Articles | Volume 17, issue 2
https://doi.org/10.5194/os-17-561-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-17-561-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A mosaic of phytoplankton responses across Patagonia, the southeast Pacific and the southwest Atlantic to ash deposition and trace metal release from the Calbuco volcanic eruption in 2015
Maximiliano J. Vergara-Jara
Programa de Doctorado en Ciencias de la Acuicultura, Universidad
Austral de Chile, Puerto Montt, Chile
Instituto de Acuicultura and Centro de Investigación Dinámica
de Ecosistemas Marinos de Altas Latitudes (IDEAL), Universidad Austral de
Chile, Puerto Montt, Chile
GEOMAR, Helmholtz Centre for Ocean Research Kiel, 24148 Kiel, Germany
Thomas J. Browning
GEOMAR, Helmholtz Centre for Ocean Research Kiel, 24148 Kiel, Germany
Insa Rapp
Department of Biology, Dalhousie University, Halifax, Nova Scotia,
Canada
Rodrigo Torres
Instituto de Acuicultura and Centro de Investigación Dinámica
de Ecosistemas Marinos de Altas Latitudes (IDEAL), Universidad Austral de
Chile, Puerto Montt, Chile
Centro de Investigación en Ecosistemas de la Patagonia (CIEP),
Coyhaique, Chile
Brian Reid
Centro de Investigación en Ecosistemas de la Patagonia (CIEP),
Coyhaique, Chile
Eric P. Achterberg
GEOMAR, Helmholtz Centre for Ocean Research Kiel, 24148 Kiel, Germany
José Luis Iriarte
Instituto de Acuicultura and Centro de Investigación Dinámica
de Ecosistemas Marinos de Altas Latitudes (IDEAL), Universidad Austral de
Chile, Puerto Montt, Chile
COPAS-Sur Austral, Centro de Investigación Oceanográfica en el
Pacífico Sur-Oriental (COPAS), Universidad de Concepción,
Concepción, Chile
Related authors
No articles found.
Jana Krause, Dustin Carroll, Juan Höfer, Jeremy Donaire, Eric P. Achterberg, Emilio Alarcón, Te Liu, Lorenz Meire, Kechen Zhu, and Mark J. Hopwood
The Cryosphere, 18, 5735–5752, https://doi.org/10.5194/tc-18-5735-2024, https://doi.org/10.5194/tc-18-5735-2024, 2024
Short summary
Short summary
Here we analysed calved ice samples from both the Arctic and Antarctic to assess the variability in the composition of iceberg meltwater. Our results suggest that low concentrations of nitrate and phosphate in ice are primarily from the ice matrix, whereas sediment-rich layers impart a low concentration of silica and modest concentrations of iron and manganese. At a global scale, there are very limited differences in the nutrient composition of ice.
Ingeborg Bussmann, Eric P. Achterberg, Holger Brix, Nicolas Brüggemann, Götz Flöser, Claudia Schütze, and Philipp Fischer
Biogeosciences, 21, 3819–3838, https://doi.org/10.5194/bg-21-3819-2024, https://doi.org/10.5194/bg-21-3819-2024, 2024
Short summary
Short summary
Methane (CH4) is an important greenhouse gas and contributes to climate warming. However, the input of CH4 from coastal areas to the atmosphere is not well defined. Dissolved and atmospheric CH4 was determined at high spatial resolution in or above the North Sea. The atmospheric CH4 concentration was mainly influenced by wind direction. With our detailed study on the spatial distribution of CH4 fluxes we were able to provide a detailed and more realistic estimation of coastal CH4 fluxes.
Zuozhu Wen, Ruotong Jiang, Tianli He, Thomas Browning, Haizheng Hong, and Dalin Shi
EGUsphere, https://doi.org/10.5194/egusphere-2024-775, https://doi.org/10.5194/egusphere-2024-775, 2024
Preprint withdrawn
Short summary
Short summary
The isotope effect of biological N2 fixation is a key parameter for understanding the nitrogen cycle, however, little is known about its regulatory mechanisms. Here we show for the first time that CO2 exerts important controls on the N isotopic composition in diazotrophic cyanobacteria Trichodesmium and Crocosphaera, through the controls on nitrogenase enzyme efficiency. This study provides insights into understanding the fluctuations of δ15N records, and thus the past nitrogen cycle.
Kristian Spilling, Jonna Piiparinen, Eric P. Achterberg, Javier Arístegui, Lennart T. Bach, Maria T. Camarena-Gómez, Elisabeth von der Esch, Martin A. Fischer, Markel Gómez-Letona, Nauzet Hernández-Hernández, Judith Meyer, Ruth A. Schmitz, and Ulf Riebesell
Biogeosciences, 20, 1605–1619, https://doi.org/10.5194/bg-20-1605-2023, https://doi.org/10.5194/bg-20-1605-2023, 2023
Short summary
Short summary
We carried out an enclosure experiment using surface water off Peru with different additions of oxygen minimum zone water. In this paper, we report on enzyme activity and provide data on the decomposition of organic matter. We found very high activity with respect to an enzyme breaking down protein, suggesting that this is important for nutrient recycling both at present and in the future ocean.
Zuozhu Wen, Thomas J. Browning, Rongbo Dai, Wenwei Wu, Weiying Li, Xiaohua Hu, Wenfang Lin, Lifang Wang, Xin Liu, Zhimian Cao, Haizheng Hong, and Dalin Shi
Biogeosciences, 19, 5237–5250, https://doi.org/10.5194/bg-19-5237-2022, https://doi.org/10.5194/bg-19-5237-2022, 2022
Short summary
Short summary
Fe and P are key factors controlling the biogeography and activity of marine N2-fixing microorganisms. We found lower abundance and activity of N2 fixers in the northern South China Sea than around the western boundary of the North Pacific, and N2 fixation rates switched from Fe–P co-limitation to P limitation. We hypothesize the Fe supply rates and Fe utilization strategies of each N2 fixer are important in regulating spatial variability in community structure across the study area.
Shao-Min Chen, Ulf Riebesell, Kai G. Schulz, Elisabeth von der Esch, Eric P. Achterberg, and Lennart T. Bach
Biogeosciences, 19, 295–312, https://doi.org/10.5194/bg-19-295-2022, https://doi.org/10.5194/bg-19-295-2022, 2022
Short summary
Short summary
Oxygen minimum zones in the ocean are characterized by enhanced carbon dioxide (CO2) levels and are being further acidified by increasing anthropogenic atmospheric CO2. Here we report CO2 system measurements in a mesocosm study offshore Peru during a rare coastal El Niño event to investigate how CO2 dynamics may respond to ongoing ocean deoxygenation. Our observations show that nitrogen limitation, productivity, and plankton community shift play an important role in driving the CO2 dynamics.
Francisco Díaz-Rosas, Catharina Alves-de-Souza, Emilio Alarcón, Eduardo Menschel, Humberto E. González, Rodrigo Torres, and Peter von Dassow
Biogeosciences, 18, 5465–5489, https://doi.org/10.5194/bg-18-5465-2021, https://doi.org/10.5194/bg-18-5465-2021, 2021
Short summary
Short summary
Coccolithophores are important unicellular algae with a calcium carbonate covering that might be affected by ongoing changes in the ocean due to absorption of CO2, warming, and melting of glaciers. We used the southern Patagonian fjords as a natural laboratory, where chemical conditions are naturally highly variable. One variant of a widespread coccolithophore species can tolerate these conditions, suggesting it is highly adaptable, while others were excluded, suggesting they are less adaptable.
