Articles | Volume 17, issue 6
https://doi.org/10.5194/os-17-1775-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-17-1775-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Nutrient ratios driven by vertical stratification regulate phytoplankton community structure in the oligotrophic western Pacific Ocean
Zhuo Chen
College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin 300457, China
College of Marine Science and Technology, China University of Geosciences (Wuhan), Wuhan, Hubei 430074, China
Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin 300457, China
Ting Gu
Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin 300457, China
Guicheng Zhang
Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin 300457, China
Yuqiu Wei
Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
Related authors
No articles found.
Zhibo Shao, Yangchun Xu, Hua Wang, Weicheng Luo, Lice Wang, Yuhong Huang, Nona Sheila R. Agawin, Ayaz Ahmed, Mar Benavides, Mikkel Bentzon-Tilia, Ilana Berman-Frank, Hugo Berthelot, Isabelle C. Biegala, Mariana B. Bif, Antonio Bode, Sophie Bonnet, Deborah A. Bronk, Mark V. Brown, Lisa Campbell, Douglas G. Capone, Edward J. Carpenter, Nicolas Cassar, Bonnie X. Chang, Dreux Chappell, Yuh-ling Lee Chen, Matthew J. Church, Francisco M. Cornejo-Castillo, Amália Maria Sacilotto Detoni, Scott C. Doney, Cecile Dupouy, Marta Estrada, Camila Fernandez, Bieito Fernández-Castro, Debany Fonseca-Batista, Rachel A. Foster, Ken Furuya, Nicole Garcia, Kanji Goto, Jesús Gago, Mary R. Gradoville, M. Robert Hamersley, Britt A. Henke, Cora Hörstmann, Amal Jayakumar, Zhibing Jiang, Shuh-Ji Kao, David M. Karl, Leila R. Kittu, Angela N. Knapp, Sanjeev Kumar, Julie LaRoche, Hongbin Liu, Jiaxing Liu, Caroline Lory, Carolin R. Löscher, Emilio Marañón, Lauren F. Messer, Matthew M. Mills, Wiebke Mohr, Pia H. Moisander, Claire Mahaffey, Robert Moore, Beatriz Mouriño-Carballido, Margaret R. Mulholland, Shin-ichiro Nakaoka, Joseph A. Needoba, Eric J. Raes, Eyal Rahav, Teodoro Ramírez-Cárdenas, Christian Furbo Reeder, Lasse Riemann, Virginie Riou, Julie C. Robidart, Vedula V. S. S. Sarma, Takuya Sato, Himanshu Saxena, Corday Selden, Justin R. Seymour, Dalin Shi, Takuhei Shiozaki, Arvind Singh, Rachel E. Sipler, Jun Sun, Koji Suzuki, Kazutaka Takahashi, Yehui Tan, Weiyi Tang, Jean-Éric Tremblay, Kendra Turk-Kubo, Zuozhu Wen, Angelicque E. White, Samuel T. Wilson, Takashi Yoshida, Jonathan P. Zehr, Run Zhang, Yao Zhang, and Ya-Wei Luo
Earth Syst. Sci. Data, 15, 3673–3709, https://doi.org/10.5194/essd-15-3673-2023, https://doi.org/10.5194/essd-15-3673-2023, 2023
Short summary
Short summary
N2 fixation by marine diazotrophs is an important bioavailable N source to the global ocean. This updated global oceanic diazotroph database increases the number of in situ measurements of N2 fixation rates, diazotrophic cell abundances, and nifH gene copy abundances by 184 %, 86 %, and 809 %, respectively. Using the updated database, the global marine N2 fixation rate is estimated at 223 ± 30 Tg N yr−1, which triplicates that using the original database.
Yong Zhang, Yong Zhang, Shuai Ma, Hanbing Chen, Jiabing Li, Zhengke Li, Kui Xu, Ruiping Huang, Hong Zhang, Yonghe Han, and Jun Sun
Biogeosciences, 20, 1299–1312, https://doi.org/10.5194/bg-20-1299-2023, https://doi.org/10.5194/bg-20-1299-2023, 2023
Short summary
Short summary
We found that increasing light intensity compensates for the negative effects of low phosphorus (P) availability on cellular protein and nitrogen contents. Reduced P availability, increasing light intensity, and ocean acidification act synergistically to increase cellular contents of carbohydrate and POC and the allocation of POC to carbohydrate. These regulation mechanisms in Emiliania huxleyi could provide vital information for evaluating carbon cycle in marine ecosystems under global change.
