Articles | Volume 17, issue 2
https://doi.org/10.5194/os-17-527-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-17-527-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Sensitive dependence of trajectories on tracer seeding positions – coherent structures in German Bight backward drift simulations
Institute of Carbon Cycles, Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, 21502 Geesthacht, Germany
Related authors
Onur Kerimoglu, Yoana G. Voynova, Fatemeh Chegini, Holger Brix, Ulrich Callies, Richard Hofmeister, Knut Klingbeil, Corinna Schrum, and Justus E. E. van Beusekom
Biogeosciences, 17, 5097–5127, https://doi.org/10.5194/bg-17-5097-2020, https://doi.org/10.5194/bg-17-5097-2020, 2020
Short summary
Short summary
In this study, using extensive field observations and a numerical model, we analyzed the physical and biogeochemical structure of a coastal system following an extreme flood event. Our results suggest that a number of anomalous observations were driven by a co-occurrence of peculiar meteorological conditions and increased riverine discharges. Our results call for attention to the combined effects of hydrological and meteorological extremes that are anticipated to increase in frequency.
Ulrich Callies, Ruben Carrasco, Jens Floeter, Jochen Horstmann, and Markus Quante
Ocean Sci., 15, 865–889, https://doi.org/10.5194/os-15-865-2019, https://doi.org/10.5194/os-15-865-2019, 2019
Short summary
Short summary
We analyse how surface drifters separate after being released as pairs or triplets in close proximity to wind farms. There is some tentative evidence that these drifters experience turbulent flows arising from an interaction between tidal currents and wind turbine towers. However, more comprehensive studies would be needed to clearly distinguish such wind-farm-related effects from the effects of turbulence that naturally occurs in a complex coastal environment.
Ulrich Callies, Nikolaus Groll, Jochen Horstmann, Hartmut Kapitza, Holger Klein, Silvia Maßmann, and Fabian Schwichtenberg
Ocean Sci., 13, 799–827, https://doi.org/10.5194/os-13-799-2017, https://doi.org/10.5194/os-13-799-2017, 2017
Short summary
Short summary
Six surface drifters were tracked in the inner German Bight for between 9 and 54 days. Corresponding simulations were conducted based on currents from two hydrodynamic models. Effects of including either a direct wind drag or simulated Stokes drift were similar during most of the time. Results suggest that main sources of simulation errors were inaccurate Eulerian currents and lacking representation of sub-grid-scale processes. Substantial model errors often occurred under low wind conditions.
Onur Kerimoglu, Yoana G. Voynova, Fatemeh Chegini, Holger Brix, Ulrich Callies, Richard Hofmeister, Knut Klingbeil, Corinna Schrum, and Justus E. E. van Beusekom
Biogeosciences, 17, 5097–5127, https://doi.org/10.5194/bg-17-5097-2020, https://doi.org/10.5194/bg-17-5097-2020, 2020
Short summary
Short summary
In this study, using extensive field observations and a numerical model, we analyzed the physical and biogeochemical structure of a coastal system following an extreme flood event. Our results suggest that a number of anomalous observations were driven by a co-occurrence of peculiar meteorological conditions and increased riverine discharges. Our results call for attention to the combined effects of hydrological and meteorological extremes that are anticipated to increase in frequency.
Ulrich Callies, Ruben Carrasco, Jens Floeter, Jochen Horstmann, and Markus Quante
Ocean Sci., 15, 865–889, https://doi.org/10.5194/os-15-865-2019, https://doi.org/10.5194/os-15-865-2019, 2019
Short summary
Short summary
We analyse how surface drifters separate after being released as pairs or triplets in close proximity to wind farms. There is some tentative evidence that these drifters experience turbulent flows arising from an interaction between tidal currents and wind turbine towers. However, more comprehensive studies would be needed to clearly distinguish such wind-farm-related effects from the effects of turbulence that naturally occurs in a complex coastal environment.
