Research article 22 Feb 2021
Research article | 22 Feb 2021
Can seafloor voltage cables be used to study large-scale circulation? An investigation in the Pacific Ocean
Jakub Velímský et al.
Cited articles
Baringer, M. O. and Larsen, J. C.: Sixteen years of Florida Current Transport at 27∘ N, Geophys. Res. Lett., 28, 3179–3182, 2001. a
Chave, A. D., Filloux, J. H., and Luther, D. S.: Electromagnetic induction by ocean currents: BEMPEX, Phys. Earth Planet. In., 53, 350–359, https://doi.org/10.1016/0031-9201(89)90021-6, 1989. a
Cox, C. S., Filloux, J. H., and Larsen, J. C.: Electromagnetic studies of
ocean currents and electrical conductivity below the ocean-floor, in: The
Sea, Wiley, New York, ISBN: 0674-01732-3, 637–693, 1971. a
Denig, W. F.: Geomagnetic kp and ap Indices, available at: http://www.ngdc.noaa.gov/stp/GEOMAG/kp_ap.html (last access: 15 February 2021), 2015. a
Everett, M. E., Constable, S., and Constable, C. G.: Effects of near-surface conductance on global satellite induction responses,
Geophys. J. Int., 153, 277–286, https://doi.org/10.1046/j.1365-246X.2003.01906.x, 2003. a
Faraday, M.: The Bakerian Lecture, Experimental Researches in Electricity, Terrestrial Magneto-electric Induction,
Philos. T. R. Soc. Lond., 122, 163–194, https://doi.org/10.1098/rstl.1851.0001, 1832. a
Finlay, C. C., Maus, S., Beggan, C. D., Bondar, T. N., Chambodut, A., Chernova, T. A., Chulliat, A., Golovkov, V. P., Hamilton, B., Hamoudi, M., Holme, R., Hulot, G., Kuang, W., Langlais, B., Lesur, V., Lowes, F. J., Lühr, H., Macmillan, S., Mandea, M., McLean, S., Manoj, C., Menvielle, M., Michaelis, I., Olsen, N., Rauberg, J., Rother, M., Sabaka, T. J., Tangborn, A., Tøffner-Clausen, L., Thébault, E., Thomson, A. W. P., Wardinski, I., Wei, Z., and Zvereva, T. I.: International Geomagnetic Reference Field: the eleventh generation, Geophys. J. Int., 183, 1216–1230,
https://doi.org/10.1111/j.1365-246X.2010.04804.x, 2010. a
Flosadóttir, Á. H., Larsen, J. C., and Smith, J. T.: Motional
induction in North Atlantic circulation models,
J. Geophys. Res., 102, 10353–10372, 1997. a
Forget, G., Campin, J.-M., Heimbach, P., Hill, C. N., Ponte, R. M., and Wunsch, C.: ECCO version 4: an integrated framework for non-linear inverse modeling and global ocean state estimation, Geosci. Model Dev., 8, 3071–3104, https://doi.org/10.5194/gmd-8-3071-2015, 2015. a
Fukumori, I., Wang, O., Fenty, I., Forget, G., Heimbach, P., and Ponte, R. M.: ECCO version 4, release 3, Tech. Rep., JPL/Caltech and NASA Physical Oceanography, 10 pp., https://doi.org/1721.1/110380, 2017. a
Grayver, A. V., Munch, F. D., Kuvshinov, A. V., Khan, A., and Sabaka, T. J.:
Joint inversion of satellite-detected tidal and magnetospheric signals
constrains electrical conductivity and water content of the upper mantle and
transition zone, Geophys. Res. Lett., 44, 6074–6081,
https://doi.org/10.1002/2017GL073446, 2017. a
Irrgang, C., Saynisch, J., and Thomas, M.: Ensemble simulations of the
magnetic field induced by global ocean circulation: estimating the
uncertainty, J. Geophys. Res.-Oceans, 121, 1866–1880, 2016a. a
Irrgang, C., Saynisch, J., and Thomas, M.: Impact of variable seawater conductivity on motional induction simulated with an ocean general circulation model, Ocean Sci., 12, 129–136, https://doi.org/10.5194/os-12-129-2016, 2016b. a