Kai G. Schulz, Eric P. Achterberg, Javier Arístegui, Lennart T. Bach, Isabel Baños, Tim Boxhammer, Dirk Erler, Maricarmen Igarza, Verena Kalter, Andrea Ludwig, Carolin Löscher, Jana Meyer, Judith Meyer, Fabrizio Minutolo, Elisabeth von der Esch, Bess B. Ward, and Ulf Riebesell
Biogeosciences, 18, 4305–4320, https://doi.org/10.5194/bg-18-4305-2021, https://doi.org/10.5194/bg-18-4305-2021, 2021
Short summary
Short summary
Upwelling of nutrient-rich deep waters to the surface make eastern boundary upwelling systems hot spots of marine productivity. This leads to subsurface oxygen depletion and the transformation of bioavailable nitrogen into inert N2. Here we quantify nitrogen loss processes following a simulated deep water upwelling. Denitrification was the dominant process, and budget calculations suggest that a significant portion of nitrogen that could be exported to depth is already lost in the surface ocean.
Neil J. Wyatt, Angela Milne, Eric P. Achterberg, Thomas J. Browning, Heather A. Bouman, E. Malcolm S. Woodward, and Maeve C. Lohan
Biogeosciences, 18, 4265–4280, https://doi.org/10.5194/bg-18-4265-2021, https://doi.org/10.5194/bg-18-4265-2021, 2021
Short summary
Short summary
Using data collected during two expeditions to the South Atlantic Ocean, we investigated how the interaction between external sources and biological activity influenced the availability of the trace metals zinc and cobalt. This is important as both metals play essential roles in the metabolism and growth of phytoplankton and thus influence primary productivity of the oceans. We found seasonal changes in both processes that helped explain upper-ocean trace metal cycling.
Gerd Krahmann, Damian L. Arévalo-Martínez, Andrew W. Dale, Marcus Dengler, Anja Engel, Nicolaas Glock, Patricia Grasse, Johannes Hahn, Helena Hauss, Mark Hopwood, Rainer Kiko, Alexandra Loginova, Carolin R. Löscher, Marie Maßmig, Alexandra-Sophie Roy, Renato Salvatteci, Stefan Sommer, Toste Tanhua, and Hela Mehrtens
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-308, https://doi.org/10.5194/essd-2020-308, 2021
Preprint withdrawn
Short summary
Short summary
The project "Climate-Biogeochemistry Interactions in the Tropical Ocean" (SFB 754) was a multidisciplinary research project active from 2008 to 2019 aimed at a better understanding of the coupling between the tropical climate and ocean circulation and the ocean's oxygen and nutrient balance. On 34 research cruises, mainly in the Southeast Tropical Pacific and the Northeast Tropical Atlantic, 1071 physical, chemical and biological data sets were collected.
Yu-Te Hsieh, Walter Geibert, E. Malcolm S. Woodward, Neil J. Wyatt, Maeve C. Lohan, Eric P. Achterberg, and Gideon M. Henderson
Biogeosciences, 18, 1645–1671, https://doi.org/10.5194/bg-18-1645-2021, https://doi.org/10.5194/bg-18-1645-2021, 2021
Short summary
Short summary
The South Atlantic near 40° S is one of the high-productivity and most dynamic nutrient regions in the oceans, but the sources and fluxes of trace elements (TEs) to this region remain unclear. This study investigates seawater Ra-228 and provides important constraints on ocean mixing and dissolved TE fluxes to this region. Vertical mixing is a more important source than aeolian or shelf inputs in this region, but particulate or winter deep-mixing inputs may be required to balance the TE budgets.
Jan Lüdke, Marcus Dengler, Stefan Sommer, David Clemens, Sören Thomsen, Gerd Krahmann, Andrew W. Dale, Eric P. Achterberg, and Martin Visbeck
Ocean Sci., 16, 1347–1366, https://doi.org/10.5194/os-16-1347-2020, https://doi.org/10.5194/os-16-1347-2020, 2020
Short summary
Short summary
We analyse the intraseasonal variability of the alongshore circulation off Peru in early 2017, this circulation is very important for the supply of nutrients to the upwelling regime. The causes of this variability and its impact on the biogeochemistry are investigated. The poleward flow is strengthened during the observed time period, likely by a downwelling coastal trapped wave. The stronger current causes an increase in nitrate and reduces the deficit of fixed nitrogen relative to phosphorus.
Ruifang C. Xie, Frédéric A. C. Le Moigne, Insa Rapp, Jan Lüdke, Beat Gasser, Marcus Dengler, Volker Liebetrau, and Eric P. Achterberg
Biogeosciences, 17, 4919–4936, https://doi.org/10.5194/bg-17-4919-2020, https://doi.org/10.5194/bg-17-4919-2020, 2020
Short summary
Short summary
Thorium-234 (234Th) is widely used to study carbon fluxes from the surface ocean to depth. But few studies stress the relevance of oceanic advection and diffusion on the downward 234Th fluxes in nearshore environments. Our study in offshore Peru showed strong temporal variations in both the importance of physical processes on 234Th flux estimates and the oceanic residence time of 234Th, whereas salinity-derived seawater 238U activities accounted for up to 40 % errors in 234Th flux estimates.
Lennart Thomas Bach, Allanah Joy Paul, Tim Boxhammer, Elisabeth von der Esch, Michelle Graco, Kai Georg Schulz, Eric Achterberg, Paulina Aguayo, Javier Arístegui, Patrizia Ayón, Isabel Baños, Avy Bernales, Anne Sophie Boegeholz, Francisco Chavez, Gabriela Chavez, Shao-Min Chen, Kristin Doering, Alba Filella, Martin Fischer, Patricia Grasse, Mathias Haunost, Jan Hennke, Nauzet Hernández-Hernández, Mark Hopwood, Maricarmen Igarza, Verena Kalter, Leila Kittu, Peter Kohnert, Jesus Ledesma, Christian Lieberum, Silke Lischka, Carolin Löscher, Andrea Ludwig, Ursula Mendoza, Jana Meyer, Judith Meyer, Fabrizio Minutolo, Joaquin Ortiz Cortes, Jonna Piiparinen, Claudia Sforna, Kristian Spilling, Sonia Sanchez, Carsten Spisla, Michael Sswat, Mabel Zavala Moreira, and Ulf Riebesell
Biogeosciences, 17, 4831–4852, https://doi.org/10.5194/bg-17-4831-2020, https://doi.org/10.5194/bg-17-4831-2020, 2020
Short summary
Short summary
The eastern boundary upwelling system off Peru is among Earth's most productive ocean ecosystems, but the factors that control its functioning are poorly constrained. Here we used mesocosms, moored ~ 6 km offshore Peru, to investigate how processes in plankton communities drive key biogeochemical processes. We show that nutrient and light co-limitation keep productivity and export at a remarkably constant level while stoichiometry changes strongly with shifts in plankton community structure.
Anna Plass, Christian Schlosser, Stefan Sommer, Andrew W. Dale, Eric P. Achterberg, and Florian Scholz
Biogeosciences, 17, 3685–3704, https://doi.org/10.5194/bg-17-3685-2020, https://doi.org/10.5194/bg-17-3685-2020, 2020
Short summary
Short summary
We compare the cycling of Fe and Cd in sulfidic sediments of the Peruvian oxygen minimum zone. Due to the contrasting solubility of their sulfide minerals, the sedimentary Fe release and Cd burial fluxes covary with spatial and temporal distributions of H2S. Depending on the solubility of their sulfide minerals, sedimentary trace metal fluxes will respond differently to ocean deoxygenation/expansion of H2S concentrations, which may change trace metal stoichiometry of upwelling water masses.