Ulrich Callies, Nikolaus Groll, Jochen Horstmann, Hartmut Kapitza, Holger Klein, Silvia Maßmann, and Fabian Schwichtenberg
Ocean Sci., 13, 799–827, https://doi.org/10.5194/os-13-799-2017, https://doi.org/10.5194/os-13-799-2017, 2017
Short summary
Short summary
Six surface drifters were tracked in the inner German Bight for between 9 and 54 days. Corresponding simulations were conducted based on currents from two hydrodynamic models. Effects of including either a direct wind drag or simulated Stokes drift were similar during most of the time. Results suggest that main sources of simulation errors were inaccurate Eulerian currents and lacking representation of sub-grid-scale processes. Substantial model errors often occurred under low wind conditions.
Cited articles
Aurell, E., Boffetta, G., Crisanti, A., Palatin, G., and Vulpiani, A.: Growth
of noninfinitesimal perturbations in turbulence, Phys. Rev. Lett., 77,
1262–1265, https://doi.org/10.1103/PhysRevLett.77.1262, 1996. a
Aurell, E., Boffetta, G., Crisanti, A., Palatin, G., and Vulpiani, A.:
Predictability in the large: an extension of the concept of Lyapunov
exponent, J. Phys. A, 30, 1–26, https://doi.org/10.1088/0305-4470/30/1/003, 1997. a
Baschek, B., Schroeder, F., Brix, H., Riethmüller, R., Badewien, T. H.,
Breitbach, G., Brügge, B., Colijn, F., Doerffer, R., Eschenbach, C.,
Friedrich, J., Fischer, P., Garthe, S., Horstmann, J., Krasemann, H.,
Metfies, K., Merckelbach, L., Ohle, N., Petersen, W., Pröfrock, D.,
Röttgers, R., Schlüter, M., Schulz, J., Schulz-Stellenfleth, J., Stanev,
E., Staneva, J., Winter, C., Wirtz, K., Wollschläger, J., Zielinski, O.,
and Ziemer, F.: The Coastal Observing System for Northern and Arctic Seas
(COSYNA), Ocean Sci., 13, 379–410, https://doi.org/10.5194/os-13-379-2017, 2017. a
Beron-Vera, F. J., Olascoaga, M. J., Haller, G., Farazmand, M., Triñanes,
J., and Wang, Y.: Dissipative inertial transport patterns near coherent
Lagrangian eddies in the ocean, Chaos, 25, 087412,
https://doi.org/10.1063/1.4928693, 2015. a
Breivik, Ø., Allen, A. A., Maisondieu, C., and Olagon, M.: Advances in
search and rescue at sea, Ocean Dynam., 63, 83–88,
https://doi.org/10.1007/s10236-012-0581-1, 2013.
a
Budéus, G.: Frontal variability in the German Bight, Sci. Mar., 53,
175–185, 1989. a
Callies, U., Plüß, A., Kappenberg, J., and Kapitza, H.: Particle
tracking in the vicinity of Helgoland, North Sea: A model comparison,
Ocean Dynam., 61, 2121–2139, https://doi.org/10.1007/s10236-011-0474-8, 2011. a, b, c
Callies, U., Gaslikova, L., Kapitza, H., and Scharfe, M.: German Bight
residual current variability on a daily basis: principal components of
multi-decadal barotropic simulations, Geo.-Mar. Lett., 37, 151–162,
https://doi.org/10.1007/s00367-016-0466-2, 2017a. a, b
Callies, U., Groll, N., Horstmann, J., Kapitza, H., Klein, H., Maßmann, S.,
and Schwichtenberg, F.: Surface drifters in the German Bight: model
validation considering windage and Stokes drift, Ocean Sci., 13, 799–827,
https://doi.org/10.5194/os-13-799-2017, 2017b. a, b, c, d
Callies, U., Carrasco, R., Floeter, J., Horstmann, J., and Quante, M.:
Submesoscale dispersion of surface drifters in a coastal sea near offshore
wind farms, Ocean Sci., 15, 865–889, https://doi.org/10.5194/os-15-865-2019, 2019. a, b, c, d
Chegini, F., Holtermann, P., Kerimoglu, O., Becker, M., Kreus, M., Klingbeil,
K., Gräwe, U., Winter, C., and Burchard, H.: Processes of stratification
and destratification during an extreme river discharge event in the German
Bight ROFI, J. Geophys. Res.-Ocean., 125, e2019JC015987,
https://doi.org/10.1029/2019JC015987, 2020. a
Chen, K., Ni, M., Cai, M., Huang, J. W. D., Chen, H., Wang, X., and Liu, M.:
Optimization of a coastal environmental monitoring network based on the
Kriging method: A case study of Quanzhou Bay, China, Biomed. Res.
