Articles | Volume 17, issue 1
https://doi.org/10.5194/os-17-393-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-17-393-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Correlation between subsurface salinity anomalies in the Bay of Bengal and the Indian Ocean Dipole and governing mechanisms
Institute of Oceanography, Centre for Marine and Climate Research, University of Hamburg, Hamburg, Germany
Thomas Pohlmann
Institute of Oceanography, Centre for Marine and Climate Research, University of Hamburg, Hamburg, Germany
Xueen Chen
College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao, China
Related authors
No articles found.
Yankun Gong, Xueen Chen, Jiexin Xu, Zhiwu Chen, Qingyou He, Ruixiang Zhao, Xiao-Hua Zhu, and Shuqun Cai
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-165, https://doi.org/10.5194/gmd-2024-165, 2024
Preprint under review for GMD
Short summary
Short summary
A new internal solitary wave forecasting (ISW) model in the northern South China Sea (ISWFM-NSCS v2.0) improves ISW predictions by incorporating background currents and inhomogeneous stratifications. Additionally, viscosity and diffusivity coefficients are optimized to maintain stable stratifications, extending the forecasting period. Sensitivity experiments illustrate that ISWFM-NSCS v2.0 significantly enhances predictions of various wave properties.
Yankun Gong, Xueen Chen, Jiexin Xu, Jieshuo Xie, Zhiwu Chen, Yinghui He, and Shuqun Cai
Geosci. Model Dev., 16, 2851–2871, https://doi.org/10.5194/gmd-16-2851-2023, https://doi.org/10.5194/gmd-16-2851-2023, 2023
Short summary
Short summary
Internal solitary waves (ISWs) play crucial roles in mass transport and ocean mixing in the northern South China Sea. Massive numerical investigations have been conducted in this region, but there was no systematic evaluation of a three-dimensional model about precisely simulating ISWs. Here, an ISW forecasting model is employed to evaluate the roles of resolution, tidal forcing and stratification in accurately reproducing wave properties via comparison to field and remote-sensing observations.
Hao Huang, Pengyang Song, Shi Qiu, Jiaqi Guo, and Xueen Chen
Geosci. Model Dev., 16, 109–133, https://doi.org/10.5194/gmd-16-109-2023, https://doi.org/10.5194/gmd-16-109-2023, 2023
Short summary
Short summary
The Oceanic Regional Circulation and Tide Model (ORCTM) is developed to reproduce internal solitary wave dynamics. The three-dimensional nonlinear momentum equations are involved with the nonhydrostatic pressure obtained via solving the Poisson equation. The validation experimental results agree with the internal wave theories and observations, demonstrating that the ORCTM can successfully describe the life cycle of nonlinear internal solitary waves under different oceanic environments.
Jiliang Xuan, Daji Huang, Thomas Pohlmann, Jian Su, Bernhard Mayer, Ruibin Ding, and Feng Zhou
Ocean Sci., 13, 105–122, https://doi.org/10.5194/os-13-105-2017, https://doi.org/10.5194/os-13-105-2017, 2017
Short summary
Short summary
Research on the summer TWC has been conducted previously; however, the spatial structure and temporal variation of the winter TWC are less known due to its weak mean velocity. Therefore, FVCOM was used to evaluate the spatial patterns of TWC synoptic fluctuations. We observed that the TWC fluctuations appear mainly to the north of Taiwan and in the inshore area. Our results will be useful in the dynamical understanding of the winter TWC and its impact on cross-shore transport.
B. Mayer, T. Stacke, I. Stottmeister, and T. Pohlmann
Ocean Sci. Discuss., https://doi.org/10.5194/osd-12-863-2015, https://doi.org/10.5194/osd-12-863-2015, 2015
Revised manuscript not accepted
Short summary
Short summary
The Indonesian Sunda Shelf (average depth 48 m) is subject to many physical and biogeochemical processes with a strong impact from human activities. For investigation of marine environmental water properties, it is important to know characteristic water exchange rates. With realistic computer model results, analytical flushing rates and tracer residence times were compared for different shelf regions. Only the latter give detailed 3D pictures with times of less than 30 days to more than 2 years.
Cited articles
Ashok, K., Guan, Z., and Yamagata, T.: A Look at the Relationship between the
ENSO and the Indian Ocean Dipole, J. Meteorol. Soc.