Mark J. Hopwood, Dustin Carroll, Thorben Dunse, Andy Hodson, Johnna M. Holding, José L. Iriarte, Sofia Ribeiro, Eric P. Achterberg, Carolina Cantoni, Daniel F. Carlson, Melissa Chierici, Jennifer S. Clarke, Stefano Cozzi, Agneta Fransson, Thomas Juul-Pedersen, Mie H. S. Winding, and Lorenz Meire
The Cryosphere, 14, 1347–1383, https://doi.org/10.5194/tc-14-1347-2020, https://doi.org/10.5194/tc-14-1347-2020, 2020
Short summary
Short summary
Here we compare and contrast results from five well-studied Arctic field sites in order to understand how glaciers affect marine biogeochemistry and marine primary production. The key questions are listed as follows. Where and when does glacial freshwater discharge promote or reduce marine primary production? How does spatio-temporal variability in glacial discharge affect marine primary production? And how far-reaching are the effects of glacial discharge on marine biogeochemistry?
Claudia Frey, Hermann W. Bange, Eric P. Achterberg, Amal Jayakumar, Carolin R. Löscher, Damian L. Arévalo-Martínez, Elizabeth León-Palmero, Mingshuang Sun, Xin Sun, Ruifang C. Xie, Sergey Oleynik, and Bess B. Ward
Biogeosciences, 17, 2263–2287, https://doi.org/10.5194/bg-17-2263-2020, https://doi.org/10.5194/bg-17-2263-2020, 2020
Short summary
Short summary
The production of N2O via nitrification and denitrification associated with low-O2 waters is a major source of oceanic N2O. We investigated the regulation and dynamics of these processes with respect to O2 and organic matter inputs. The transcription of the key nitrification gene amoA rapidly responded to changes in O2 and strongly correlated with N2O production rates. N2O production by denitrification was clearly stimulated by organic carbon, implying that its supply controls N2O production.
Mark J. Hopwood, Nicolas Sanchez, Despo Polyviou, Øystein Leiknes, Julián Alberto Gallego-Urrea, Eric P. Achterberg, Murat V. Ardelan, Javier Aristegui, Lennart Bach, Sengul Besiktepe, Yohann Heriot, Ioanna Kalantzi, Tuba Terbıyık Kurt, Ioulia Santi, Tatiana M. Tsagaraki, and David Turner
Biogeosciences, 17, 1309–1326, https://doi.org/10.5194/bg-17-1309-2020, https://doi.org/10.5194/bg-17-1309-2020, 2020
Short summary
Short summary
Hydrogen peroxide, H2O2, is formed naturally in sunlight-exposed water by photochemistry. At high concentrations it is undesirable to biological cells because it is a stressor. Here, across a range of incubation experiments in diverse marine environments (Gran Canaria, the Mediterranean, Patagonia and Svalbard), we determine that two factors consistently affect the H2O2 concentrations irrespective of geographical location: bacteria abundance and experiment design.
Mark J. Hopwood, Carolina Santana-González, Julian Gallego-Urrea, Nicolas Sanchez, Eric P. Achterberg, Murat V. Ardelan, Martha Gledhill, Melchor González-Dávila, Linn Hoffmann, Øystein Leiknes, Juana Magdalena Santana-Casiano, Tatiana M. Tsagaraki, and David Turner
Biogeosciences, 17, 1327–1342, https://doi.org/10.5194/bg-17-1327-2020, https://doi.org/10.5194/bg-17-1327-2020, 2020
Short summary
Short summary
Fe is an essential micronutrient. Fe(III)-organic species are thought to account for > 99 % of dissolved Fe in seawater. Here we quantified Fe(II) during experiments in Svalbard, Gran Canaria, and Patagonia. Fe(II) was always a measurable fraction of dissolved Fe up to 65 %. Furthermore, when Fe(II) was allowed to decay in the dark, it remained present longer than predicted by kinetic equations, suggesting that Fe(II) is a more important fraction of dissolved Fe in seawater than widely recognized.
Insa Rapp, Christian Schlosser, Jan-Lukas Menzel Barraqueta, Bernhard Wenzel, Jan Lüdke, Jan Scholten, Beat Gasser, Patrick Reichert, Martha Gledhill, Marcus Dengler, and Eric P. Achterberg
Biogeosciences, 16, 4157–4182, https://doi.org/10.5194/bg-16-4157-2019, https://doi.org/10.5194/bg-16-4157-2019, 2019
Short summary
Short summary
The availability of iron (Fe) affects phytoplankton growth in large parts of the ocean. Shelf sediments, particularly in oxygen minimum zones, are a major source of Fe and other essential micronutrients, such as cobalt (Co) and manganese (Mn). We observed enhanced concentrations of Fe, Co, and Mn corresponding with low oxygen concentrations along the Mauritanian shelf, indicating that the projected future decrease in oxygen concentrations may result in increases in Fe, Mn, and Co concentrations.
Robyn E. Tuerena, Raja S. Ganeshram, Matthew P. Humphreys, Thomas J. Browning, Heather Bouman, and Alexander P. Piotrowski
Biogeosciences, 16, 3621–3635, https://doi.org/10.5194/bg-16-3621-2019, https://doi.org/10.5194/bg-16-3621-2019, 2019
Short summary
Short summary
The carbon isotopes in algae can be used to predict food sources and environmental change. We explore how dissolved carbon is taken up by algae in the South Atlantic Ocean and how this affects their carbon isotope signature. We find that cell size controls isotope fractionation. We use our results to investigate how climate change may impact the carbon isotopes in algae. We suggest a shift to smaller algae in this region would decrease the carbon isotope ratio at the base of the food web.
Jan-Lukas Menzel Barraqueta, Jessica K. Klar, Martha Gledhill, Christian Schlosser, Rachel Shelley, Hélène F. Planquette, Bernhard Wenzel, Geraldine Sarthou, and Eric P. Achterberg
Biogeosciences, 16, 1525–1542, https://doi.org/10.5194/bg-16-1525-2019, https://doi.org/10.5194/bg-16-1525-2019, 2019
Short summary
Short summary
We used surface water dissolved aluminium concentrations collected in four different GEOTRACES cruises to determine atmospheric deposition fluxes to the ocean. We calculate atmospheric deposition fluxes for largely under-sampled regions of the Atlantic Ocean and thus provide new constraints for models of atmospheric deposition. The use of the MADCOW model is of major importance as dissolved aluminium is analysed within the GEOTRACES project at high spatial resolution.