M. Shahanul Islam, Jun Sun, Xiaoqian Li, and Xiaoyun Leng
Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-58, https://doi.org/10.5194/bg-2019-58, 2019
Manuscript not accepted for further review
Short summary
Short summary
This manuscript expressed several seasonal datasets on TEP and its sinking rates through descriptive comparison with previous work. This paper will provide a clear scenario for further research to the interested scientist about oceanic carbon pool associated with TEP. The manuscript were designed after discussing of TEP assemblage and its sinking variations through different depths with seasonal (autumn, summer & winter) fluctuations in two dynamic seas of China (Bohai Sea & Yellow Sea).
Jun Sun, Haijiao Liu, Xiaodong Zhang, Cuixia Zhang, and Shuqun Song
Biogeosciences Discuss., https://doi.org/10.5194/bg-2017-112, https://doi.org/10.5194/bg-2017-112, 2017
Manuscript not accepted for further review
Short summary
Short summary
The coccolithophore abundance in this study was relatively low, resulting from the weak winds and minimal nutrient upwelling compared to previous studies that were conducted during the monsoon seasons. During the spring intermonsoon period, no significant oceanic circulation occurred in the EEIO except for WJs. We inferred that, in the study area, different coccolithophore species had specific environmental preferences. Thus, coccolithophore species are good indicators of oceanographic changes.
J. Sun, X. Y. Gu, Y. Y. Feng, S. F. Jin, W. S. Jiang, H. Y. Jin, and J. F. Chen
Biogeosciences, 11, 779–806, https://doi.org/10.5194/bg-11-779-2014, https://doi.org/10.5194/bg-11-779-2014, 2014
Cited articles
Bertilsson, S., Berglund, O., Karl, D. M., and Chisholm, S. W.: Elemental
composition of marine Prochlorococcus and Synechococcus, Implications for the ecological stoichiometry
of the sea, Limnol. Oceanogr., 48, 1721–1731,
https://doi.org/10.4319/lo.2003.48.5.1721, 2003.
Bienfang P. K.: SETCOL – a technologically simple and reliable method for
measuring phytoplankton sinking rates, Can. J. Fish.
Aquat. Sci., 38, 1289–1294, https://doi.org/10.1139/f81-173, 1981.
Bouman, H. A., Ulloa, O., Scanlan, D. J., Zwirglmaier, K., Li, W., Platt,
T., Stuart, V., Barlow, R., Leth, O., Clementson, L., Lutz, V., Fukasawa,
M., Watanabe, S., and Sathyendranath, S.: Oceanographic basis of the global
surface distribution of Prochlorococcus ecotypes, Science, 312, 918–921,
https://doi.org/10.1126/science.1122692, 2006.
Bouman, H. A., Ulloa, O., Barlow, R., Li, W. K. W., Platt, T., Zwirglmaier,
K., Scanlan, D. J., and Sathyendranath, S.: Water-column stratification
governs the community structure of subtropical marine picophytoplankton,
Env. Microbiol. Rep., 3, 473–482,
https://doi.org/10.1111/j.1758-2229.2011.00241.x, 2011.
Boyd, P. W. and Newton, P. P.: Does planktonic community structure determine
downward particulate organic carbon flux in different oceanic provinces?,
Deep-Sea Res. Pt. I, 46, 63–91,
https://doi.org/10.1016/S0967-0637(98)00066-1, 1999.
Capone, D. and Carpente, E.: Nitrogen fixation by marine cyanobacteria:
historical and global perspectives, Bulletin De Linstitut
Océanographique, 19, 235–256, 1999.