Jpn. Ser. II, 81, 41–56, https://doi.org/10.2151/jmsj.81.41, 2003. a
Becker, J. J., Sandwell, D. T., Smith, W. H. F., Braud, J., Binder, B., Depner, J., Fabre, D., Factor, J., Ingalls, S., Kim, S.-H., Ladner, R., Marks, K., Nelson, S., Pharaoh, A., Trimmer, R., Rosenberg, J. V., Wallace, G., and Weatherall, P.: Global Bathymetry and Elevation Data at 30 Arc Seconds Resolution: SRTM30_PLUS, Mar. Geodesy, 32, 355–371,
https://doi.org/10.1080/01490410903297766, 2009. a
Becker, J. J., Sandwell, D. T., Smith, W. H. F., Braud, J., Binder, B., Depner, J., Fabre, D., Factor, J., Ingalls, S., Kim, S.-H., Ladner, R., Marks, K., Nelson, S., Pharaoh, A., Trimmer, R., Von Rosenberg, J., Wallace, G., and Weatherall, P.: Global Bathymetry and Elevation Data at 30 Arc Seconds Resolution: SRTM30_PLUS, available at: ftp://topex.ucsd.edu/pub/srtm30_plus, last access: 26 February 2021.
Chatterjee, A., Shankar, D., McCreary, J. P., Vinayachandran, P. N., and
Mukherjee, A.: Dynamics of Andaman Sea Circulation and Its Role in Connecting the Equatorial Indian Ocean to the Bay of Bengal, J. Geophys. Res.-Oceans, 122, 3200–3218, https://doi.org/10.1002/2016JC012300, 2017. a, b
Chen, G., Wang, D., and Hou, Y.: The features and interannual variability
mechanism of mesoscale eddies in the Bay of Bengal, Continental Shelf
Res., 47, 178–185, https://doi.org/10.1016/j.csr.2012.07.011, 2012. a
Chen, G., Han, W., Li, Y., and Wang, D.: Interannual Variability of Equatorial Eastern Indian Ocean Upwelling: Local versus Remote Forcing, J. Phys. Oceanogr., 46, 789–807, https://doi.org/10.1175/JPO-D-15-0117.1, 2015. a
Chen, G., Han, W., Shu, Y., Li, Y., Wang, D., and Xie, Q.: The Role of
Equatorial Undercurrent in Sustaining the Eastern Indian Ocean Upwelling,
Geophys. Res. Lett., 43, 6444–6451, https://doi.org/10.1002/2016GL069433,
2016. a, b
Chen, G., Li, Y., Xie, Q., and Wang, D.: Origins of Eddy Kinetic Energy
in the Bay of Bengal, J. Geophys. Res.-Oceans, 123,
2097–2115, https://doi.org/10.1002/2017JC013455, 2018. a
Cheng, X., Xie, S.-P., McCreary, J. P., Qi, Y., and Du, Y.: Intraseasonal
Variability of Sea Surface Height in the Bay of Bengal, J.
Geophys. Res.-Oceans, 118, 816–830, https://doi.org/10.1002/jgrc.20075, 2013. a, b, c
Deser, C., Alexander, M. A., Xie, S.-P., and Phillips, A. S.: Sea Surface
Temperature Variability: Patterns and Mechanisms, Annu. Rev. Mar.
Sci., 2, 115–143, https://doi.org/10.1146/annurev-marine-120408-151453, 2010. a, b
Du, Y., Liu, K., Zhuang, W., and Yu, W.-D.: The Kelvin Wave Processes in the
Equatorial Indian Ocean during the 2006–2008 IOD Events, Atmos.
Ocean. Sci. Lett., 5, 324–328, https://doi.org/10.1080/16742834.2012.11447007,
2012. a, b
Döll, P., Kaspar, F., and Lehner, B.: A Global Hydrological Model for Deriving Water Availability Indicators: Model Tuning and Validation, J. Hydrol., 270, 105–134, https://doi.org/10.1016/S0022-1694(02)00283-4, 2003. a
Döll, P., Kaspar, F., and Lehner, B.: WaterGAP, available at: http://www.watergap.de/, last access: 26 February 2021.
ECMWF: ERA5, available at: https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5, last access: 26 February 2021.
Fischer, A. S., Terray, P., Guilyardi, E., Gualdi, S., and Delecluse, P.: Two
Independent Triggers for the Indian Ocean Dipole/Zonal Mode in a Coupled GCM, J. Climate, 18, 3428–3449, https://doi.org/10.1175/JCLI3478.1, 2005. a
Girishkumar, M. S., Ravichandran, M., and Han, W.: Observed Intraseasonal
Thermocline Variability in the Bay of Bengal, J. Geophys.