Géraldine Sarthou, Pascale Lherminier, Eric P. Achterberg, Fernando Alonso-Pérez, Eva Bucciarelli, Julia Boutorh, Vincent Bouvier, Edward A. Boyle, Pierre Branellec, Lidia I. Carracedo, Nuria Casacuberta, Maxi Castrillejo, Marie Cheize, Leonardo Contreira Pereira, Daniel Cossa, Nathalie Daniault, Emmanuel De Saint-Léger, Frank Dehairs, Feifei Deng, Floriane Desprez de Gésincourt, Jérémy Devesa, Lorna Foliot, Debany Fonseca-Batista, Morgane Gallinari, Maribel I. García-Ibáñez, Arthur Gourain, Emilie Grossteffan, Michel Hamon, Lars Eric Heimbürger, Gideon M. Henderson, Catherine Jeandel, Catherine Kermabon, François Lacan, Philippe Le Bot, Manon Le Goff, Emilie Le Roy, Alison Lefèbvre, Stéphane Leizour, Nolwenn Lemaitre, Pere Masqué, Olivier Ménage, Jan-Lukas Menzel Barraqueta, Herlé Mercier, Fabien Perault, Fiz F. Pérez, Hélène F. Planquette, Frédéric Planchon, Arnout Roukaerts, Virginie Sanial, Raphaëlle Sauzède, Catherine Schmechtig, Rachel U. Shelley, Gillian Stewart, Jill N. Sutton, Yi Tang, Nadine Tisnérat-Laborde, Manon Tonnard, Paul Tréguer, Pieter van Beek, Cheryl M. Zurbrick, and Patricia Zunino
Biogeosciences, 15, 7097–7109, https://doi.org/10.5194/bg-15-7097-2018, https://doi.org/10.5194/bg-15-7097-2018, 2018
Short summary
Short summary
The GEOVIDE cruise (GEOTRACES Section GA01) was conducted in the North Atlantic Ocean and Labrador Sea in May–June 2014. In this special issue, results from GEOVIDE, including physical oceanography and trace element and isotope cyclings, are presented among 17 articles. Here, the scientific context, project objectives, and scientific strategy of GEOVIDE are provided, along with an overview of the main results from the articles published in the special issue.
Jan-Lukas Menzel Barraqueta, Christian Schlosser, Hélène Planquette, Arthur Gourain, Marie Cheize, Julia Boutorh, Rachel Shelley, Leonardo Contreira Pereira, Martha Gledhill, Mark J. Hopwood, François Lacan, Pascale Lherminier, Geraldine Sarthou, and Eric P. Achterberg
Biogeosciences, 15, 5271–5286, https://doi.org/10.5194/bg-15-5271-2018, https://doi.org/10.5194/bg-15-5271-2018, 2018
Short summary
Short summary
In the North Atlantic and Labrador Sea, low aerosol deposition and enhanced primary productivity control the dissolved aluminium (dAl) surface distribution, while remineralization of particles seems to control the distribution at depth. DAl in the ocean allows us to indirectly quantify the amount of dust deposited to a given region for a given period. Hence, the study of its distribution, cycling, sources, and sinks is of major importance to improve aerosol deposition models and climate models.
Christian Schlosser, Katrin Schmidt, Alfred Aquilina, William B. Homoky, Maxi Castrillejo, Rachel A. Mills, Matthew D. Patey, Sophie Fielding, Angus Atkinson, and Eric P. Achterberg
Biogeosciences, 15, 4973–4993, https://doi.org/10.5194/bg-15-4973-2018, https://doi.org/10.5194/bg-15-4973-2018, 2018
Short summary
Short summary
Iron (Fe) emanating from the South Georgia shelf system fuels large phytoplankton blooms downstream of the island. However, the actual supply mechanisms of Fe are unclear. We found that shelf-sediment-derived iron and iron released from Antarctic krill control the Fe distribution in the shelf waters around South Georgia. The majority of the Fe appears to be derived from recycling of Fe-enriched particles that are transported with the water masses into the bloom region.
Peter von Dassow, Francisco Díaz-Rosas, El Mahdi Bendif, Juan-Diego Gaitán-Espitia, Daniella Mella-Flores, Sebastian Rokitta, Uwe John, and Rodrigo Torres
Biogeosciences, 15, 1515–1534, https://doi.org/10.5194/bg-15-1515-2018, https://doi.org/10.5194/bg-15-1515-2018, 2018
Short summary
Short summary
Coccolithophores are microalgae which produce much of the calcium carbonate in the ocean, important to making organic carbon sink to great depths, and they may be negatively affected by the decline in ocean pH as CO2 rises. Can these important microbes adapt? This study found that coccolithophores inhabiting waters naturally low in pH may have already reached the limit of their ability to adapt. This suggests that how the ocean's biota sequester carbon will be strongly affected in the future.
Thomas Hornick, Lennart T. Bach, Katharine J. Crawfurd, Kristian Spilling, Eric P. Achterberg, Jason N. Woodhouse, Kai G. Schulz, Corina P. D. Brussaard, Ulf Riebesell, and Hans-Peter Grossart
Biogeosciences, 14, 1–15, https://doi.org/10.5194/bg-14-1-2017, https://doi.org/10.5194/bg-14-1-2017, 2017
Kristian Spilling, Kai G. Schulz, Allanah J. Paul, Tim Boxhammer, Eric P. Achterberg, Thomas Hornick, Silke Lischka, Annegret Stuhr, Rafael Bermúdez, Jan Czerny, Kate Crawfurd, Corina P. D. Brussaard, Hans-Peter Grossart, and Ulf Riebesell
Biogeosciences, 13, 6081–6093, https://doi.org/10.5194/bg-13-6081-2016, https://doi.org/10.5194/bg-13-6081-2016, 2016
Short summary
Short summary
We performed an experiment in the Baltic Sea in order to investigate the consequences of the increasing CO2 levels on biological processes in the free water mass. There was more accumulation of organic carbon at high CO2 levels. Surprisingly, this was caused by reduced loss processes (respiration and bacterial production) in a high-CO2 environment, and not by increased photosynthetic fixation of CO2. Our carbon budget can be used to better disentangle the effects of ocean acidification.
Allanah J. Paul, Eric P. Achterberg, Lennart T. Bach, Tim Boxhammer, Jan Czerny, Mathias Haunost, Kai-Georg Schulz, Annegret Stuhr, and Ulf Riebesell
Biogeosciences, 13, 3901–3913, https://doi.org/10.5194/bg-13-3901-2016, https://doi.org/10.5194/bg-13-3901-2016, 2016
Matthew P. Humphreys, Florence M. Greatrix, Eithne Tynan, Eric P. Achterberg, Alex M. Griffiths, Claudia H. Fry, Rebecca Garley, Alison McDonald, and Adrian J. Boyce
Earth Syst. Sci. Data, 8, 221–233, https://doi.org/10.5194/essd-8-221-2016, https://doi.org/10.5194/essd-8-221-2016, 2016
Short summary
Short summary
This paper reports the stable isotope composition of dissolved inorganic carbon in seawater for a transect from west to east across the North Atlantic Ocean. The results can be used to study oceanic uptake of anthropogenic carbon dioxide, and also to investigate the natural biological carbon pump. We also provide stable DIC isotope results for two batches of Dickson seawater CRMs to enable intercomparisons with other studies.