Int., 2016, 7137310, https://doi.org/10.1155/2016/7137310, 2016. a
Dick, S., Kleine, E., Müller-Navarra, S., Klein, H., and Komo, H.: The
operational circulation model of BSH (BSHcmod), Model description and
validation, Tech. Rep. 29/2001, BSH, 2001. a
Dick, S., Kleine, E., and Janssen, F.: A new operational circulation model for
the North Sea and Baltic Sea using a novel vertical co-oordinate
setup and first results, in: Coastal to Global Operational Oceanography:
Achievements and Challenges, Proceedings of the Fifth International
Conference on EuroGOOS, 28. Bundesamt für Seeschifffahrt und Hydrographie (BSH)/EuroGOOS Office, 20–22 May 2008, Exeter, UK, edited by: Dalhin, H.,
Bell, M. J., Flemming, N. C., and Petersen, S. E., Sweden, ISBN 978-91-974828-6-8.xii, 557 pp., 2008. a
d'Ovidio, F., De Monte, S., Alvain, S., Dandonneau, Y., and Lévy, M.:
Fluid dynamical niches of phytoplankton types, P. Natl. Acad. Sci. USA, 107, 18366–18370,
https://doi.org/10.1073/pnas.1004620107, 2010. a
d'Ovidio, F., Penna, A. D., Trull, T. W., Nencioli, F., Pujol, M.-I., Rio,
M.-H., Park, Y.-H., Cotté, C., Zhou, M., and Blain, S.: The
biogeochemical structuring role of horizontal stirring: Lagrangian
perspectives on iron delivery downstream of the Kerguelen Plateau,
Biogeosciences, 12, 5567–5581, https://doi.org/10.5194/bg-12-5567-2015, 2015. a
Duran, R., Beron-Vera, F. J., and Olascoaga, M. J.: Extracting quasi-steady
Lagrangian transport patterns from the ocean circulation: An application
to the Gulf of Mexico, Sci. Rep., 8, 5218,
https://doi.org/10.1038/s41598-018-23121-y, 2018. a, b, c
Farazmand, M. and Haller, G.: Computing Lagrangian coherent structures from
their variational theory, Chaos, 22, 013128, https://doi.org/10.1063/1.3690153, 2012. a
Günther, T. and Theisel, H.: Backward finite-time Lyapunov exponents in
inertial flows, IEEE Trans. Vis. Comput. Graph., 23, 970–979,
https://doi.org/10.1109/TVCG.2016.2599016, 2017. a
Guo, H., He, W., Peterka, T., Shen, H.-W., Collis, S. M., and Helmus, J. J.:
Finite-time Lyapunov exponents and Lagrangian coherent structures in
uncertain unsteady flows, IEEE Trans. Vis. Comput. Graph., 22, 1672–1682,
https://doi.org/10.1109/TVCG.2016.2534560, 2016. a
Hadjighasem, A., Farazmand, M., Blazevski, D., Froyland, G., and Haller, G.: A
critical comparison of Lagrangian methods for coherent structure detection,
Chaos, 27, 053104, https://doi.org/10.1063/1.4982720, 2017. a
Haller, G.: Distinguished material surfaces and coherent structures in
three-dimensional fluid flows, Physica D, 149, 248–277,
https://doi.org/10.1016/S0167-2789(00)00199-8, 2001. a
Haller, G.: A variational theory of hyperbolic Lagrangian coherent
structures, Physica D, 240, 574–598, https://doi.org/10.1016/j.physd.2010.11.010,
2011. a
Haller, G. and Yuan, G.: Lagrangian coherent structures and mixing in
two-dimensional turbulence, Physica D, 147, 352–370,
https://doi.org/10.1016/S0167-2789(00)00142-1, 2000. a, b
Harrison, C. S. and Glatzmaier, G. A.: Lagrangian coherent structures in the
California Current System – sensitities and limitations, Geophys.