Res.-Oceans, 118, 3336–3349, https://doi.org/10.1002/jgrc.20245, 2013. a, b
Good, S. A., Martin, M. J., and Rayner, N. A.: EN4: Quality Controlled Ocean
Temperature and Salinity Profiles and Monthly Objective Analyses with
Uncertainty Estimates, J. Geophys. Res.-Oceans, 118,
6704–6716, https://doi.org/10.1002/2013JC009067, 2013. a
Good, S. A., Martin, M. J., and Rayner, N. A.: EN4: quality controlled subsurface ocean temperature and salinity profiles and objective, available at: https://www.metoffice.gov.uk/hadobs/en4/, last access: 26 February 2021.
Gordon, A. L., Shroyer, E. L., Mahadevan, A., Senqupta, D., and Freilich, M.:
Bay of Bengal: 2013 Northeast Monsoon Upper-Ocean Circulation, Oceanography, 29, 82–91, https://doi.org/10.5670/oceanog.2016.41, 2016. a
Grunseich, G., Subrahmanyam, B., Murty, V. S. N., and Giese, B. S.: Sea Surface
Salinity Variability during the Indian Ocean Dipole and ENSO Events in the
Tropical Indian Ocean, J. Geophys. Res.-Oceans, 116, C11013,
https://doi.org/10.1029/2011JC007456, 2011. a
Han, W. and Webster, P. J.: Forcing Mechanisms of Sea Level Interannual
Variability in the Bay of Bengal, J. Phys. Oceanogr., 32,
216–239, https://doi.org/10.1175/1520-0485(2002)032<0216:FMOSLI>2.0.CO;2, 2002. a
Hasson, A. E. A., Delcroix, T., and Dussin, R.: An Assessment of the Mixed
Layer Salinity Budget in the Tropical Pacific Ocean. Observations and
Modelling (1990–2009), Ocean Dyn., 63, 179–194,
https://doi.org/10.1007/s10236-013-0596-2, 2013. a
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz‐Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D.,
Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P.,
Biavati, G., Bidlot, J., Bonavita, M., Chiara, G. D., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M.,
Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., Rosnay, P. d.,
Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 global
reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020. a
Jensen, T. G.: Arabian Sea and Bay of Bengal Exchange of Salt and Tracers in an Ocean Model, Geophys. Res. Lett., 28, 3967–3970,
https://doi.org/10.1029/2001GL013422, 2001. a
Jensen, T. G., Wijesekera, H., Nyadjro, E., Thoppil, P., Shriver, J., Sandeep, K., and Pant, V.: Modeling Salinity Exchanges Between the Equatorial Indian Ocean and the Bay of Bengal, Oceanography, 29, 92–101,
https://doi.org/10.5670/oceanog.2016.42, 2016. a
Jungclaus, J. H., Fischer, N., Haak, H., Lohmann, K., Marotzke, J., Matei, D., Mikolajewicz, U., Notz, D., and von Storch, J. S.: Characteristics of the Ocean Simulations in the Max Planck Institute Ocean Model (MPIOM) the Ocean Component of the MPI-Earth System Model, J. Adv. Model. Earth Sy., 5, 422–446, https://doi.org/10.1002/jame.20023, 2013. a
Kido, S. and Tozuka, T.: Salinity Variability Associated with the Positive
Indian Ocean Dipole and Its Impact on the Upper Ocean Temperature, J. Climate, 30, 7885–7907, https://doi.org/10.1175/JCLI-D-17-0133.1, 2017. a, b, c
Kido, S., Tozuka, T., and Han, W.: Anatomy of Salinity Anomalies Associated
with the Positive Indian Ocean Dipole, J. Geophys. Res.-Oceans, 124, 8116–8139, https://doi.org/10.1029/2019JC015163, 2019a. a, b
Kido, S., Tozuka, T., and Han, W.: Experimental Assessments on Impacts of
Salinity Anomalies on the Positive Indian Ocean Dipole, J. Geophys. Res.-Oceans, 124, 9462–9486, https://doi.org/10.1029/2019JC015479,
2019b. a
Köhl, A.: Evaluation of the GECCO2 Ocean Synthesis: Transports of Volume, Heat
and Freshwater in the Atlantic, Q. J. Roy. Meteor. Soc., 141, 166–181, https://doi.org/10.1002/qj.2347, 2015. a
Köhl, A.: The German contribution of the Estimating the Circulation and Climate of the Ocean project, available at: https://icdc.cen.uni-hamburg.de/, last access: 26 February 2021.