Monika Nausch, Lennart Thomas Bach, Jan Czerny, Josephine Goldstein, Hans-Peter Grossart, Dana Hellemann, Thomas Hornick, Eric Pieter Achterberg, Kai-Georg Schulz, and Ulf Riebesell
Biogeosciences, 13, 3035–3050, https://doi.org/10.5194/bg-13-3035-2016, https://doi.org/10.5194/bg-13-3035-2016, 2016
Short summary
Short summary
Studies investigating the effect of increasing CO2 levels on the phosphorus cycle in natural waters are lacking although phosphorus often controls phytoplankton development in aquatic systems. The aim of our study was to analyse effects of elevated CO2 levels on phosphorus pool sizes and uptake. Therefore, we conducted a CO2-manipulation mesocosm experiment in the Storfjärden (western Gulf of Finland, Baltic Sea) in summer 2012. We compared the phosphorus dynamics in different mesocosm treatment
A. J. Paul, L. T. Bach, K.-G. Schulz, T. Boxhammer, J. Czerny, E. P. Achterberg, D. Hellemann, Y. Trense, M. Nausch, M. Sswat, and U. Riebesell
Biogeosciences, 12, 6181–6203, https://doi.org/10.5194/bg-12-6181-2015, https://doi.org/10.5194/bg-12-6181-2015, 2015
Y. Zhang, N. Mahowald, R. A. Scanza, E. Journet, K. Desboeufs, S. Albani, J. F. Kok, G. Zhuang, Y. Chen, D. D. Cohen, A. Paytan, M. D. Patey, E. P. Achterberg, J. P. Engelbrecht, and K. W. Fomba
Biogeosciences, 12, 5771–5792, https://doi.org/10.5194/bg-12-5771-2015, https://doi.org/10.5194/bg-12-5771-2015, 2015
Short summary
Short summary
A new technique to determine a size-fractionated global soil elemental emission inventory based on a global soil and mineralogical data set is introduced. Spatial variability of mineral dust elemental fractions (8 elements, e.g., Ca, Fe, Al) is identified on a global scale, particularly for Ca. The Ca/Al ratio ranged between 0.1 and 5.0 and is confirmed as an indicator of dust source regions by a global dust model. Total and soluble dust element fluxes into different ocean basins are estimated.
M. P. Humphreys, E. P. Achterberg, A. M. Griffiths, A. McDonald, and A. J. Boyce
Earth Syst. Sci. Data, 7, 127–135, https://doi.org/10.5194/essd-7-127-2015, https://doi.org/10.5194/essd-7-127-2015, 2015
Short summary
Short summary
We present measurements of the stable carbon isotope composition of seawater dissolved inorganic carbon. The samples were collected during two research cruises in boreal summer 2012 in the northeastern Atlantic and Nordic Seas. The results can be used to investigate the marine carbon cycle, providing information about biological productivity and oceanic uptake of anthropogenic carbon dioxide.
Cited articles
Achterberg, E., Moore, C. M., Henson, S. A., Steigenberger, S., Stohl, A.,
Eckhardt, S., Avendano, L. C., Cassidy, M., Hembury, D., Klar, J. K., Lucas,
M. I., MacEy, A. I., Marsay, C. M., and Ryan-Keogh, T. J.: Natural iron
fertilization by the Eyjafjallajokull volcanic eruption, Geophys. Res.
Lett., 40, 921–926, https://doi.org/10.1002/grl.50221, 2013.
Ahumada, R., Rudolph, A., Gonzalez, E., Fones, G., Saldias, G., and Ahumada
Rudolph, R.: Dissolved trace metals in the water column of Reloncavi Fjord,
Chile, Lat. Am. J. Aquat. Res., 39, 567–574,
2011.
Ayris, P. and Delmelle, P.: Volcanic and atmospheric controls on ash iron
solubility: A review, Phys. Chem. Earth, 45/46, 103–112, https://doi.org/10.1016/j.pce.2011.04.013,
2012.
Baker, A. R. and Croot, P. L.: Atmospheric and marine controls on aerosol
iron solubility in seawater, Mar. Chem., 120, 4–13,
https://doi.org/10.1016/j.marchem.2008.09.003, 2010.
Balseiro, E., Souza, M. S., Olabuenaga, I. S., Wolinski, L., Navarro, M. B.,
Laspoumaderes, C., and Modenutti, B.: Effect of the Puyehue-Cordon Caulle
volcanic complex eruption on crustacean zooplankton of Andean Lakes, Ecol.
Austral., 24, 75–82, 2014.
Bonnet, S., Guieu, C., Bruyant, F., Prášil, O., Van Wambeke, F., Raimbault, P., Moutin, T., Grob, C., Gorbunov, M. Y., Zehr, J. P., Masquelier, S. M., Garczarek, L., and Claustre, H.: Nutrient limitation of primary productivity in the Southeast Pacific (BIOSOPE cruise), Biogeosciences, 5, 215–225, https://doi.org/10.5194/bg-5-215-2008, 2008.
Boyle, E. A., Edmond, J. M., and Sholkovitz, E. R.: Mechanism of iron removal
in estuaries, Geochim. Cosmochim. Ac., 41, 1313–1324,
https://doi.org/10.1016/0016-7037(77)90075-8, 1977.
Browning, T. J., Bouman, H. A., Henderson, G. M., Mather, T. A., Pyle, D.
M., Schlosser, C., Woodward, E. M. S., and Moore, C. M.: Strong responses of
Southern Ocean phytoplankton communities to volcanic ash, Geophys. Res.
Lett., 41, 2851–2857, https://doi.org/10.1002/2014GL059364, 2014.
Browning, T. J., Stone, K., Bouman, H., Mather, T. A., Pyle, D. M., Moore,
M., and Martinez-Vicente, V.: Volcanic ash supply to the surface ocean –
remote sensing of biological responses and their wider biogeochemical
significance, Front. Mar. Sci., 2, https://doi.org/10.3389/fmars.2015.00014, 2015.
Brzezinski, M. A.: The Si:C:N ratio of marine diatoms: interspecific
variability and the effect of some environmental variables, J. Phycol.,
21, 347–357, https://doi.org/10.1111/j.0022-3646.1985.00347.x, 1985.
Buck, C. S., Landing, W. M., and Resing, J.: Pacific Ocean aerosols:
Deposition and solubility of iron, aluminum, and other trace elements, Mar.
Chem., 157, 117–130, https://doi.org/10.1016/j.marchem.2013.09.005, 2013.
Cáceres, M., Valle-Levinson, A., Sepúlveda, H. H., and Holderied, K.:
Transverse variability of flow and density in a Chilean fjord,
Cont. Shelf Res., 22, 1683–1698, https://doi.org/10.1016/S0278-4343(02)00032-8, 2002.
Castillo, M. I., Cifuentes, U., Pizarro, O., Djurfeldt, L., and Caceres, M.: Seasonal hydrography and surface outflow in a fjord with a deep sill: the Reloncaví fjord, Chile, Ocean Sci., 12, 533–544, https://doi.org/10.5194/os-12-533-2016, 2016.
DeGrandpre, M. D., Hammar, T. R., Smith, S. P., and Sayles, F. L.: In situ
measurements of seawater pCO2, Limnol. Oceanogr., 40, 969–975,
https://doi.org/10.4319/lo.1995.40.5.0969, 1995.
DeGrandpre, M. D., Baehr, M. M., and Hammar, T. R.: Calibration-free optical
chemical sensors, Anal. Chem., 71, 1152–1159, https://doi.org/10.1021/ac9805955,
1999.
Delmelle, P., Lambert, M., Dufrêne, Y., Gerin, P., and Óskarsson, N.:
Gas/aerosol-ash interaction in volcanic plumes: New insights from surface
analyses of fine ash particles, Earth Planet. Sci. Lett., 259, 159–170,
https://doi.org/10.1016/j.epsl.2007.04.052, 2007.
Duggen, S., Croot, P., Schacht, U., and Hoffmann, L.: Subduction zone
volcanic ash can fertilize the surface ocean and stimulate phytoplankton
growth: Evidence from biogeochemical experiments and satellite data,
Geophys. Res. Lett., 34, L01612, https://doi.org/10.1029/2006GL027522, 2007.