Capone, D. G., Zehr, J. P., Paerl, H. W., Bergman, B., and Carpenter, E. J.:
Trichodesmium, a globally significant marine Cyanobacterium, Science, 276,
1221–1229, https://doi.org/10.1126/science.276.5316.1221, 1997.
Carlson, C. A.: Production and removal processes, in: Biogeochemistry of marine
dissolved organic matter, 91–151,
https://doi.org/10.1016/B978-012323841-2/50006-3, Academic Press, Bermuda, 2002.
Chang, J., Chiang, K. P., and Gong, G. C.: Seasonal variation and
cross-shelf distribution of the nitrogen-fixing cyanobacterium,
Trichodesmium, in southern East China Sea, Cont. Shelf Res., 20, 479–492, https://doi.org/10.1016/S0278-4343(99)00082-5, 2000.
Chen, M., Lu, Y., Jiao, N., Tian, J., Kao, S. J., and Zhang, Y.:
Biogeographic drivers of diazotrophs in the western Pacific Ocean, Limnol.
Oceanogr., 9999, 1–19, https://doi.org/10.1002/lno.11123, 2019.
Chen, Y., Sun, X., and Zhu, M.: Net-phytoplankton communities in the Western
Boundary Currents and their environmental correlations, Chin. J.
Oceanol. Limn., 36, 305–31, https://doi.org/10.1007/s00343-017-6261-8, 2018.
Chen, Z., Sun, J., and Zhang, G.: Netz-phytoplankton community structure of
the tropical Western Pacific Ocean in summer 2016, Mar. Sci., 42,
114–130, https://doi.org/10.11759/hykx20180331002, 2018.
Cronin, M. F., Bond, N. A., Farrar, J. T., Ichikawa, H., Jayne, S. R.,
Kawai, Y., Konda, M., Qiu, B., Rainville, L., and Tomita, H.: Formation and
erosion of the seasonal thermocline in the Kuroshio Extension recirculation
gyre, Deep-Sea Res. Pt. II, 85, 62–74, https://doi.org/10.1016/j.dsr2.2012.07.018, 2013.
Dai, M., Wang, L., Guo, X., Zhai, W., Li, Q., He, B., and Kao, S.-J.: Nitrification and inorganic nitrogen distribution in a large perturbed river/estuarine system: the Pearl River Estuary, China, Biogeosciences, 5, 1227–1244, https://doi.org/10.5194/bg-5-1227-2008, 2008.
Dai, S., Zhao, Y., Li, X., Wang, Z., Zhu, M., Liang, J., Liu, H., Tian, Z.,
and Sun, X.: The seamount effect on phytoplankton in the tropical western
Pacific, Mar. Environ. Res., 162, 105094,
https://doi.org/10.1016/j.marenvres.2020.105094, 2020.
Doney, S. C.: Plankton in a warmer world, Nature, 444, 695–696,
https://doi.org/10.1038/444695a, 2006.
Duce, R. A. and Tindale, N. W.: Atmospheric transport of iron and its
deposition in the ocean, Limnol. Oceanogr., 36, 1715–1726, 1991.
Dugdale, R. C., Menzel, D. W., and Ryther, J. H.: Nitrogen fixation in the
Sargasso Sea, Deep-Sea Res., 7, 297–300,
https://doi.org/10.1016/0146-6313(61)90051-X, 1961.
Egge, J. K.: Are diatoms poor competitors at low phosphate concentrations?,
J. Marine Syst., 16, 191–198,
https://doi.org/10.1016/S0924-7963(97)00113-9, 1998.
Eppley, R. W., Holmes, R. W., and Strickland J. D. H.: Sinking rates of
marine phytoplankton measured with a fluorometer, J. Exp.
Mar. Biol. Ecol., 1, 191–208,
https://doi.org/10.1016/0022-0981(67)90014-7, 1967.
Falkowski, P. G., Barber, R. T., and Smetacek, V.: Biogeochemical controls
and feedbacks on ocean primary production, Science, 281, 200–206,
https://doi.org/10.1126/science.281.5374.200, 1998.
Field, C. B., Behrenfeld, M. J., Randerson, J. T., and Falkowski, P.:
Primary production of the biosphere: Integrating terrestrial and oceanic
components, Science, 281, 237–240, https://doi.org/10.1126/science.281.5374.237, 1998.