Astro. Fluid Dynam., 106, 22–44, https://doi.org/10.1080/03091929.2010.532793, 2010. a
Hernández-Carrasco, I., Orfila, A., Rossi, V., and Garçon, V.: Effect
of small scale transport processes on phytoplankton distribution in coastal
seas, Sci. Rep., 8, 8613, https://doi.org/10.1038/s41598-018-26857-9, 2018. a, b, c
Holt, J. and Umlauf, L.: Modelling the tidal mixing fronts and seasonal
stratification of the Northwest European Continental shelf, Cont. Shelf
Res., 28, 887–903, https://doi.org/10.1016/j.csr.2008.01.012, 2008. a
Hufnagl, M., Payne, M., Lacroix, G., Bolle, L. J., Daewel, U., Dickey-Collas,
M., Gerkema, T., Huret, M., Janssen, F., Kreus, M., Pätsch, J., Pohlmann,
T., Ruardij, P., Schrum, C., Skogen, M. D., Tiessen, M. C., Petitgas, P., van
Beek, J. K., van der Veer, H. W., and Callies, U.: Variation that can be
expected when using particle tracking models in connectivity studies, J. Sea
Res., 127, 133–149, https://doi.org/10.1016/j.seares.2017.04.009, 2017. a
Huhn, F., von Kameke, A., Allen-Perkins, S., Montero, P., Venancio, A., and
Pérez-Muñuzuri, V.: Horizontal Lagrangian transport in a
tidal-driven estuary – Transport barriers attached to prominent coastal
boundaries, Cont. Shelf Res., 39/40, 1–13, https://doi.org/10.1016/j.csr.2012.03.005,
2012. a, b
Huntley, H. S., Lipphardt, B. L., Jacobs, G., and Kirwan Jr., A. D.:
Clusters, deformation, and dilation: Diagnostics for material accumulation
regions, J. Geophys. Res., 120, 6622–6636, https://doi.org/10.1002/2015JC011036, 2015. a, b, c, d
James, I. D.: A three-dimensional numerical shelf-sea front model with variable
eddy viscosity and diffusivity, Cont. Shelf Res., 3, 69–98, 1984. a
Karrasch, D. and Haller, G.: Do finite-size Lyapunov exponents detect
coherent structures?, Chaos, 23, 043126, https://doi.org/10.1063/1.4837075, 2013. a
Kim, N.-H. and Hwang, J. H.: Optimal design of water quality monitoring
networks in semi-enclosed estuaries, Sensors, 20, 1498,
https://doi.org/10.3390/s20051498, 2020. a
Krause, G., Budeus, G., Gerdes, D., Schaumann, K., and Hesse, K.: Frontal
systems in the German Bight and their physical and biological effects,
in: Marine Interfaces Ecohydrodynamics, edited by: Nihoul, J. C. J.,
Elsevier, Amsterdam, 119–140, 1986. a
LaCasce, J. H.: Statistics from Lagrangian observations, Prog. Oceanogr., 77,
1–29, https://doi.org/10.1016/j.pocean.2008.02.002, 2008. a, b
LaCasce, J. H. and Ohlmann, C.: Relative dispersion at the surface of the
Gulf of Mexico, J. Mar. Res., 61, 285–312,
https://doi.org/10.1357/002224003322201205, 2003. a
Lapeyre, G. and Klein, P.: Impact of the small-scale elongated filaments on the
oceanic vertical pump, J. Mar. Res., 64, 835–851,
https://doi.org/10.1357/002224006779698369, 2006. a
Lehahn, Y., d'Ovidio, F., Lévy, M., and Heifetz, E.: Stirring of the
northeast Atlantic spring bloom: A Lagrangian analysis based on
multisatellite data, J. Geophys. Res., 112, C08005,