Duggen, S., Olgun, N., Croot, P., Hoffmann, L., Dietze, H., Delmelle, P., and Teschner, C.: The role of airborne volcanic ash for the surface ocean biogeochemical iron-cycle: a review, Biogeosciences, 7, 827–844, https://doi.org/10.5194/bg-7-827-2010, 2010.
Ermolin, M. S., Fedotov, P. S., Malik, N. A., and Karandashev, V. K.:
Nanoparticles of volcanic ash as a carrier for toxic elements on the global
scale, Chemosphere, 200, 16–22, https://doi.org/10.1016/j.chemosphere.2018.02.089,
2018.
Frogner, P., Gislason, S. R., and Oskarsson, N.: Fertilizing potential of
volcanic ash in ocean surface water, Geology, 29, 487–490,
https://doi.org/10.1130/0091-7613(2001)029<0487:fpovai>2.0.co;2,
2001.
Gledhill, M. and Buck, K. N.: The organic complexation of iron in the marine
environment: a review, Front. Microbiol., 3, 69,
https://doi.org/10.3389/fmicb.2012.00069, 2012.
González, H. E., Calderón, M. J., Castro, L., Clement, A., Cuevas,
L. A., Daneri, G., Iriarte, J. L., Lizárraga, L., Martínez, R.,
Menschel, E., Silva, N., Carrasco, C., Valenzuela, C., Vargas, C. A., and
Molinet, C.: Primary production and plankton dynamics in the Reloncaví
Fjord and the Interior Sea of Chiloé, Northern Patagonia, Chile, Mar.
Ecol. Prog. Ser., 402, 13–30, 2010.
Hamme, R. C., Webley, P. W., Crawford, W. R., Whitney, F. A., Degrandpre, M.
D., Emerson, S. R., Eriksen, C. C., Giesbrecht, K. E., Gower, J. F. R.,
Kavanaugh, M. T., Pea, M. A., Sabine, C. L., Batten, S. D., Coogan, L. A.,
Grundle, D. S., and Lockwood, D.: Volcanic ash fuels anomalous plankton bloom
in subarctic northeast Pacific, Geophys. Res. Lett., 37, L19604,
https://doi.org/10.1029/2010GL044629, 2010.
Haraldsson, C., Anderson, L. G., Hassellöv, M., Hulth, S., and Olsson,
K.: Rapid, high-precision potentiometric titration of alkalinity in ocean
and sediment pore waters, Deep Sea Res. Pt. I, 44,
2031–2044, https://doi.org/10.1016/S0967-0637(97)00088-5, 1997.
Hasle, G. R.: The inverted-microscope method, in: Phytoplankton manual, UNESCO, Paris, France,
1978.
Hoffmann, L. J., Breitbarth, E., Ardelan, M. V., Duggen, S., Olgun, N.,
Hassellöv, M., and Wängberg, S.-Å.: Influence of trace metal
release from volcanic ash on growth of Thalassiosira pseudonana and
Emiliania huxleyi, Mar. Chem., 132/133, 28–33,
https://doi.org/10.1016/j.marchem.2012.02.003, 2012.
Hopwood, M. J., Santana-González, C., Gallego-Urrea, J., Sanchez, N., Achterberg, E. P., Ardelan, M. V., Gledhill, M., González-Dávila, M., Hoffmann, L., Leiknes, Ø., Santana-Casiano, J. M., Tsagaraki, T. M., and Turner, D.: Fe(II) stability in coastal seawater during experiments in Patagonia, Svalbard, and Gran Canaria, Biogeosciences, 17, 1327–1342, https://doi.org/10.5194/bg-17-1327-2020, 2020.
Horwell, C. J., Fenoglio, I., Vala Ragnarsdottir, K., Sparks, R. S. J., and
Fubini, B.: Surface reactivity of volcanic ash from the eruption of
Soufrière Hills volcano, Montserrat, West Indies with implications for
health hazards, Environ. Res., 93, 202–215,
https://doi.org/10.1016/S0013-9351(03)00044-6, 2003.
Hoshyaripour, G. A., Hort, M., and Langmann, B.: Ash iron mobilization through physicochemical processing in volcanic eruption plumes: a numerical modeling approach, Atmos. Chem. Phys., 15, 9361–9379, https://doi.org/10.5194/acp-15-9361-2015, 2015.
Hu, C., Lee, Z., and Franz, B.: Chlorophyll aalgorithms for oligotrophic
oceans: A novel approach based on three-band reflectance difference, J.
Geophys. Res.-Oceans, 117, C01011, https://doi.org/10.1029/2011JC007395, 2012.
Iriarte, J. L., González, H. E., Liu, K. K., Rivas, C., and Valenzuela,
C.: Spatial and temporal variability of chlorophyll and primary productivity
in surface waters of southern Chile (41.5–43°S), Estuar. Coast.
Shelf Sci., 74, 471–480, https://doi.org/10.1016/j.ecss.2007.05.015, 2007.
Jones, M. T. and Gislason, S. R.: Rapid releases of metal salts and
nutrients following the deposition of volcanic ash into aqueous
environments, Geochim. Cosmochim. Ac., 72, 3661–3680,
https://doi.org/10.1016/j.gca.2008.05.030, 2008.
Jones, M. R., Nightingale, P. D., Turner, S. M., and Liss, P. S.: Adaptation
of a load-inject valve for a flow injection chemiluminescence system
enabling dual-reagent injection enhances understanding of environmental
Fenton chemistry, Anal. Chim. Acta, 796, 55–60,
https://doi.org/10.1016/j.aca.2013.08.003, 2013.
Labbé-Ibáñez, P., Iriarte, J. L., and Pantoja, S.: Respuesta del
microfitoplancton a la adición de nitrato y ácido silícico en
fiordos de la Patagonia chilena, Lat. Am. J. Aquat. Res., 43, 80–93,
https://doi.org/10.3856/vol43-issue1-fulltext-8, 2015.
Langmann, B., Zakšek, K., Hort, M., and Duggen, S.: Volcanic ash as fertiliser for the surface ocean, Atmos. Chem. Phys., 10, 3891–3899, https://doi.org/10.5194/acp-10-3891-2010, 2010.
León-Muñoz, J., Marcé, R., and Iriarte, J. L.: Influence of
hydrological regime of an Andean river on salinity, temperature and oxygen
in a Patagonia fjord, Chile, New Zeal. J. Mar. Freshw. Res., 47,
515–528, https://doi.org/10.1080/00288330.2013.802700, 2013.
León-Muñoz, J., Urbina, M. A., Garreaud, R., and Iriarte, J. L.:
Hydroclimatic conditions trigger record harmful algal bloom in western
Patagonia (summer 2016), Sci. Rep., 8, 1330,
https://doi.org/10.1038/s41598-018-19461-4, 2018.
Lin, I. I., Hu, C., Li, Y. H., Ho, T. Y., Fischer, T. P., Wong, G. T. F.,
Wu, J., Huang, C. W., Chu, D. A., Ko, D. S., and Chen, J. P.: Fertilization
potential of volcanic dust in the low-nutrient low-chlorophyll western North
Pacific subtropical gyre: Satellite evidence and laboratory study, Global
Biogeochem. Cy., 25, GB1006, https://doi.org/10.1029/2009GB003758, 2011.