Fogg, G. E.: The ecological significance of extracellular products of
phytoplankton photosynthesis, Bot. Mar., 26, 3–14,
https://doi.org/10.1515/botm.1983.26.1.3, 1983.
Gao, K., Beardall, J., Häder, D. P., Hall-Spencer, J. M., Gao, G., and
Hutchins, D. A.: Effects of ocean acidification on marine photosynthetic
organisms under the concurrent influences of warming, UV radiation, and
deoxygenation, Front. Mar. Sci., 6, 322,
https://doi.org/10.3389/fmars.2019.00322, 2019.
Geider, R. J., Maclntyre, H. L., and Kana, T. M.: A dynamic regulatory model
of phytoplanktonic acclimation to light, nutrients, and temperature, Limnol.
Oceanogr., 43, 679–694, https://doi.org/10.4319/lo.1998.43.4.0679, 1998.
Goldman, J. C., Mccarthy, J. J., and Peavey, D. G.: Growth rate influence on
the chemical composition of phytoplankton in oceanic waters, Nature, 279,
210–215, https://doi.org/10.1038/279210a0, 1979.
Grasshoff, K., Kremling, K., and Ehrhardt, M.: Methods of Seawater Analysis,
third, completely revised and extended edition, Wiley-VCH, Weinheim,
193–198, 1999.
Grosskopf, T., Mohr, W., Baustian, T., Schunck, H., Gill, D., Kuypers, M.,
Lavik, G., Schmitz, R. A., Wallace, D., and Laroche, J.: Doubling of marine
dinitrogen-fixation rates based on direct measurements, Nature, 488,
361–364, https://doi.org/10.1038/nature11338, 2012.
Guo, S., Feng, Y., Lei, W., Dai, M., Liu, Z., Bai, Y., and Sun, J.: Seasonal
variation in the phytoplankton community of a continental-shelf sea: the
East China Sea, Mar. Ecol.-Prog. Ser., 516, 103–126,
https://doi.org/10.3354/meps10952, 2014.
Gupta, A. S., Thomsen, M., Benthuysen J. A., Hobday, A. J., Oliver, E.,
Alexander, L. V., Burrows, M. T., Donat, M. G., Feng, M., Holbrook, N. J.,
Perkins-Kirkpatrick, S., Moore, P. J., Rodrigues, R. R., Scannell, H. A.,
Taschetto, A. S., Ummenhofer, C. C., Wernberg, T., and Smale, D. A.: Drivers
and impacts of the most extreme marine heatwaves events, Sci. Rep.,
10, 19359, https://doi.org/10.1038/s41598-020-75445-3, 2020.
Hansell, D. A. and Feely, R. A.: Atmospheric Intertropical Convergence
impacts surface ocean carbon and nitrogen biogeochemistry in the western
tropical Pacific, Geophys. Res. Lett., 27, 1013–1016,
https://doi.org/10.1029/1999gl002376, 2000.
Hidalgo, M., Reglero, P., Álvarez-Berastegui, D., Torres, A. P.,
Álvarez, I., Rodriguez, J. M., Carbonell, A., Zaragoza, N., Tor, A.,
Goñi, R., Mallol, S., Balbín, R., and Alemany, F.: Hydrographic and
biological components of the seascape structure the meroplankton community
in a frontal system, Mar. Ecol.-Prog. Ser., 505, 65–80,
https://doi.org/10.3354/meps10763, 2014.
Hillebrand, H., Steinert, G., Boersma, M., Malzahn, A., Meunier, C. L.,
Plum, C., and Ptacnik, R.: Goldman revisited: Faster-growing phytoplankton
has lower N : P and lower stoichiometric flexibility, Limnol. Oceanogr., 58,
2076–2088, https://doi.org/10.4319/lo.2013.58.6.2076, 2013.
Huang, B., Ou, L., Hong, H., Luo, H., and Wang, D.: Bioavailability of
dissolved organic phosphorus compounds to typical harmful dinoflagellate
Prorocentrum donghaiense Lu, Mar. Pollut. Bull., 51, 838–844,
https://doi.org/10.1016/j.marpolbul.2005.02.035, 2005.