Köhler, J., Serra, N., Bryan, F. O., Johnson, B. K., and Stammer, D.:
Mechanisms of Mixed-Layer Salinity Seasonal Variability in the
Indian Ocean, J. Geophys. Res.-Oceans, 123, 466–496,
https://doi.org/10.1002/2017JC013640, 2018. a
Li, J., Liang, C., Tang, Y., Dong, C., Chen, D., Liu, X., and Jin, W.: A new
dipole index of the salinity anomalies of the tropical Indian Ocean,
Sci. Rep.-UK, 6, 24260, https://doi.org/10.1038/srep24260, 2016. a
Li, J., Liang, C., Tang, Y., Liu, X., Lian, T., Shen, Z., and Li, X.: Impacts
of the IOD-associated temperature and salinity anomalies on the
intermittent equatorial undercurrent anomalies, Clim. Dyn., 51,
1391–1409, https://doi.org/10.1007/s00382-017-3961-x, 2018. a
Li, Y., Han, W., Wang, W., Ravichandran, M., Lee, T., and Shinoda, T.: Bay of
Bengal Salinity Stratification and Indian Summer Monsoon Intraseasonal
Oscillation: 2. Impact on SST and Convection, J. Geophys. Res.-Oceans, 122, 4312–4328, https://doi.org/10.1002/2017JC012692, 2017. a
Lukas, R. and Lindstrom, E.: The Mixed Layer of the Western Equatorial Pacific Ocean, J. Geophys. Res.-Oceans, 96, 3343–3357,
https://doi.org/10.1029/90JC01951, 1991. a
Max Planck Institute for Meteorology: MPI-ESM-MR historical run, available at: https://esgf-node.llnl.gov/projects/cmip5/, last access: 26 February 2021.
McCreary, J. P., Kundu, P. K., and Molinari, R. L.: A Numerical Investigation
of Dynamics, Thermodynamics and Mixed-layer Processes in the Indian Ocean,
Progr. Oceanogr., 31, 181–244, https://doi.org/10.1016/0079-6611(93)90002-U,
1993. a
McCreary, J. P., Han, W., Shankar, D., and Shetye, S. R.: Dynamics of the East India Coastal Current: 2. Numerical Solutions, J. Geophys.
Res.-Oceans, 101, 13993–14010, https://doi.org/10.1029/96JC00560, 1996. a, b
McPhaden, M. J., Wang, Y., and Ravichandran, M.: Volume transports of the
Wyrtki jets and their relationship to the Indian Ocean Dipole, J. Geophys.
Res.-Oceans, 120, 5302–5317, https://doi.org/10.1002/2015JC010901, 2015. a
Montégut, C. d. B., Mignot, J., Lazar, A., and Cravatte, S.: Control of
Salinity on the Mixed Layer Depth in the World Ocean: 1. General Description, J. Geophys. Res.-Oceans, 112, C06011, https://doi.org/10.1029/2006JC003953,
2007. a
Moore, D. W. and McCreary, J. P.: Excitation of intermediate-frequency
equatorial waves at a western ocean boundary: With application to
observations from the Indian Ocean, J. Geophys. Res.-Oceans, 95, 5219–5231, https://doi.org/10.1029/JC095iC04p05219, 1990. a
NOAA: World Ocean Atlas 2018, available at: https://www.nodc.noaa.gov/OC5/woa18/, last access: 26 February 2021.