López-Escobar, L., Parada, M. A., Hickey-Vargas, R., Frey, F. A.,
Kempton, P. D., and Moreno, H.: Calbuco Volcano and minor eruptive centers
distributed along the Liquiñe-Ofqui Fault Zone, Chile (41°–42°S): contrasting origin of andesitic and basaltic magma in
the Southern Volcanic Zone of the Andes, Contrib. Mineral. Petrol.,
119, 345–361, https://doi.org/10.1007/BF00286934, 1995.
Martin, J. H., Fitzwater, S. E., and Gordon, R. M.: Iron deficiency limits
phytoplankton growth in Antarctic waters, Global Biogeochem. Cy., 4,
5–12, 1990.
Maters, E. C., Delmelle, P., and Gunnlaugsson, H. P.: Controls on iron
mobilisation from volcanic ash at low pH: Insights from dissolution
experiments and Mössbauer spectroscopy, Chem. Geol., 449, 73–81,
https://doi.org/10.1016/j.chemgeo.2016.11.036, 2017.
Mélançon, J., Levasseur, M., Lizotte, M., Delmelle, P., Cullen, J.,
Hamme, R. C., Peña, A., Simpson, K. G., Scarratt, M., Tremblay, J.
É., Zhou, J., Johnson, K., Sutherland, N., Arychuk, M., Nemcek, N., and
Robert, M.: Early response of the northeast subarctic Pacific plankton
assemblage to volcanic ash fertilization, Limnol. Oceanogr., 59, 55–67,
https://doi.org/10.4319/lo.2014.59.1.0055, 2014.
Mendez, J., Guieu, C., and Adkins, J.: Atmospheric input of manganese and
iron to the ocean: Seawater dissolution experiments with Saharan and North
American dusts, Mar. Chem., 120, 34–43,
https://doi.org/10.1016/j.marchem.2008.08.006, 2010.
Millero, F. J., Sotolongo, S., and Izaguirre, M.: The oxidation-kinetics of
Fe(II) in seawater, Geochim. Cosmochim. Ac., 51, 793–801,
https://doi.org/10.1016/0016-7037(87)90093-7, 1987.
Molinet, C., Díaz, M., Marín, S. L., Astorga, M. P., Ojeda, M.,
Cares, L., and Asencio, E.: Relation of mussel spatfall on natural and
artificial substrates: Analysis of ecological implications ensuring
long-term success and sustainability for mussel farming, Aquaculture, 467,
211–218, https://doi.org/10.1016/j.aquaculture.2016.09.019, 2017.
Moore, C. M., Mills, M. M., Arrigo, K. R., Berman-Frank, I., Bopp, L., Boyd,
P. W., Galbraith, E. D., Geider, R. J., Guieu, C., Jaccard, S. L., Jickells,
T. D., La Roche, J., Lenton, T. M., Mahowald, N. M., Marañón, E.,
Marinov, I., Moore, J. K., Nakatsuka, T., Oschlies, A., Saito, M. A.,
Thingstad, T. F., Tsuda, A., and Ulloa, O.: Processes and patterns of oceanic
nutrient limitation, Nat. Geosci., 6, 701–710, https://doi.org/10.1038/ngeo1765, 2013.
Morton, P. L., Landing, W. M., Hsu, S. C., Milne, A., Aguilar-Islas, A. M.,
Baker, A. R., Bowie, A. R., Buck, C. S., Gao, Y., Gichuki, S., Hastings, M.
G., Hatta, M., Johansen, A. M., Losno, R., Mead, C., Patey, M. D., Swarr,
G., Vandermark, A., and Zamora, L. M.: Methods for the sampling and analysis
of marine aerosols: Results from the 2008 GEOTRACES aerosol intercalibration
experiment, Limnol. Oceanogr. Meth., 11, 62–78, https://doi.org/10.4319/lom.2013.11.62, 2013.
Mosley, L. M., Husheer, S. L. G., and Hunter, K. A.: Spectrophotometric pH
measurement in estuaries using thymol blue and m-cresol purple, Mar. Chem.,
91, 175–186, https://doi.org/10.1016/j.marchem.2004.06.008, 2004.
Newcomb, T. W. and Flagg, T. A.: Some effects of Mt. St. Helens volcanic ash
on juvenile salmon smolts, Mar. Fish. Rev., 45, 8–12, 1983.
Olgun, N., Duggen, S., Croot, P. L., Delmelle, P., Dietze, H., Schacht, U.,
Óskarsson, N., Siebe, C., Auer, A., and Garbe-Schönberg, D.: Surface
ocean iron fertilization: The role of airborne volcanic ash from subduction
zone and hot spot volcanoes and related iron fluxes into the Pacific Ocean,
Global Biogeochem. Cy., 25, GB4001, https://doi.org/10.1029/2009GB003761, 2011.
Olsson, J., Stipp, S. L. S., Dalby, K. N., and Gislason, S. R.: Rapid release
of metal salts and nutrients from the 2011 Grímsvötn, Iceland
volcanic ash, Geochim. Cosmochim. Ac., 123, 134–149, https://doi.org/10.1016/j.gca.2013.09.009, 2013.
Óskarsson, N.: The interaction between volcanic gases and tephra:
Fluorine adhering to tephra of the 1970 hekla eruption, J. Volcanol.
Geotherm. Res., 8, 251–266, https://doi.org/10.1016/0377-0273(80)90107-9, 1980.
R Core Team: R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/ (last access: 16 April 2021), 2020.
Rapp, I., Schlosser, C., Rusiecka, D., Gledhill, M., and Achterberg, E. P.:
Automated preconcentration of Fe, Zn, Cu, Ni, Cd, Pb, Co, and Mn in seawater
with analysis using high-resolution sector field inductively-coupled plasma
mass spectrometry, Anal. Chim. Acta, 976, 1–13,
https://doi.org/10.1016/j.aca.2017.05.008, 2017.
Reckziegel, F., Bustos, E., Mingari, L., Báez, W., Villarosa, G., Folch,
A., Collini, E., Viramonte, J., Romero, J., and Osores, S.: Forecasting
volcanic ash dispersal and coeval resuspension during the April–May 2015
Calbuco eruption, J. Volcanol. Geotherm. Res., 321, 44–57,
https://doi.org/10.1016/j.jvolgeores.2016.04.033, 2016.
Rogan, N., Achterberg, E. P., Le Moigne, F. A. C., Marsay, C. M., Tagliabue,
A., and Williams, R. G.: Volcanic ash as an oceanic iron source and sink,
Geophys. Res. Lett., 43, 2732–2740, https://doi.org/10.1002/2016GL067905, 2016.
Romero, J. E., Morgavi, D., Arzilli, F., Daga, R., Caselli, A., Reckziegel,
F., Viramonte, J., Díaz-Alvarado, J., Polacci, M., Burton, M., and
Perugini, D.: Eruption dynamics of the 22–23 April 2015 Calbuco Volcano
(Southern Chile): Analyses of tephra fall deposits, J. Volcanol. Geotherm.
Res., 317, 15–29, https://doi.org/10.1016/j.jvolgeores.2016.02.027, 2016.
Rubin, C. H., Noji, E. K., Seligman, P. J., Holtz, J. L., Grande, J., and
Vittani, F.: Evaluating a fluorosis hazard after a volcanic eruption, Arch.
Environ. Health, 49, 395–401, https://doi.org/10.1080/00039896.1994.9954992, 1994.