https://doi.org/10.1029/2006JC003927, 2007. a
Lucas, J., Koester, I., Wichels, A., Niggemann, J., Dittmar, T., Callies, U.,
Wiltshire, K. H., and Gerdts, G.: Short-term dynamics of North Sea
bacterioplankton-dissolved organic matter coherence on molecular level,
Front. Microbiol., 7, 321, https://doi.org/10.3389/fmicb.2016.00321, 2016. a
Meyerjürgens, J., Ricker, M., Schakau, V., Badewien, T. H., and Stanev,
E. V.: Relative dispersion of surface drifters in the North Sea: The
effect of tides on mesoscale diffusivity, J. Geophys. Res.-Ocean., 124, e2019JC015925,
https://doi.org/10.1029/2019JC015925, 2020. a, b
Molcard, A., Andrew C, P., and Özgökmen, T. M.: Directed drifter launch
strategies for Lagrangian data assimilation using hyperbolic trajectories,
Ocean Model., 12, 268–289, https://doi.org/10.1016/j.ocemod.2005.06.004, 2006. a
Olascoaga, M. J., Beron-Vera, F. J., Haller, G., Triñanes, J., Iskandarani,
M., Coelho, E. F., Haus, B. K., Huntley, H. S., Jacobs, G., Kirwan Jr.,
A. D., Lipphardt Jr., B. L., Özgökmen, T. M., Reniers, A. J. H.,
and Valle-Levinson, A.: Drifter motion in the Gulf of Mexico constrained
by altimetric Lagrangian coherent structures, Geophys. Res. Lett., 40,
6171–6175, https://doi.org/10.1002/2013GL058624, 2013. a
Orre, S., Gjevik, B., and LaCasce, J. H.: Characterizing chaotic dispersion in
a coastal tidal model, Cont. Shelf Res., 26, 1360–1374,
https://doi.org/10.1016/j.csr.2005.11.015, 2006. a
Peacock, T. and Haller, G.: Lagrangian coherent structures: the hidden skeleton
of fluid flows, Phys. Today, 66, 41–47, https://doi.org/10.1063/PT.3.1886, 2013. a
Peng, J. and Dabiri, J. O.: Transport of inertial particles by Lagrangian
coherent structures: application to predator-prey interaction in jellyfish
feeding, J. Fluid Mech., 623, 75–84, https://doi.org/10.1017/S0022112008005089, 2009. a
Pierrehumbert, R. T. and Yang, H.: Global chaotic mixing on isentropic
surfaces, J. Atmos. Sci., 50, 2462–2480,
https://doi.org/10.1175/1520-0469(1993)050<2462:GCMOIS>2.0.CO;2, 1993. a
Poje, A. C., Toner, M., Kirwan Jr., A. D., and Jones, C. K. R. T.: Drifter
launch strategies based on Lagrangian templates, J. Phys. Oceanogr., 32,
1855–1869, https://doi.org/10.1175/1520-0485(2002)032<1855:DLSBOL>2.0.CO;2, 2002. a
Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P.:
Numerical Recipies in FORTRAN – The Art of Scientific Computing, Cambridge
University Press, Cambridge, UK, 2 Edn., 963 pp., 1992. a
Ricker, M. and Stanev, E. V.: Circulation of the European northwest shelf: a
Lagrangian perspective, Ocean Sci., 16, 637–655,
https://doi.org/10.5194/os-16-637-2020, 2020. a
Sansón, L. Z., Pérez-Brunius, P., and Sheinbaum, J.: Surface relative
dispersion in the southwestern Gulf of Mexico, J. Phys. Oceanogr., 47,
387–403, https://doi.org/10.1175/JPO-D-16-0105.1, 2017. a
Sapsis, T. and Haller, G.: Inertial particle dynamics in a hurricane, J. Atmos.