Nyadjro, E. S. and McPhaden, M. J.: Variability of Zonal Currents in the
Eastern Equatorial Indian Ocean on Seasonal to Interannual Time Scales,
J. Geophys. Res.-Oceans, 119, 7969–7986,
https://doi.org/10.1002/2014JC010380, 2014. a, b
Pohlmann, T.: Predicting the Thermocline in a Circulation Model of the North
Sea – Part I: Model Description, Calibration and Verification, Continental
Shelf Res,, 16, 131–146, https://doi.org/10.1016/0278-4343(95)90885-S, 1996. a, b
Pohlmann, T.: A Meso-scale Model of the Central and Southern North Sea:
Consequences of an Improved Resolution, Continental Shelf Res., 26,
2367–2385, https://doi.org/10.1016/j.csr.2006.06.011, 2006. a, b
Potemra, J. T., Luther, M. E., and O'Brien, J. J.: The Seasonal Circulation of the Upper Ocean in the Bay of Bengal, J. Geophys. Res.-Oceans, 96, 12667–12683, https://doi.org/10.1029/91JC01045, 1991. a
Pramanik, S., Sil, S., Mandal, S., Dey, D., and Shee, A.: Role of Interannual
Equatorial Forcing on the Subsurface Temperature Dipole in the Bay of Bengal during IOD and ENSO Events, Ocean Dyn., 69, 1253–1271, https://doi.org/10.1007/s10236-019-01303-0, 2019. a, b
Prasanna Kumar, S., Muraleedharan, P. M., Prasad, T. G., Gauns, M., Ramaiah,
N., de Souza, S. N., Sardesai, S., and Madhupratap, M.: Why is the Bay of
Bengal less productive during summer monsoon compared to the Arabian Sea?,
Geophys. Res. Lett., 29, 88-1–88-4, https://doi.org/10.1029/2002GL016013,
2002. a
Prasanna Kumar, S., Nuncio, M., Narvekar, J., Kumar, A., Sardesai, S.,
de Souza, S. N., Gauns, M., Ramaiah, N., and Madhupratap, M.: Are eddies
nature's trigger to enhance biological productivity in the Bay of Bengal?,
Geophys. Res. Lett., 31, L07309, https://doi.org/10.1029/2003GL019274, 2004. a
Rao, S. A., Behera, S. K., Masumoto, Y., and Yamagata, T.: Interannual
Subsurface Variability in the Tropical Indian Ocean with a Special Emphasis
on the Indian Ocean Dipole, Deep Sea Research Pt. II, 49, 1549–1572, https://doi.org/10.1016/S0967-0645(01)00158-8, 2002. a
Roemmich, D. and Gilson, J.: The 2004–2008 Mean and Annual Cycle of
Temperature, Salinity, and Steric Height in the Global Ocean from the Argo
Program, Progr. Oceanogr., 82, 81–100,
https://doi.org/10.1016/j.pocean.2009.03.004, 2009. a
Roemmich, D. and Gilson, J.: Roemmich-Gilson Argo Climatology, available at: http://sio-argo.ucsd.edu/RG_Climatology.html, last access: 26 February 2021.
Saji, N. H., Goswami, B. N., Vinayachandran, P. N., and Yamagata, T.: A Dipole Mode in the Tropical Indian Ocean, Nature, 401, 360–363,
https://doi.org/10.1038/43854, 1999. a, b, c
Sanchez‐Franks, A., Webber, B. G. M., King, B. A., Vinayachandran, P. N.,
Matthews, A. J., Sheehan, P. M. F., Behara, A., and Neema, C. P.: The
Railroad Switch Effect of Seasonally Reversing Currents on the Bay of Bengal High-Salinity Core, Geophys. Res. Lett., 46, 6005–6014,
https://doi.org/10.1029/2019GL082208, 2019. a
Sayantani, O. and Gnanaseelan, C.: Tropical Indian Ocean Subsurface Temperature Variability and the Forcing Mechanisms, Clim. Dyn., 44, 2447–2462, https://doi.org/10.1007/s00382-014-2379-y, 2015. a
Schott, F. A., Xie, S.-P., and McCreary, J. P.: Indian Ocean Circulation and
Climate Variability, Rev. Geophys., 47, RG1002, https://doi.org/10.1029/2007RG000245,
2009. a
Shankar, D., McCreary, J. P., Han, W., and Shetye, S. R.: Dynamics of the East India Coastal Current: 1. Analytic Solutions Forced by Interior Ekman Pumping and Local Alongshore Winds, J. Geophys. Res.-Oceans, 101, 13975–13991, https://doi.org/10.1029/96JC00559, 1996. a
Shetye, S. R., Shenoi, S. S. C., Gouveia, A. D., Michael, G. S., Sundar, D.,
and Nampoothiri, G.: Wind-driven Coastal Upwelling along the Western Boundary of the Bay of Bengal during the Southwest Monsoon, Continental Shelf Res., 11, 1397–1408, https://doi.org/10.1016/0278-4343(91)90042-5, 1991. a