Irrgang, C., Saynisch, J., and Thomas, M.: Utilizing oceanic electromagnetic
induction to constrain an ocean general circulation model: A data
assimilation twin experiment, JAMES, 9, 1703–1720,
https://doi.org/10.1002/2017MS000951, 2017. a, b
Koyama, T.: A study on the electrical conductivity of the mantle by voltage
measurements of submarine cables, PhD thesis, University of Tokyo, Tokyo, Japan, 130 pp., 2001. a
Lanzerotti, L. J., Thomson, D. J., Meloni, A., Medford, L. V., and Maclennan,
C. G.: Electromagnetic study of the Atlantic continental margin using a
section of a transatlantic cable, J. Geophys. Res., 91, 7417–7427, 1986. a
Lanzerotti, L. J., Sayres, C. H., Medford, L. V., Kraus, J. S., and Maclennan, C. G.: Earth potential over 4000 km between Hawaii and California, Geophys. Res. Lett., 19, 1177–1180, 1992b. a
Lanzerotti, L. J., Medford, L. V., Maclennan, C. G., and Thomson, D. J.:
Studies of Large-Scale Earth Potentials Across Oceanic Distances,
AT&T Tech. J., 74, 73–84, https://doi.org/10.1002/j.1538-7305.1995.tb00185.x, 1995. a
Larsen, J. C.: Electric and Magnetic Fields Induced by Deep Sea Tides,
Geophys. J. Roy. Astr. S., 16, 47–70, 1968. a
Larsen, J. C.: Transport measurements from in-service undersea telephone
cables, IEEE J. Oceanic Eng., 16, 313–318,
https://doi.org/10.1109/48.90893, 1991. a
Larsen, J. C.: Transport and heat flux of the Florida Current at 27∘ N derived from cross-stream voltages and profiling data: theory and observations, Philos. T. Roy. Soc. A, 338, 169–236,
https://doi.org/10.1098/rsta.1992.0007, 1992. a, b, c, d
Larsen, J. C. and Sanford, T. B.: Florida current volume transports from
voltage measurements, Science, 227, 302–304, 1985. a
Malin, S. R. C.: Separation of lunar daily geomagnetic variations into parts
of ionospheric and oceanic origin,
Geophys. J. Roy. Astr. S., 21, 447–455, 1970. a
Manoj, C., Kuvshinov, A., Neetu, S., and Harinarayana, T.: Can undersea
voltage measurements detect tsunamis?, Earth Planets Space, 62,
353–358, https://doi.org/10.5047/eps.2009.10.001, 2010. a
Meinen, C. S., Smith, R. H., and Garcia, R. F.: Evaluating pressure gauges as a potential future replacement for electromagnetic cable observations of the
Florida Current transport at 27∘ N,
J. Oper. Oceanogr., 0, 1–11, https://doi.org/10.1080/1755876X.2020.1780757, 2020. a
Pedatella, N. M., Liu, H., and Richmond, A. D.: Atmospheric semidiurnal lunar tide climatology simulated by the Whole Atmosphere Community Climate Model, J. Geophys. Res., 117, A06327, https://doi.org/10.1029/2012JA017792, 2012. a, b
Rehfeld, K., Marwan, N., Heitzig, J., and Kurths, J.: Comparison of correlation analysis techniques for irregularly sampled time series, Nonlin. Processes Geophys., 18, 389–404, https://doi.org/10.5194/npg-18-389-2011, 2011. a
Sabaka, T. J., Tyler, R. H., and Olsen, N.: Extracting ocean-generated tidal
magnetic signals from Swarm data through satellite gradiometry, Geophys. Res. Lett., 43, 3237–3245, 2016. a
Šachl, L., Martinec, Z., Velímský, J., Irrgang, C., Petereit, J., Saynisch, J., Einšpigel, D., and Schnepf, N. R.: Modelling of electromagnetic signatures of global ocean circulation: physical approximations and numerical issues, Earth Planets Space, 71, 58, https://doi.org/10.1186/s40623-019-1033-7, 2019. a, b, c