Sci., 66, 2481–2492, https://doi.org/10.1175/2009JAS2865.1, 2009. a
Sapsis, T., Peng, J., and Haller, G.: Instabilities on prey dynamics in
jellyfish feeding, Bull. Math. Biol., 73, 1841–1856,
https://doi.org/10.1007/s11538-010-9594-4, 2011. a
Scales, K. L., Hazen, E. L., Jacox, M. G., Castruccio, F., Maxwell, S. M.,
Lewison, R. L., and Bograd, S. J.: Fisheries bycatch risk to marine megafauna
is intensified in Lagrangian coherent structures, P. Natl. Acad. Sci. USA, 115, 7362–7367,
https://doi.org/10.1073/pnas.1801270115, 2018. a
Schrum, C.: Thermohaline stratification and instabilities at tidal mixing
fronts: results of an eddy resolving model for the German Bight, Cont.
Shelf Res., 17, 689–716, https://doi.org/10.1016/S0278-4343(96)00051-9, 1997. a, b, c, d
Schulz, J.-P. and Schättler, U.: Kurze Beschreibung des Lokal-Modells
Europa COSMO-EU (LME) und seiner Datenbanken auf dem Datenserver des DWD,
available at: https://www.dwd.de/SharedDocs/downloads/,
2014. a
Serra, M. and Haller, G.: Objective Eulerian coherent structures, Chaos, 26,
053110, https://doi.org/10.1063/1.4951720, 2016. a, b, c
Serra, M., Sathe, P., Rypina, I., Kirincich, A., Ross, S. D., Lermusiaux, P.,
Allen, A., Peacock, T., and Haller, G.: Search and rescue at sea aided by
hidden flow structures, Nat. Commun., 11, 2525,
https://doi.org/10.1038/s41467-020-16281-x, 2020. a
Shadden, S. C., Lekien, F., and Marsden, J. E.: Definition and properties of
Lagrangian coherent structures from finite-time Lyapunov exponents in
two-dimensional aperiodic flows, Physica D, 212, 271–304,
https://doi.org/10.1016/j.physd.2005.10.007, 2005. a, b
Shadden, S. C., Lekien, F., Paduan, J. D., Chavez, F. P., and Marsden, J. E.:
The correlation between surface drifters and coherent structures based on
high-frequency radar data in Monterey Bay, Deep-Sea Res. Pt. II, 56,
161–172, https://doi.org/10.1016/j.dsr2.2008.08.008, 2009. a, b
Smagorinsky, J.: General circulation experiments with the primitive equations,
I. the basic experiment, Mon. Weather Rev., 91, 99–164,
https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2, 1963. a
Smith, S. and Banke, E.: Variation of the sea surface drag coefficient with
wind speed, Q. J. Roy. Meteor. Soc., 101, 665–673,
https://doi.org/10.1002/qj.49710142920, 1975.