Huisman, J., Sharples, J., Stroom, J. M., Visser, P. M., Kardinaal, W. E.
A., Verspagen, J. M. H., and Sommeijer, B.: Changes in turbulent mixing
shift competition for light between phytoplankton species, Ecology, 85,
2960–2970, https://doi.org/10.1890/03-0763, 2004.
Jin, D. and Chen, J.: Chinese Marine Planktonic Diatoms, Shanghai
Scientific & Technical Press, 1–230, 1965.
Karl, D., Michaels, A., Bergman, B., Capone, D., Carpenter, E., Letelier,
R., Lipschultz, F., Paerl, H., Sigman, D., and Stal, L.: Dinitrogen fixation
in the world's oceans, Biogeochemistry, 57/58, 47–98,
https://doi.org/10.1007/978-94-017-3405-9_2, 2002.
Karl, D. M. and Tien, G.: Temporal variability in dissolved phosphorus
concentrations in the subtropical North Pacific Ocean, Mar. Chem., 56,
77–96, https://doi.org/10.1016/S0304-4203(96)00081-3, 1997.
Karl, D. M., Hebel, D. V., Björkman, K., and Letelier, R. M.: The role
of dissolved organic matter release in the productivity of the oligotrophic
North Pacific Ocean, Limnol. Oceanogr., 43, 1270–1286,
https://doi.org/10.4319/lo.1998.43.6.1270, 1998.
Karl, D. M., Björkman, K. M., Dore, J. E., Fujieki, L., Hebel, D. V.,
Houlihan, T., Letelier, R. M., and Tupas, L. M.: Ecological
nitrogen-to-phosphorus stoichiometry at station ALOHA. Deep-Sea Res. Pt. II,
48, 1529–1566, https://doi.org/10.1016/S0967-0645(00)00152-1, 2001.
Kustka, A., Carpenter, E. J., and Sañudo-Wilhelmy, S. A.: Iron and
marine nitrogen fixation: progress and future directions, Res.
Microbiol., 153, 255–262, https://doi.org/10.1016/S0923-2508(02)01325-6,
2002.
Laroche, J. and Breitbarth, E.: Importance of the diazotrophs as a source
of new nitrogen in the ocean, J. Sea Res., 53, 67–91,
https://doi.org/10.1016/j.seares.2004.05.005, 2005.
Li, Q., Legendre, L., and Jiao, N. Z.: Phytoplankton responses to nitrogen
and iron limitation in the tropical and subtropical Pacific Ocean, J. Plankton Res., 37, 306–319, https://doi.org/10.1093/plankt/fbv008,
2015.
Liu, D. Y., Sun, J., and Qian, S. B.: Planktonic dinoflagellate in
Ryukyu-gunto and its adjacent waters-species composition and their abundance
distribution in summer 1997, Collected Works of Chinese Oceanography, Qingdao, 2000.
Lin, G. M., Chen, Y. H., Huang, J., Wang, Y. G., Ye, Y. Y., and Yang, Q. L.:
Regional disparities of phytoplankton in relation to different water masses
in the Northwest Pacific Ocean during the spring and summer of 2017, Acta
Oceanol. Sin., 39, 107–118, https://doi.org/10.1007/s13131-019-1511-6, 2020.
Long, Y., Noman, A., Chen, D. W., Wang, S. H., Yu, H., Chen, H. T., Wang,
M., and Sun, J.: Western pacific zooplankton community along latitudinal and
equatorial transects in autumn 2017 (northern hemisphere), Diversity, 13,
58, https://doi.org/10.3390/d13020058, 2021.
