones, but there is still too much water sinking. This impacts how well models represent the deep ocean density and the deep currents globally. We also suggest ways to improve the models.