Sanchez, N., Bizsel, N., Iriarte, J. L., Olsen, L. M., and Ardelan, M. V.:
Iron cycling in a mesocosm experiment in a north Patagonian fjord: Potential
effect of ammonium addition by salmon aquaculture, Estuar. Coast. Shelf
Sci., 220, 209–219, https://doi.org/10.1016/j.ecss.2019.02.044, 2019.
Santana-Casiano, J. M., Gonzaalez-Davila, M., and Millero, F. J.: Oxidation
of nanomolar levels of Fe(II) with oxygen in natural waters, Environ. Sci.
Technol., 39, 2073–2079, https://doi.org/10.1021/es049748y, 2005.
Sarmiento, J. L.: Atmospheric CO2 stalled, Nature, 365, 697–698, https://doi.org/10.1038/365697a0,
1993.
Sarthou, G., Bucciarelli, E., Chever, F., Hansard, S. P., González-Dávila, M., Santana-Casiano, J. M., Planchon, F., and Speich, S.: Labile Fe(II) concentrations in the Atlantic sector of the Southern Ocean along a transect from the subtropical domain to the Weddell Sea Gyre, Biogeosciences, 8, 2461–2479, https://doi.org/10.5194/bg-8-2461-2011, 2011.
Seidel, M. P., DeGrandpre, M. D., and Dickson, A. G.: A sensor for in situ
indicator-based measurements of seawater pH, Mar. Chem., 109, 18–28,
https://doi.org/10.1016/j.marchem.2007.11.013, 2008.
Simonella, L. E., Palomeque, M. E., Croot, P. L., Stein, A., Kupczewski, M.,
Rosales, A., Montes, M. L., Colombo, F., García, M. G., Villarosa, G.,
and Gaiero, D. M.: Soluble iron inputs to the Southern Ocean through recent
andesitic to rhyolitic volcanic ash eruptions from the Patagonian Andes,
Global Biogeochem. Cy., 29, 1125–1144, https://doi.org/10.1002/2015GB005177,
2015.
Siringan, F. P., Racasa, E. D. R., David, C. P. C., and Saban, R. C.:
Increase in Dissolved Silica of Rivers Due to a Volcanic Eruption in an
Estuarine Bay (Sorsogon Bay, Philippines), Estuar. Coast., 41,
2277–2288, https://doi.org/10.1007/s12237-018-0428-1, 2018.
Stewart, C., Johnston, D. M., Leonard, G. S., Horwell, C. J., Thordarson, T.,
and Cronin, S. J.: Contamination of water supplies by volcanic ashfall: A
literature review and simple impact modelling, J. Volcanol. Geotherm. Res.,
158, 296–306, https://doi.org/10.1016/j.jvolgeores.2006.07.002, 2006.
Sunda, W. G., Buffle, J., and Van Leeuwen, H. P.: Bioavailability and
Bioaccumulation of Iron in the Sea, in: The Biogeochemistry of Iron in
Seawater, edited by: Turner, D. R. and Hunter, K. A., John Wiley and Sons, Chichester, USA, 41–84, 2001.
Torres, R. and Ampuero, P.: Strong CO2 outgassing from high nutrient low
chlorophyll coastal waters off central Chile (30°S): The role of
dissolved iron, Estuar. Coast. Shelf Sci., 83, 126–132,
https://doi.org/10.1016/j.ecss.2009.02.030, 2009.
Torres, O., Tanskanen, A., Veihelmann, B., Ahn, C., Braak, R., Bhartia, P.
K., Veefkind, P., and Levelt, P.: Aerosols and surface UV products form Ozone
Monitoring Instrument observations: An overview, J. Geophys. Res.-Atmos., 112, D24S47,
https://doi.org/10.1029/2007JD008809, 2007.
Torres, R., Silva, N., Reid, B., and Frangopulos, M.: Silicic acid enrichment
of subantarctic surface water from continental inputs along the Patagonian
archipelago interior sea (41-56°S), Prog. Oceanogr., 129, 50–61,
https://doi.org/10.1016/j.pocean.2014.09.008, 2014.
Utermöhl, H.: Zur vervollkommung der quantitativen phytoplankton methodik, Mitteilung Internationale Vereinigung für Theoretische und Amgewandte Limnologie, 9, 1–38, 1958.
Van Eaton, A. R., Amigo, Á., Bertin, D., Mastin, L. G., Giacosa, R. E.,
González, J., Valderrama, O., Fontijn, K., and Behnke, S. A.: Volcanic
lightning and plume behavior reveal evolving hazards during the April 2015
eruption of Calbuco volcano, Chile, Geophys. Res. Lett., 43, 3563–3571,
https://doi.org/10.1002/2016GL068076, 2016.
Vergara-Jara, M. J., DeGrandpre, M. D., Torres, R., Beatty, C. M., Cuevas,
L. A., Alarcón, E., and Iriarte, J. L.: Seasonal Changes in Carbonate
Saturation State and Air-Sea CO2 Fluxes During an Annual Cycle in a
Stratified-Temperate Fjord (Reloncaví Fjord, Chilean Patagonia), J.
Geophys. Res.-Biogeosci., 124, 2851–2865, https://doi.org/10.1029/2019JG005028,
2019.
Watson, A. J.: Volcanic iron, CO2, ocean productivity and climate, Nature,
385, 587–588,
https://doi.org/10.1038/385587b0, 1997.
Weinbauer, M. G., Guinot, B., Migon, C., Malfatti, F., and Mari, X.: Skyfall
– neglected roles of volcano ash and black carbon rich aerosols for
microbial plankton in the ocean, J. Plankton Res., 39, 187–198,
https://doi.org/10.1093/plankt/fbw100, 2017.
Welschmeyer, N. A.: Fluorometric analysis of chlorophyll a in the presence
of chlorophyll b and pheopigments, Limnol. Oceanogr., 39, 1985–1992,
https://doi.org/10.4319/lo.1994.39.8.1985, 1994.
Witham, C. S., Oppenheimer, C., and Horwell, C. J.: Volcanic ash-leachates: a
review and recommendations for sampling methods, J. Volcanol. Geotherm.
Res., 141, 299–326, https://doi.org/10.1016/j.jvolgeores.2004.11.010, 2005.
Wolinski, L., Laspoumaderes, C., Bastidas Navarro, M., Modenutti, B., and
Balseiro, E.: The susceptibility of cladocerans in North Andean Patagonian
lakes to volcanic ashes, Freshw. Biol., 58, 1878–1888,
https://doi.org/10.1111/fwb.12176, 2013.
Yevenes, M. A., Lagos, N. A., Farías, L., and Vargas, C. A.: Greenhouse
gases, nutrients and the carbonate system in the Reloncaví Fjord
(Northern Chilean Patagonia): Implications on aquaculture of the mussel,
Mytilus chilensis, during an episodic volcanic eruption, Sci. Total
Environ., 669, 49–61, https://doi.org/10.1016/j.scitotenv.2019.03.037, 2019.
Short summary
Ash from the Calbuco 2015 eruption spread across northern Patagonia, the SE Pacific and the SW Atlantic. In the Pacific, a phytoplankton bloom corresponded closely to the volcanic ash plume, suggesting that ash fertilized this region of the ocean. No such fertilization was found in the Atlantic where nutrients plausibly supplied by ash were likely already in excess of phytoplankton demand. In Patagonia, the May bloom was more intense than usual, but the mechanistic link to ash was less clear.
Ash from the Calbuco 2015 eruption spread across northern Patagonia, the SE Pacific and the SW...