Luo, Y.-W., Doney, S. C., Anderson, L. A., Benavides, M., Berman-Frank, I., Bode, A., Bonnet, S., Boström, K. H., Böttjer, D., Capone, D. G., Carpenter, E. J., Chen, Y. L., Church, M. J., Dore, J. E., Falcón, L. I., Fernández, A., Foster, R. A., Furuya, K., Gómez, F., Gundersen, K., Hynes, A. M., Karl, D. M., Kitajima, S., Langlois, R. J., LaRoche, J., Letelier, R. M., Marañón, E., McGillicuddy Jr., D. J., Moisander, P. H., Moore, C. M., Mouriño-Carballido, B., Mulholland, M. R., Needoba, J. A., Orcutt, K. M., Poulton, A. J., Rahav, E., Raimbault, P., Rees, A. P., Riemann, L., Shiozaki, T., Subramaniam, A., Tyrrell, T., Turk-Kubo, K. A., Varela, M., Villareal, T. A., Webb, E. A., White, A. E., Wu, J., and Zehr, J. P.: Database of diazotrophs in global ocean: abundance, biomass and nitrogen fixation rates, Earth Syst. Sci. Data, 4, 47–73, https://doi.org/10.5194/essd-4-47-2012, 2012.
Mena, C., Reglero, P., Hidalgo, M., Sintes, E., Santiago, R., Martín,
M., Moyà, G., and Balbín, R.: Phytoplankton community structure is
driven by stratification in the oligotrophic mediterranean sea, Front.
Microbiol., 10, 1698, https://doi.org/10.3389/fmicb.2019.01698, 2019.
Mitra, A. and Flynn, K. J.: Predator-prey interactions: is 'ecological
stoichiometry' sufficient when good food goes bad?, J. Plankton
Res., 27, 393–399, https://doi.org/10.1093/plankt/fbi022, 2005.
Mojica, K. D. A., van de Poll, W. H., Kehoe, M., Huisman, J., Timmermans, K.
R., Buma, A. G. J., van der Woerd, H. J., Hahn-Woernle, L., Dijkstra, H. A.,
and Brussaard, C. P. D.: Phytoplankton community structure in relation to
vertical stratification along a north-south gradient in the Northeast
Atlantic Ocean, Limnol. Oceanogr., 60, 1498–1521,
https://doi.org/10.1002/lno.10113, 2015.
Pai, S. C., Tsau, Y. J., and Yang, T. I.: PH and buffering capacity problems
involved in the determination of ammonia in saline water using the
indophenol blue spectrophotometric method, Anal. Chim. Acta, 434,
209–216, https://doi.org/10.1016/S0003-2670(01)00851-0, 2001.
Pérez, V., Fernández, E., Marañón, E., Morán, X. A. G.,
and Zubkov, M. V.: Vertical distribution of phytoplankton biomass,
production and growth in the Atlantic subtropical gyres, Deep-Sea Res.
Pt. I, 53, 1616–1634, https://doi.org/10.1016/j.dsr.2006.07.008, 2006.
Pitcher G. C., Walker D. R., and Mitchell-Innes B. A.: Phytoplankton sinking
rate dynamics in the southern Bengurla upwelling system, Mar. Ecol.-Prog. Ser., 55, 261–269, https://doi.org/10.3354/meps055261, 1989.
Qiu, B., Chen, S. M., and Hacker, P.: Synoptic-scale air–sea flux forcing
in the western North Pacific: Observations and their impact on SST and the
mixed layer, J. Phys. Oceanogr., 34, 2148–2159,
https://doi.org/10.1175/1520-0485(2004)034<2148:SAFFIT>2.0.CO;2, 2004.
Redfield, A. C., Ketchum, B. H., and Richards, F. A.: The influence of
organisms on the composition of sea-water, Sea, 26–77,
https://doi.org/10.1061/40640(305)14, 1963.
Richardson, K. and Bendtsen, J.: Vertical distribution of phytoplankton and
primary production in relation to nutricline depth in the open ocean, Mar.
Ecol.-Prog. Ser., 620, 33–46, https://doi.org/10.3354/meps12960,
2019.
Sañudo-Wilhelmy, S. A., Kustka, A. B., Gobler, C. J., Hutchins, D. A.,
Yang, M., Lwiza, K., Burns, J., Capone, D. G., Raven, J. A., and Carpenter, E.