Sanford, T. B.: Motionally induced electric and magnetic fields in the sea,
J. Geophys. Res., 76, 3476–3492, https://doi.org/10.1029/JC076i015p03476, 1971. a
Schnepf, N. R.: Going electric: Incorporating marine electromagnetism into
ocean assimilation models, J. Adv. Model. Earth Sy., 9,
1772–1775, https://doi.org/10.1002/2017MS001130, 2017. a
Schnepf, N. R., Nair, M., Maute, A., Pedatella, N. M., Kuvshinov, A., and
Richmond, A. D.: A Comparison of Model-Based Ionospheric and Ocean Tidal
Magnetic Signals With Observatory Data, Geophys. Res. Lett., 45,
7257–7267, https://doi.org/10.1029/2018GL078487, 2018. a, b
Sleijpen, G. L. G. and Fokkema, D. R.: BiCGstab(ell) for Linear Equations
involving Unsymmetric Matrices with Complex Spectrum,
Electron. T. Numer. Ana., 1, 11–32, 1993. a
Spain, P. and Sanford, T. B.: Accurately monitoring the Florida Current with motionally-induced voltages, J. Mar. Res., 7, 843–870, 1987. a
Szuts, Z. B., Bower, A. S., Donohue, K. A., Girton, J. B., Hummon, J. M.,
Katsumata, K., Lumpkin, R., Ortner, P. B., Phillips, H. E., Rossby, H. T.,
Shay, L. K., Sun, C., and Todd, R. E.: The Scientific and Societal Uses of
Global Measurements of Subsurface Velocity, Frontiers in Marine Science, 6,
358, https://doi.org/10.3389/fmars.2019.00358, 2019. a
Tyler, R. H., Maus, S., and Lühr, H.: Satellite observations of magnetic fields due to ocean tidal flow, Science, 299, 239–241,
https://doi.org/10.1126/science.1078074, 2003. a
Tyler, R. H., Boyer, T. P., Minami, T., Zweng, M. M., and Reagan, J. R.:
Electrical conductivity of the global ocean, Earth Planets Space, 69, 156,
https://doi.org/10.1186/s40623-017-0739-7, 2017. a
Vanyan, L. L., Utada, H., Shimizu, H., Tanaka, Y., Palshin, N. A., Stepanov,
V., Kouznetsov, V., Medzhitov, R. D., and Nozdrina, A.: Studies on the
lithosphere and the water transport by using the Japan Sea submarine cable
(JASC): 1. Theoretical considerations, Earth Planets Space, 50, 35–42,
https://doi.org/10.1186/BF03352084, 1998. a
Velímský, J.: Determination of three-dimensional distribution of
electrical conductivity in the Earth's mantle from Swarm satellite data:
Time-domain approach, Earth Planets Space, 65, 1239–1246,
https://doi.org/10.5047/eps.2013.08.001, 2013. a
Velímský, J. and Martinec, Z.: Time-domain, spherical
harmonic-finite element approach to transient three-dimensional geomagnetic
induction in a spherical heterogeneous earth,
Geophys. J. Int., 161, 81–101, https://doi.org/10.1111/j.1365-246X.2005.02546.x, 2005.
a
Velímský, J., Schnepf, N. R., Nair, M. C., and Thomas, N. P.: Download Ocean Circulation Electromagnetism (OCEM)
Data, available at: https://geomag.colorado.edu/OCEM,
last access: 17 February 2021.
Short summary
Marine electromagnetic (EM) signals largely depend on three factors: the direction and speed of ocean flow, the strength of Earth’s main magnetic field, and seawater’s electrical conductivity (which depends on the local temperature and salinity). Because of this, there is interest in using marine EM signals to monitor and study ocean circulation. Our study investigates using voltage data from retired seafloor telecommunication cables in the Pacific Ocean to monitor large-scale flows.
Marine electromagnetic (EM) signals largely depend on three factors: the direction and speed of...