Shetye, S. R., Gouveia, A. D., Shankar, D., Shenoi, S. S. C., Vinayachandran,
P. N., Sundar, D., Michael, G. S., and Nampoothiri, G.: Hydrography and
Circulation in the Western Bay of Bengal during the Northeast Monsoon,
J. Geophys. Res.-Oceans, 101, 14011–14025,
https://doi.org/10.1029/95JC03307, 1996. a
Shinoda, T., Hendon, H. H., and Alexander, M. A.: Surface and Subsurface Dipole Variability in the Indian Ocean and Its Relation with ENSO, Deep Sea Research Pt. I, 51, 619–635, https://doi.org/10.1016/j.dsr.2004.01.005, 2004. a
Smagorinsky, J.: General Circulation Experiments with the Primitive Equations
I: the Basic Experiment, Mon. Weather Rev., 91, 99–164,
https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2, 1963. a
Taylor, K. E.: Summarizing multiple aspects of model performance in a single
diagram, J. Geophys. Res.-Atmos., 106, 7183–7192,
https://doi.org/10.1029/2000JD900719, 2001. a
Thompson, B., Gnanaseelan, C., and Salvekar, P. S.: Variability in the Indian
Ocean Circulation and Salinity and Its Impact on SST Anomalies during Dipole Events, J. Mar. Res., 64, 853–880, 2006. a
Trott, C. B., Subrahmanyam, B., Murty, V. S. N., and Shriver, J. F.:
Large-Scale Fresh and Salt Water Exchanges in the Indian Ocean, J. Geophys. Res.-Oceans, 124, 6252–6269,
https://doi.org/10.1029/2019JC015361, 2019. a
Vecchi, G. A. and Harrison, D. E.: Monsoon Breaks and Subseasonal Sea Surface
Temperature Variability in the Bay of Bengal, J. Climate, 15,
1485–1493, https://doi.org/10.1175/1520-0442(2002)015<1485:MBASSS>2.0.CO;2, 2002. a
Vinayachandran, P. N., Masumoto, Y., Mikawa, T., and Yamagata, T.: Intrusion of the Southwest Monsoon Current into the Bay of Bengal, J. Geophys. Res.-Oceans, 104, 11077–11085, https://doi.org/10.1029/1999JC900035, 1999. a
Wang, J.: Observational bifurcation of Wyrtki Jets and its influence on the
salinity balance in the eastern Indian Ocean, Atmos. Ocean. Sci. Lett., 10, 36–43, https://doi.org/10.1080/16742834.2017.1239506, 2017. a
Webster, P. J., Moore, A. M., Loschnigg, J. P., and Leben, R. R.: Coupled
Ocean–Atmosphere Dynamics in the Indian Ocean during 1997–98, Nature,
401, 356–360, https://doi.org/10.1038/43848, 1999. a, b
Wijesekera, H. W., Jensen, T. G., Jarosz, E., Teague, W. J., Metzger, E. J.,
Wang, D. W., Jinadasa, S. U. P., Arulananthan, K., Centurioni, L. R., and
Fernando, H. J. S.: Southern Bay of Bengal Currents and Salinity Intrusions
during the Northeast Monsoon, J. Geophys. Res.-Oceans, 120,
6897–6913, https://doi.org/10.1002/2015JC010744, 2015. a
Wyrtki, K.: An Equatorial Jet in the Indian Ocean, Science, 181, 262–264,
https://doi.org/10.1126/science.181.4096.262, 1973.
a
Yu, L., O'Brien, J. J., and Yang, J.: On the Remote Forcing of the Circulation in the Bay of Bengal, J. Geophys. Res.-Oceans, 96,
20449–20454, https://doi.org/10.1029/91JC02424, 1991. a, b
Zhang, Z.: HAMSOM Historical Experiment of the Bay of Bengal, available at: https://cera-www.dkrz.de/WDCC/ui/cerasearch/entry?acronym=DKRZ_LTA_119_ds00001, last access: 26 February 2021.
Zhang, Y., Du, Y., Zheng, S., Yang, Y., and Cheng, X.: Impact of Indian Ocean
Dipole on the Salinity Budget in the Equatorial Indian Ocean, J. Geophys.
Res.-Oceans, 118, 4911–4923, https://doi.org/10.1002/jgrc.20392,
2013. a, b
Short summary
In this study, we found that the interannual subsurface temperature and salinity variability of the Bay of Bengal (BoB) shows a remarkable delayed correlation with the Indian Ocean Dipole mode. We employed a regional model and determined the contributions of the coastal Kelvin waves and the westward-moving Rossby waves to this correlation. An analysis of the salinity budget revealed that the advection terms dominate the subsurface salinity changes in the BoB.
In this study, we found that the interannual subsurface temperature and salinity variability of...