J.: Phosphorus limitation of nitrogen fixation by Trichodesmium in the central Atlantic
Ocean, Nature, 411, 66–69, https://doi.org/10.1038/35075041, 2001.
Schindler, D. W.: Ecological stoichiometry: The biology of elements from
molecules to the biosphere, Nature, 423, 225–226,
https://doi.org/10.1038/423225b, 2003.
Smayda, T. J.: Harmful algal blooms: their ecophysiology and general relevance
to phytoplankton blooms in the sea, Limnol. Oceanogr., 42,
1137–1153, https://doi.org/10.4319/lo.1997.42.5_part_2.1137, 1997.
Sohm, J. A., Webb, E. A., and Capone, D. G.: Emerging patterns of marine
nitrogen fixation, Nat. Rev. Microbiol., 9, 499–508,
https://doi.org/10.1038/nrmicro2594, 2011.
Stoecker, D. K.: Mixotrophy among dinoflagellates, J. Eukaryot
Microbiol., 46, 397–401, https://doi.org/10.1111/j.1550-7408.1999.tb04619.x,
1999.
Sun, J. and Liu, D. Y.: The Preliminary Notion on Nomenclature of Common
Phytoplankton in China Sea Waters, Oceanologia Et Limnologia Sinica, 33,
271–286, https://doi.org/10.1088/1009-1963/11/5/313, 2002.
Sun, J., Liu, D. Y., and Qian, S. B.: Planktonic diatoms in Ryukyu-gunto and
its adjacent waters-species composition and abundance distribution in summer
1997, Collected Works of Chinese Oceanography, Qingdao, 2000.
Sun, J., Liu, D. Y., and Qian, S. B.: A Quantative Research and Analysis
Method for Marine Phytoplankton: An Introduction to Utermöhl Method and
Its Modification, Journal of oceanography of Huanghai & Bohai Seas, 20,
105–112, 2002.
Titman D. and Kilham P.: Sinking in freshwater phytoplankton: some
ecological implications of cell nutrient status and physical mixing
processes, Limnol. Oceanogr., 21, 409–417,
https://doi.org/10.4319/lo.1976.21.3.0409, 1976.
Tilman, D., Kiesling, R., Sterner, R., Kilham, S. S., and Johnson, F. A.:
Green, bluegreen and diatom algae: taxonomic differences in competitive
ability for phosphorus, silicon and nitrogen, Arch. Hydrobiol., 106, 473–485,
https://doi.org/10.1029/WR022i007p01162, 1986.
Yamaguchi, R., Suga, T., Richards, K. J., and Qiu, B.: Diagnosing the
development of seasonal stratification using the potential energy anomaly in
the North Pacific, Clim. Dynam., 53, 4667–4681,
https://doi.org/10.1007/s00382-019-04816-y , 2019.
Yamaji, I.: Illustrations of the Marine Plankton of Japan, Hoikusha
Press, Tokyo, 1–158, 1991.
Zehr, J. P.: Nitrogen fixation by marine cyanobacteria, Trend.
Microbiol., 19, 162–173, https://doi.org/10.1016/j.tim.2010.12.004, 2011.
Zhang, Q.: Relationship between the precipitation in the rainy season in
north China and the tropical western pacific warm pool and Kuroshio, Plateau
Meteorology, 18, 575–583, 1999.
Zhu, J., Zheng, Q. A., Hu, J. Y., Lin, H. Y., Chen, D. W., Chen, Z. Z., Sun,
Z. Y., Li, L. Y., and Kong, H.: Classification and 3-D distribution of upper
layer water masses in the northern South China Sea, Acta Oceanol. Sin., 38,
126–135, https://doi.org/10.1007/s13131-019-1418-2, 2019.
Short summary
We investigated the spatial distribution pattern and diversity of phytoplankton communities in the western Pacific Ocean (WPO) in the autumn of 2016, 2017, and 2018. The regions with strong vertical stratification were more favorable for cyanobacteria, whereas weak vertical stratification was more conducive to diatoms and dinoflagellates. It is clear that physical processes control phytoplankton community structure by driving the balance of chemical elements.
We investigated the spatial distribution pattern and diversity of phytoplankton communities in...