a
Stanev, E. V., Schulz-Stellenfleth, J., Staneva, J., Grayek, S., Grashorn, S.,
Behrens, A., Koch, W., and Pein, J.: Ocean forecasting for the German
Bight: from regional to coastal scales, Ocean Sci., 12, 1105–1136,
https://doi.org/10.5194/os-12-1105-2016, 2016. a
Stanev, E. V., Badewien, T. H., Freund, H., Grayek, S., Hahner, F.,
Meyerjürgens, J., Ricker, M., Schöneich-Argent, R. I., Wolff, J.-O.,
and Zielinski, O.: Extreme westward surface drift in the North Sea:
Public reports of stranded drifters and Lagrangian tracking, Cont. Shelf
Res., 177, 24–32, https://doi.org/10.1016/j.csr.2019.03.003, 2019. a
Staneva, J., Ricker, M., Alvarez, R. C., Breivik, Ø., and Schrum, C.:
Effects of wave-induced processes in a coupled wave–ocean model on particle
transport simulations, Water, 13, 415, https://doi.org/10.3390/w13040415, 2021. a
Sudharsan, M., Brunton, S. L., and Riley, J. J.: Lagrangian coherent structures
and inertial particle dynamics, Phys. Rev. E, 93, 033108,
https://doi.org/10.1103/PhysRevE.93.033108, 2016. a
Sündermann, J. and Pohlmann, T.: A brief analysis of the North Sea
physics, Oceanologia, 53, 663–689, https://doi.org/10.5697/oc.53-3.663, 2011. a
Sutherland, G., Soontiens, N., Davidson, F., Smith, G. C., Bernier, N.,
Blanken, H., Schillinger, D., Marcotte, G., Röhrs, J., Dagestad, K.-F.,
Christensen, K. H., and Breivik, Ø.: Evaluating the leeway coefficient for
different ocean drifters using operational models, arXiv e-prints, arXiv:2005.09527, https://ui.adsabs.harvard.edu/abs/2020arXiv200509527S, 2020. a
Teeling, H., Fuchs, B. M., Becher, D., Klockow, C., Gardebrecht, A., Bennke,
C. M., Kassabgy, M., Huang, S., Mann, A. J., Waldmann, J., Weber, M.,
Klindworth, A., Otto, A., Lange, J., Bernhardt, J., Reinsch, C., Hecker, M.,
Peplies, J., Bockelmann, F. D., Callies, U., Gerdts, G., Wichels, A.,
Wiltshire, K. H., Glöckner, F. O., Schweder, T., and Amann, R.:
Substrate-controlled succession of marine bacterioplankton populations
induced by a phytoplankton bloom, Science, 336, 608–611,
https://doi.org/10.1126/science.1218344, 2012. a
Tian, F., He, Q., Liu, Z., and Chen, G.: Extracting Lagrangian coherent
structures in the Kuroshio current system, Ocean Dynam., 69, 641–656,
https://doi.org/10.1007/s10236-019-01262-6, 2019. a
van Sebille, E., Griffies, S. M., Abernathey, R., Adams, T. P., Berloff, P.,
Biastoch, A., Blanke, B., Chassignet, E. P., Cheng, Y., Cotter, C. J.,
Deleersnijder, E., Döös, K., Drake, H. F., Drijfhout, S., Gary, S. F.,
Heemink, A. W., Kjellsson, J., Koszalka, I. M., Lange, M., Lique, C.,
MacGilchrist, G. A., Marsh, R., Mayorga Adame, C. G., McAdam, R., Nencioli,
F., Paris, C. B., Piggott, M. D., Polton, J. A., Rühs, S., Shah, S. H.,
Thomas, M. D., Wang, J., Wolfram, P. J., Zanna, L., and Zika, J. D.:
Lagrangian ocean analysis: Fundamentals and practices, Ocean Model., 121, 49–75, https://doi.org/10.1016/j.ocemod.2017.11.008, 2018. a
Wiggins, S.: The dynamical systems approach to Lagrangian transport in
oceanic flows, Annu. Rev. Fluid Mech., 37, 295–328,
https://doi.org/10.1146/annurev.fluid.37.061903.175815, 2005. a, b, c
Short summary
An analysis of simulated German Bight surface currents reveals linear structures along which water bodies of different origin converge. Identification of these non-stationary structures supports the interpretation of monitoring data; observations gathered at stations that are neighbouring but separated by a line of convergence may substantially differ. The analysis could also be helpful for organizing field campaigns such that new observations do not just duplicate information already available.
An analysis of simulated German Bight surface currents reveals linear structures along which...